A Survey of Wi-Fi 6: Technologies, Advances, and Challenges
Abstract
:1. Introduction
1.1. Contribution
- Wilhelmi [12] summarized the related works for spatial reuse in Wi-Fi 6;
- Nurchis [13] focused on energy efficiency for low-power devices;
- Masri [14] focused on scheduling and resource allocation;
- Qu [15] presented a novel simulator for next-generation wireless networks and identified a few contributions to the field.
- It explains the main features of Wi-Fi 6 based on the latest released standard. Thereby, it describes the improvements and differences compared to earlier Wi-Fi standards.
- It provides a comprehensive review of the related works exploiting the new features.
- It categorizes the related works regarding their objectives, which makes it easier for researchers to learn about the recent advances in Wi-Fi 6.
- An overview of current evaluation tools and available hardware is compiled.
1.2. Paper Structure
2. Wi-Fi Basics
2.1. PHY in Wi-Fi
2.1.1. Orthogonal Frequency Division Multiplexing (OFDM)
2.1.2. Multiple-Input Multiple-Output (MIMO) systems
- Spatial Diversity: This method turns the multipath effect into an advantage by transmitting the same data over multiple antennas. Since every antenna on the receiver side might receive data copies from other streams too, it provides redundancy. A Digital Signal Processing (DSP) module recombines the received spatial streams to recover the whole data chunk (see Figure 4a).
- Beamforming: This technique modifies dynamically the radiation pattern of the group of antennas. It is similar to directing the signal in a specific direction to strengthen the signal rather than spreading the energy in all directions. Narrower beams bring stronger signals and reduced interference (see Figure 4b).
2.1.3. Modulation
2.2. MAC in Wi-Fi
2.2.1. Distributed Coordination Function (DCF)
2.2.2. Enhanced Distributed Channel Access (EDCA)
2.2.3. Power Management in Legacy Wi-Fi
3. Wi-Fi 6 Overview
3.1. Novel Features
3.1.1. Orthogonal Frequency Division Multiple Access (OFDMA)
3.1.2. Spatial Reuse (SR)
3.1.3. TWT
3.1.4. MU MIMO
3.1.5. Modulation Techniques
3.2. Additional Frequency Band (Wi-Fi 6E)
3.3. Targeted Use Cases
3.3.1. Dense Environments
3.3.2. Internet of Things (IoT)
3.3.3. Multimedia
4. OFDMA in Wi-Fi 6
4.1. Advances on the PHY Layer
4.1.1. Flexible Spectrum Usage
4.1.2. RUs in Wi-Fi 6
- data subcarriers: these subcarriers transport data;
- guard subcarriers: these subcarriers comprise 11 tones in total in a 20 MHz channel and are located at the beginning and end of the channel;
- null subcarriers: these subcarriers separate different subcarriers; with guard subcarriers, they help to relieve interference from adjacent channels and sub-channels;
- DC (direct conversion) subcarriers: these subcarriers indicate the center of the channel; their sizes may differ depending on the RU sizes.
4.1.3. Duration of Symbols and Guard Intervals in Wi-Fi 6
4.1.4. New Frame Format
- HE Single-user (SU) PPDU: this frame is used for single-user transmissions.
- HE ER SU PPDU: this frame is the same as the single-user transmission but designed for outdoor environments with an Extended transmission Range.
- HE MU PPDU: this frame is considered for one or multiple downlink transmission(s) by adding the HE-SIG-B field to the single-user transmission frame.
- HE Trigger-Based (TB) PPDU: this frame is used for multi-user uplink transmissions in response to the Trigger Frame (TF) issued by the access point.
- Repeated Legacy (non-HT) SIGNAL (RL-SIG): This field detects the beginning of the HE frame.
- HE-SIG-A: This field is a common field in all four Wi-Fi 6 frame formats. It carries all the needed information for the types of transmissions and is two OFDM symbols long. The information in this field differs depending on the frame type and whether the transmission is single-user, multi-user, or TB. It contains information about the packet to determine the link type (uplink or downlink), BSS color, TXOP duration, bandwidth, number of spatial streams, and coding [30]. For an extended-range single-user transmission, this is repeated one more time to improve the robustness against interference and signal fading in outdoor scenarios [31].
- HE-SIG-B: This field is specific to downlink multi-user transmissions. It is divided into two parts. In the common part, it carries RU allocation information and it is decodable by all the stations in the same sub-channel. The user-specific part has a variable length and contains specific information for each user such as MCS, number of spatial streams, coding, and station ID [32].
- HE-STF and HE-LTF: The HE short training field (STF) and HE long training field (LTF) are specific to MIMO operations. The former synchronizes a receiver with the incoming frame in time and frequency. The latter is responsible for beamforming and spatial diversity. For a TB frame, the duration of the HE-STF is twice as long.
4.2. Advances on the MAC Layer
4.2.1. Multi-User RTS/CTS Handshake
4.2.2. Downlink Transmission
4.2.3. Uplink Transmission
Scheduled Access
Random Access
4.2.4. Integration of EDCA
- 1.
- Legacy EDCA parameters are applied for non-Wi-Fi 6 stations and Wi-Fi 6 stations in single-user mode;
- 2.
- Specific multi-user EDCA parameters are used when several transmissions are multiplexed over multiple RUs. Stations use these parameters after an uplink multi-user transmission from the access point [11,36]. Conversely, they re-apply the legacy parameters when the multi-user transmissions are terminated.
4.3. Related Work
4.3.1. Random Access
4.3.2. Centralized Approaches
4.3.3. Real-time/QoS Scheduling
4.3.4. Optimization
4.3.5. Cross-Layer Scheduling
4.3.6. Synchronization
4.3.7. Performance Evaluation
5. SR in Wi-Fi 6
5.1. Concept
5.2. Challenges with SR in Legacy Wi-Fi
5.3. Mechanisms for Spatial Reuse in Wi-Fi 6
5.3.1. BSS Coloring
5.3.2. Intra- and Inter-BSS NAV
5.3.3. Overlapping BSS Packet Detection (OBSS PD)
- CCA parameters for intra-BSS traffic;
- OBSS PD parameters for inter-BSS traffic that is part of the same spatial reuse group;
- General OBSS PD parameters for the remaining inter-BSS traffic.
5.3.4. Parameterized Spatial Reuse (PSR)
5.4. Related Works
5.4.1. Threshold Manipulation
5.4.2. MAC Modifications
5.4.3. Rate Control
5.4.4. Performance Evaluation
6. TWT in Wi-Fi 6
6.1. Challenges with Power Saving in Legacy Wi-Fi
6.2. Target Wake Time (TWT) Mechanism in Wi-Fi 6
6.2.1. Overview
6.2.2. Basic Operation
6.2.3. Agreements
Individual Agreements
Broadcast Agreements
6.2.4. TWT Operation Modes
Implicit vs. Explicit Mode
Announced vs. Unannounced Mode
Trigger-Enabled vs. Non-Trigger-Enabled Mode
6.2.5. Multi-User TWT
6.3. Additional Improvements
6.4. Related Works
6.4.1. User Distribution
6.4.2. Clock Drifts
6.4.3. Traffic Aware Scheduling
7. Multi-User Multiple-Input Multiple-Output (MU-MIMO)
7.1. MU MIMO in Wi-Fi 6
7.2. Related Works
7.2.1. User Selection
7.2.2. Channel Estimation
7.2.3. Performance Evaluation
8. Modulation Techniques
8.1. Two New MCSs in Wi-Fi 6
8.2. Dual Carrier Modulation (DCM)
8.3. Forward Error Correction (FEC)
8.4. Related Works
8.4.1. MCS Selection
8.4.2. Performance Evaluation
9. Tools for Performance Evaluation of Wi-Fi 6
9.1. Real-World Experiments
9.1.1. Hardware
9.1.2. Software
- ath11k (https://wireless.wiki.kernel.org/en/users/drivers/ath11k, accessed on 1 September 2022): This firmware is designed for Qualcomm Technologies’ Wi-Fi 6 chipset. Its source code is freely available (https://github.com/kvalo/ath11k-firmware, accessed on1 September 2022).
- MT7915 (https://github.com/openwrt/mt76/tree/master/mt7915, accessed on 1 September 2022): This firmware is designed for the Mediatek MT7915 chipsets, which consist of Wi-Fi 6 and Bluetooth 5 combo chipsets. MT7915 supports the Wave 1+ features listed in Table 7 and mostly targets routers, repeaters, and mesh networking equipment. It also supports EasyMesh features to create a meshed wireless topology of access points.
- MT7921 (https://github.com/openwrt/mt76/tree/master/mt7921, accessed on 1 September 2022): This firmware is designed for the Mediatek MT7921 chipsets and mostly targets notebooks and routers. MT7921 supports Wi-Fi 6 with a 2 × 2 dual antenna.
9.2. Software-Defined Radio (SDR)
9.3. Simulation Tools
10. Open Challenges with Wi-Fi 6
10.1. Challenges
10.1.1. Control of Complex Wi-Fi 6 Deployments
10.1.2. QoS Support
10.1.3. Interoperability
10.2. Wi-Fi 7
10.2.1. Expanded Bandwidth
10.2.2. Higher-Order Modulation
10.2.3. Multi-Link (Band) Data Transmission
10.2.4. Multi-Access Point Cooperation
10.2.5. MU-MIMO
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AID | Association Identifier |
AIFS | Arbitrary InterFrame Space |
AP | access point |
API | Application Programming Interface |
BCC | Binary Convolution Codes |
BER | Bit Error Rate |
BSR | Buffer Status Report |
BSS | Basic Service Set |
CAPWAP | Control And Provisioning of Wireless Access Points |
CCA | Clear Channel Assessment |
CSI | Channel State Information |
CSMA/CA | Carrier Sense Multiple Access with Collision Avoidance |
CTS | Clear-To-Send |
DCF | Distributed Coordination Function |
DCM | Dual Carrier Modulation |
DIFS | Distributed Inter-Frame Space |
DL | downlink |
DTIM | Delivery Traffic Indication Map |
EDCA | Enhanced Distributed Channel Access |
EIFS | Extended Inter-Frame Space |
FEC | Forward Error Correction |
FFT | fast Fourier transform |
GI | guard interval |
HCCA | Controlled Channel Access |
HCF | Hybrid Coordination Function |
HE | High Efficiency |
LDPC | Low-Density Parity Check |
MAC | Medium Access Control |
MCS | Modulation and Coding Scheme |
MEC | Mobile Edge Computing |
MIMO | Multiple-Input Multiple-Output |
MPDU | MAC protocol data unit |
MSBA | Multi-Station Block Acknowledgment |
MU | multi-user |
MU MIMO | Multi-User Multiple-Input Multiple-Output |
MU OFDMA | Multi-User Orthogonal Frequency Division Multiple Access |
NIC | Network Interface Controller |
NEF | Network Exposure Function |
NFV | Network Function Virtualization |
NAV | Network Allocation Vector |
OBSS PD | Overlapping Basic Service Set Packet Detect |
OFDM | Orthogonal Frequency Division Multiplexing |
OFDMA | Orthogonal Frequency Division Multiple Access |
PCF | Point Coordination Function |
PER | Packet Error Rate |
PPDU | Physical Layer Protocol Data Unit |
PSM | Power-Saving Mode |
PSR | Parameterized Spatial Reuse |
PHY | Physical |
QAM | Quadrature Amplitude Modulation |
QoS | Quality of Service |
RSSI | Received Signal Strength Indication |
RTS | Request-To-Send |
RU | Resource Unit |
SDN | Software-Defined Networking |
SDR | Software-Defined Radio |
SIFS | Short InterFrame Space |
SLO | Service-Level Objective |
SNR | Signal-to-Noise Ratio |
SP | service period |
SR | Spatial Reuse |
SRG | Spatial Reuse Group |
STA | station |
SU | single-user |
SU MIMO | Single-User Multiple-Input Multiple-Output |
TF | Trigger Frame |
TF-R | Trigger Frame Random |
TB | Trigger-Based |
TIM | Traffic Indication Map |
TSN | Time-Sensitive Networking |
TWT | Target Wake Time |
TXOP | Transmission Opportunity |
defpluralTXOP | Transmission Opportunities |
UL | uplink |
UORA | uplink OFDMA random access |
WLAN | Wireless Local Area Network |
References
- Cisco Annual Internet Report (2018–2023) White Paper. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html (accessed on 1 September 2022).
- The Road to Wi-Fi 6/6E. 2022. Available online: https://www.cisco.com/c/en/us/products/collateral/wireless/nb-06-preparing-for-wifi-6-ebook-cte-en.html (accessed on 1 September 2022).
- Deng, D.J.; Lien, S.Y.; Lee, J.; Chen, K.C. On Quality-of-Service Provisioning in IEEE 802.11 ax WLANs. IEEE Access 2016, 4, 6086–6104. [Google Scholar] [CrossRef]
- Official IEEE 802.11 Working Group Project Timelines. Available online: https://www.ieee802.org/11/Reports/802.11_Timelines.htm (accessed on 1 September 2022).
- IEEE Approved Draft Standard for Information Technology—Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 1: Enhancements for High Efficiency WLAN. Draft; IEEE: Piscataway, NJ, USA, 2021.
- Bellalta, B. IEEE 802.11ax: High-efficiency WLANs. IEEE Wirel. Commun. 2016, 23, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Afaqui, M.S.; Garcia-Villegas, E.; Lopez-Aguilera, E. IEEE 802.11 ax: Challenges and Requirements for Future High Efficiency WiFi. IEEE Wirel. Commun. 2016, 24, 130–137. [Google Scholar] [CrossRef]
- Yang, D.X.; Guo, Y.; Aboul-Magd, O. 802.11 ax: The Coming New WLAN System with More Than 4x MAC Throughput Enhancement. In Proceedings of the IEEE Semiannual Vehicular Technology Conference (VTC), Sydney, Australia, 4–7 June 2017. [Google Scholar]
- Ali, R.; Kim, S.W.; Kim, B.S.; Park, Y. Design of MAC Layer Resource Allocation Schemes for IEEE 802.11 ax: Future Directions. IETE Tech. Rev. 2018, 35, 28–52. [Google Scholar] [CrossRef]
- Yang, M.; Li, B.; Yan, Z. MAC Technology of IEEE 802.11 ax: Progress and Tutorial. Mob. Networks Appl. 2021, 26, 1122–1136. [Google Scholar] [CrossRef]
- Khorov, E.; Kiryanov, A.; Lyakhov, A.; Bianchi, G. A Tutorial on IEEE 802.11 ax High Efficiency WLANs. IEEE Commun. Surv. Tutor. (COMST) 2018, 21, 197–216. [Google Scholar] [CrossRef]
- Wilhelmi, F.; Barrachina-Muñoz, S.; Cano, C.; Selinis, I.; Bellalta, B. Spatial Reuse in IEEE 802.11ax WLANs. Comput. Commun. 2021, 170, 65–93. [Google Scholar] [CrossRef]
- Nurchis, M.; Bellalta, B. Target Wake Time: Scheduled Access in IEEE 802.11 ax WLANs. IEEE Wirel. Commun. 2019, 26, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim Masri, E.E.; Ergüzen, A. Review Paper on 802.11 ax Scheduling and Resource Allocation. Int. J. Trend Sci. Res. Dev. (IJTSRD) 2020, 5, 1134–1139. [Google Scholar]
- Qu, Q.; Li, B.; Yang, M.; Yan, Z.; Yang, A.; Deng, D.J.; Chen, K.C. Survey and Performance Evaluation of the Upcoming Next Generation WLANs Standard-IEEE 802.11 ax. Mob. Netw. Appl. 2019, 24, 1461–1474. [Google Scholar] [CrossRef]
- Tarokh, V.; Jafarkhani, H.; Calderbank, A.R. Space-Time Block Codes from Orthogonal Designs. IEEE Trans. Inf. Theory 1999, 45, 1456–1467. [Google Scholar] [CrossRef]
- IEEE Std 802.11-2020 (Revision of IEEE Std 802.11-2016); IEEE Standard for Information Technology–Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks–Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE: Piscataway, NJ, USA, 2021. Available online: https://cir.nii.ac.jp/crid/1573950400559565312 (accessed on 1 September 2022).
- Al-Bado, M.; Sengul, C.; Sreenan, C.J.; Brown, K.N. Hidden Terminal Management for Uplink Traffic in Rate-Controlled WiFi Networks. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Messina, Italy, 27–30 June 2016. [Google Scholar]
- 11AX Project Authorizations (PARs). Available online: https://www.ieee802.org/11/PARs/P802.11ax.pdf (accessed on 1 September 2022).
- Wi-Fi 6 Industry White Paper. Available online: https://e.huawei.com/en/products/enterprise-networking/wlan/wifi-6/industry-white-paper (accessed on 1 September 2022).
- Šepić, N.; Kočan, E.; Veljović, Z.; Pejanović, M. Assessment of Novel Solutions for Throughput Enhancement in IEEE 802.11 ax Networks. In Proceedings of the 27th Telecommunications Forum (TELFOR), Belgrade, Serbia, 26–27 November 2019. [Google Scholar]
- Anastasi, G.; Conti, M.; Gregori, E.; Passarella, A. 802.11 Power-Saving Mode for Mobile Computing in Wi-Fi Hotspots: Limitations, Enhancements and Open Issues. Wirel. Netw. 2008, 14, 745–768. [Google Scholar] [CrossRef] [Green Version]
- IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016, as amended by IEEE Std 802.11ai-2016); IEEE Standard for Information Technology—Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks–Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Sub 1 GHz License Exempt Operation. IEEE: Piscataway, NJ, USA, 2017.
- Liu, J. Reliable Dual Sub-Carrier Modulations (DCM) for HE-SIG-B and Data. Available online: https://mentor.ieee.org/802.11/dcn/15/11-15-1068-01-00ax-reliable-transmission-schemes-for-he-sig-b-and-data.pptx (accessed on 1 September 2022).
- Wi-Fi 6E: The Next Great Chapter in Wi-Fi. Available online: https://www.cisco.com/c/en/us/solutions/collateral/enterprise-networks/802-11ax-solution/nb-06-wi-fi-6e-wp-cte-en.pdf (accessed on 1 September 2022).
- Garcia-Rodriguez, A.; Lopez-Perez, D.; Galati-Giordano, L.; Geraci, G. IEEE 802.11 be: Wi-Fi 7 Strikes Back. IEEE Commun. Mag. (COMMAG) 2021, 59, 102–108. [Google Scholar] [CrossRef]
- Kosek-Szott, K.; Natkaniec, M.; Szott, S.; Krasilov, A.; Lyakhov, A.; Safonov, A.; Tinnirello, I. What’s New for QoS in IEEE 802.11? IEEE Netw. Mag. 2013, 27, 95–104. [Google Scholar] [CrossRef]
- Bellalta, B.; Bononi, L.; Bruno, R.; Kassler, A. Next Generation IEEE 802.11 Wireless Local Area Networks: Current Status, Future Directions and Open Challenges. Comput. Commun. 2016, 75, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Venkateswaran, S. Payload Symbol Size for 11ax. Submission, IEEE. 2015. Available online: https://mentor.ieee.org/802.11/dcn/15/11-15-0099-04-00ax-payload-symbol-size-for-11ax.pptx (accessed on 1 September 2022).
- Zhang, J.; Zhu, J.; Liu, L.; Luo, J.; Luo, Y.; Lin, Y.; Pang, J.; Rong, Z.; Sun, R.; Yang, D.X.; et al. HE-SIGA Content. Available online: https://mentor.ieee.org/802.11/dcn/15/11-15-1077-00-00ax-he-sig-a-content.pptx (accessed on 1 September 2022).
- Zhang, J.; Zhu, J.; Liu, L.; Luo, J.; Luo, Y.; Lin, Y.; Pang, J.; Rong, Z.; Sun, R.; Yang, D.X.; et al. HE-SIGA Transmission for Range Extension. Available online: https://mentor.ieee.org/802.11/dcn/15/11-15-0826-03-00ax-he-sig-a-transmission-for-range-extension.pptx (accessed on 1 September 2022).
- Liu, L.; Gan, M.; Lin, M.; Zhang, J.; Luo, J.; Lin, Y.; Pang, J.; Loc, P.; Sun, R.; Suh, J.; et al. HE-SIG-B Contents. Available online: https://mentor.ieee.org/802.11/dcn/15/11-15-1335-02-00ax-he-sig-b-contents.pptx (accessed on 1 September 2022).
- Kwon, Y.H.; Hedayat, R.; Seok, Y.; Cheong, M. Protection Using MU RTS/CTS. Available online: https://mentor.ieee.org/802.11/dcn/16/11-16-0048-00-00ax-protection-using-mu-rts-cts.pptx (accessed on 1 September 2022).
- Khorov, E.; Kiryanov, A.; Schelstraete, S.; Wang, H. Random Access RU Allocation in the Trigger Frame. Submission, IEEE. 2016. Available online: https://mentor.ieee.org/802.11/dcn/16/11-16-0582-03-00ax-random-access-ru-allocation-in-the-trigger-frame.pptx (accessed on 1 September 2022).
- Ghosh, C.; Stacry, R.; Perahia, E.; Azizi, S.; Huang, P.-K.; Lin, Q.; Cariou, L.; Chen, X.; Yang, R.; Alpert, Y.; et al. UL OFDMA-based Random Access Procedure. Available online: https://mentor.ieee.org/802.11/dcn/15/11-15-1105-00-00ax-ul-ofdma-based-random-access-procedure.pptx (accessed on 1 September 2022).
- Cariou, L.; Azizi, S.; Huang, P.-K.; Li, Q.; Chen, X.; Ghosh, C.; Stacry, R.; Alpert, Y.; Gurevitz, A.; Sutskover, I.; et al. Rules for 2 EDCA Parameters. Available online: https://mentor.ieee.org/802.11/dcn/16/11-16-0998-03-00ax-rules-for-2-edca-parameters.pptx (accessed on 1 September 2022).
- Lanante, L.; Ghosh, C.; Roy, S. Hybrid OFDMA Random Access with Resource unit Sensing for Next-Gen 802.11 ax WLANs. IEEE Trans. Mob. Comput. 2020, 20, 3338–3350. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.; Bahk, S. CRUI: Collision Reduction and Utilization Improvement in OFDMA-Based 802.11 ax Networks. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019. [Google Scholar]
- Kim, Y.; Kwon, L.; Park, E.C. OFDMA Backoff Control Scheme for Improving Channel Efficiency in the Dynamic Network Environment of IEEE 802.11 ax WLANs. Sensors 2021, 21, 5111. [Google Scholar] [CrossRef]
- Wang, J.; Wu, M.; Chen, Q.; Zheng, Y.; Zhu, Y.H. Probability Complementary Transmission Scheme for Uplink OFDMA-based Random Access in 802.11 ax WLAN. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019. [Google Scholar]
- Xie, D.; Zhang, J.; Tang, A.; Wang, X. Multi-Dimensional Busy-Tone Arbitration for OFDMA Random Access in IEEE 802.11 ax. IEEE Trans. Wirel. Commun. 2020, 19, 4080–4094. [Google Scholar] [CrossRef]
- Kotagiri, D.; Nihei, K.; Li, T. Multi-User Distributed Spectrum Access Method for 802.11 ax Stations. In Proceedings of the IEEE International Conference on Computer Communications and Networks (ICCCN), Honolulu, HI, USA, 3–6 August 2020. [Google Scholar]
- Wydmański, W.; Szott, S. Contention Window Optimization in IEEE 802.11 ax Networks with Deep Reinforcement Learning. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021. [Google Scholar]
- Islam, G.Z.; Kashem, M.A. An OFDMA-based New MAC Mechanism for IEEE 802.11 ax. In Proceedings of the International Conference on Networking, Systems and Security (NSYSS), Dhaka, Bangladesh, 18–20 December 2018. [Google Scholar]
- Lee, J. OFDMA-based Hybrid Channel Access for IEEE 802.11 ax WLAN. In Proceedings of the International wireless communications and mobile computing conference (IWCMC), Limassol, Cyprus, 25–29 June 2018. [Google Scholar]
- Bhattarai, S.; Naik, G.; Park, J.M.J. Uplink Resource Allocation in IEEE 802.11 ax. In Proceedings of the IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019. [Google Scholar]
- Islam, G.Z.; Kashem, M.A. Efficient Resource Allocation in the IEEE 802.11 ax Network Leveraging OFDMA Technology. J. King Saud Univ.-Comput. Inf. Sci. 2020, 34, 2488–2496. [Google Scholar]
- Baiocchi, A.; Garlisi, D.; Santaromita, G.; Tinnirello, I. Moving RTS/CTS to the Frequency Domain: An Efficient Contention Scheme for 802.11 ax Networks. In Proceedings of the International Teletraffic Congress (ITC), Budapest, Hungary, 27–29 August 2019. [Google Scholar]
- Yang, A.; Li, B.; Yang, M.; Yan, Z.; Xie, Y. Utility Optimization of Grouping-based Uplink OFDMA Random Access for the Next Generation WLANs. Wirel. Netw. 2021, 27, 809–823. [Google Scholar] [CrossRef]
- Cao, F.; Zhong, Z.; Fan, Z.; Sooriyabandara, M.; Armour, S.; Ganesh, A. User Association for Load Balancing with Uneven User Distribution in IEEE 802.11 ax Networks. In Proceedings of the IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 9–12 January 2016. [Google Scholar]
- Karaca, M.; Bastani, S.; Priyanto, B.E.; Safavi, M.; Landfeldt, B. Resource Management for OFDMA based Next Generation 802.11 WLANs. In Proceedings of the IFIP Wireless and Mobile Networking Conference (WMNC), Colmar, France, 11–13 July 2016. [Google Scholar]
- Ali, R.; Shahin, N.; Zikria, Y.B.; Kim, B.S.; Kim, S.W. Deep Reinforcement Learning Paradigm for Performance Optimization of Channel Observation–based MAC Protocols in Dense WLANs. IEEE Access 2018, 7, 3500–3511. [Google Scholar] [CrossRef]
- Bankov, D.; Didenko, A.; Khorov, E.; Lyakhov, A. OFDMA Uplink Scheduling in IEEE 802.11 ax Networks. In Proceedings of the IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Bourgeois, F.; Lassalle, J.C. An Extension of the Munkres Algorithm for the Assignment Problem to Rectangular Matrices. Commun. ACM 1971, 14, 802–804. [Google Scholar] [CrossRef]
- Tutelian, S.; Bankov, D.; Shmelkin, D.; Khorov, E. IEEE 802.11 ax OFDMA Resource Allocation with Frequency-Selective Fading. Sensors 2021, 21, 6099. [Google Scholar] [CrossRef]
- Dovelos, K.; Bellalta, B. Optimal Resource Allocation in IEEE 802.11 ax Uplink OFDMA with Scheduled Access. arXiv 2018, arXiv:1811.00957. [Google Scholar]
- Wang, K.; Psounis, K. Scheduling and Resource Allocation in 802.11 ax. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), Honolulu, HI, USA, 16–19 April 2018. [Google Scholar]
- Wang, K.; Psounis, K. Efficient Scheduling and Resource Allocation in 802.11 ax Multi-User Transmissions. Comput. Commun. 2020, 152, 171–186. [Google Scholar] [CrossRef]
- Lee, J.; Kim, C. An Efficient Multiple Access Coordination Scheme for OFDMA WLAN. IEEE Commun. Lett. 2016, 21, 596–599. [Google Scholar] [CrossRef]
- Yang, A.; Li, B.; Yang, M.; Yan, Z. Utility Maximization of Capacity Entropy for Multi-User Access for the Next Generation WLANs. Comput. Commun. 2019, 145, 309–318. [Google Scholar] [CrossRef]
- Yang, A.; Li, B.; Yang, M.; Yan, Z.; Cai, X. Utility Maximization of Capacity Entropy for Dense IEEE 802.11 ax WLANs based on Interference Characteristics. Mob. Netw. Appl. 2020, 27, 141–157. [Google Scholar] [CrossRef]
- Lei, J.; Samo, M. Grouping-Based Hybrid Channel Access Mechanism for Ultra-Dense IEEE 802.11 ax Networks. In Proceedings of the Computer Science On-line Conference, Online, Czech Republic, 1 April 2021. [Google Scholar]
- Li, Y.; Li, B.; Yang, M.; Yan, Z. A Spatial Clustering Group Division-based OFDMA Access Protocol for the Next Generation WLAN. Wirel. Netw. 2019, 25, 5083–5097. [Google Scholar] [CrossRef]
- Joo, S.; Kim, T.; Song, T.; Pack, S. MU-MIMO enabled Uplink OFDMA MAC Protocol in Dense IEEE 802.11 ax WLANs. ICT Express 2020, 6, 287–290. [Google Scholar] [CrossRef]
- Hocini, K.; Yazid, M. Toward a MAC Protocol Overcoming Hidden Stations Issue in IEEE 802.11 ax Unidirectional Full Duplex Radio Communications. In Proceedings of the International Conference on Embedded & Distributed Systems (EDiS), Oran, Algeria, 3 November 2020. [Google Scholar]
- Karthik, R.; Palaniswamy, S. Resource Unit (RU) based OFDMA Scheduling in IEEE 802.11 ax System. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018. [Google Scholar]
- Kim, S.; Yun, J.H. Efficient Frame Construction for Multi-User Transmission in IEEE 802.11 WLANs. IEEE Trans. Veh. Technol. 2019, 68, 5859–5870. [Google Scholar] [CrossRef]
- Lee, G.; Kim, C. Centralized Contention based MAC for OFDMA Wlan. IEICE Trans. Inf. Syst. 2017, 100, 2219–2223. [Google Scholar] [CrossRef] [Green Version]
- Filoso, D.G.; Hara, K.; Tamaki, S.; Minami, K.; Tsuji, K.; Kubo, R. Deadline-aware Emergency Data Resource Allocation Control for IEEE 802.11 ax. In Proceedings of the International Conference on Communications and Electronics (ICCE), Taoyuan, Taiwan, 28–30 September 2020. [Google Scholar]
- Lopez-Aguilera, E.; Heusse, M.; Grunenberger, Y.; Rousseau, F.; Duda, A.; Casademont, J. An Asymmetric Access Point for Solving the Unfairness Problem in WLANs. IEEE Trans. Mob. Comput. 2008, 7, 1213–1227. [Google Scholar] [CrossRef]
- Khorov, E.; Loginov, V.; Lyakhov, A. Several EDCA Parameter Sets for Improving Channel Access in IEEE 802.11 ax Networks. In Proceedings of the International Symposium on Wireless Communication Systems (ISWCS), Poznan, Poland, 20–23 September 2016. [Google Scholar]
- Avdotin, E.; Bankov, D.; Khorov, E.; Lyakhov, A. OFDMA Resource Allocation for Real-Time Applications in IEEE 802.11 ax Networks. In Proceedings of the IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Sochi, Russia, 3–6 June 2019. [Google Scholar]
- Inamullah, M.; Raman, B.; Akhtar, N. Will My Packet Reach On Time? Deadline-Based Uplink OFDMA Scheduling in 802.11 ax WLANs. In Proceedings of the ACM International Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems (MSWiM), Alicante, Spain, 16–20 November 2020. [Google Scholar]
- Bankov, D.; Didenko, A.; Khorov, E.; Loginov, V.; Lyakhov, A. IEEE 802.11 ax Uplink Scheduler to Minimize, Delay: A Classic Problem with new Constraints. In Proceedings of the International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017. [Google Scholar]
- Binoy, B.; Vineeth, B. Minimum Delay Scheduling Under Average Power Constraint for 802.11 ax Uplink. In Proceedings of the IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Goa, India, 16–19 December 2019. [Google Scholar]
- Neely, M.J. Stochastic Network Optimization with Application to Communication and Queueing Systems. Synth. Lect. Commun. Netw. 2010, 3, 1–211. [Google Scholar]
- Zheng, Y.; Wang, J.; Chen, Q.; Zhu, Y. Retransmission Number Aware Channel Access Scheme for IEEE 802.11 ax Based WLAN. Chin. J. Electron. 2020, 29, 351–360. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, G.; Oh, Y.; Choi, W. Transmission Delay-Based Uplink Multi-User Scheduling in IEEE 802.11 ax Networks. Appl. Sci. 2021, 11, 9196. [Google Scholar] [CrossRef]
- Yang, A.; Li, B.; Yang, M.; Yan, Z. Concept and Analysis of Capacity Entropy for Uplink Multi-User Media Access Control for the Next-Generation WLANs. Mob. Netw. Appl. 2019, 24, 1572–1586. [Google Scholar] [CrossRef]
- Chen, C.; Li, J.; Balasubramaniam, V.; Wu, Y.; Zhang, Y.; Wan, S. Contention Resolution in Wi-Fi 6-Enabled Internet of Things Based on Deep Learning. IEEE Internet Things J. 2020, 8, 5309–5320. [Google Scholar] [CrossRef]
- Dovelos, K.; Bellalta, B. A Scheduling Policy for Downlink OFDMA in IEEE 802.11 ax with Throughput Constraints. arXiv 2020, arXiv:2009.00413. [Google Scholar]
- Kuran, M.Ş.; Dilmac, A.; Topal, Ö.; Yamansavascilar, B.; Avallone, S.; Tugcu, T. Throughput-maximizing OFDMA Scheduler for IEEE 802.11 ax Networks. In Proceedings of the International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), London, UK, 31 August–3 September 2020. [Google Scholar]
- Filoso, D.G.; Kubo, R.; Hara, K.; Tamaki, S.; Minami, K.; Tsuji, K. Proportional-based Resource Allocation Control with QoS Adaptation for IEEE 802.11 ax. In Proceedings of the IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020. [Google Scholar]
- Han, M.; Chen, Z.; Cai, L.X.; Luan, T.H.; Hou, F. A Deep Reinforcement Learning Based Approach for Channel Aggregation in IEEE 802.11 ax. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Taipei, Taiwan, 7–11 December 2020. [Google Scholar]
- Zhang, M.; Zhu, Y.h.; Liu, Y. Throughput Aware Users Allocation Scheme for Coexistence of the LTE System and 802.11 ax WLANs. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021. [Google Scholar]
- Shahin, N.; Ali, R.; Kim, S.W.; Kim, Y.T. Cognitive backoff mechanism for IEEE802. 11ax high-efficiency WLANs. J. Commun. Netw. (JCN) 2019, 21, 158–167. [Google Scholar] [CrossRef]
- Cheng, J.; Li, B.; Yang, M.; Yan, Z. Traffic Load Perception Based OFDMA MAC Protocol for the Next Generation WLAN. In Proceedings of the International Wireless Internet Conference, TaiChung, Taiwan, 26–27 November 2019. [Google Scholar]
- Lu, C.; Wu, B.; Wang, L.; Wei, Z.; Tang, Y. A Novel QoS-Aware ARQ Scheme for Multi-User Transmissions in IEEE802. 11ax WLANs. Electronics 2020, 9, 2065. [Google Scholar] [CrossRef]
- Qiu, S.; Chu, X.; Leung, Y.W.; Ng, J.K.Y. Joint Access Point Placement and Power-Channel-Resource-Unit Assignment for 802.11 ax-Based Dense WiFi with QoS Requirements. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), Toronto, ON, Canada, 6–9 July 2020. [Google Scholar]
- Sharon, O.; Alpert, Y. Optimizing TCP Goodput and Delay in Next Generation IEEE 802.11 (ax) Devices. Trans. Netw. Commun. 2018, 6, 14–39. [Google Scholar] [CrossRef]
- Sharon, O.; Alpert, Y. Advanced IEEE 802.11 ax TCP Aware Scheduling under Unreliable Channels. Int. J. Commun. Syst. 2019, 32, e4060. [Google Scholar] [CrossRef] [Green Version]
- Qu, Q.; Li, B.; Yang, M.; Yan, Z. An OFDMA based Concurrent Multiuser MAC for Upcoming IEEE 802.11 ax. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, 9–12 March 2015. [Google Scholar]
- Son, Y.; Kim, S.; Byeon, S.; Choi, S. Symbol Timing Synchronization for Uplink Multi-User Transmission in IEEE 802.11 ax WLAN. IEEE Access 2018, 6, 72962–72977. [Google Scholar] [CrossRef]
- Sharon, O.; Alpert, Y. Scheduling Strategies and Throughput Optimization for the Downlink for IEEE 802.11 ax and IEEE 802.11 ac based Networks. arXiv 2017, arXiv:1709.04818. [Google Scholar]
- Sharon, O.; Alpert, Y. Scheduling Strategies and Throughput Optimization for the Uplink for IEEE 802.11 ax and IEEE 802.11 ac Based Networks. arXiv 2018, arXiv:1803.10657. [Google Scholar]
- Uwai, T.; Miyamoto, T.; Nagao, Y.; Lanante, L.; Kurosaki, M.; Ochi, H. Performance Evaluation of OFDMA Random Access in IEEE 802. 11ax. In Proceedings of the International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Phuket, Thailand, 24–27 October 2016. [Google Scholar]
- Lanante, L.; Uwai, H.O.T.; Nagao, Y.; Kurosaki, M.; Ghosh, C. Performance Analysis of the 802.11 ax UL OFDMA Random Access Protocol in Dense Networks. In Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017. [Google Scholar]
- Bellalta, B.; Kosek-Szott, K. AP-initiated Multi-User Transmissions in IEEE 802.11 ax WLANs. Ad Hoc Netw. 2019, 85, 145–159. [Google Scholar] [CrossRef]
- Magrin, D.; Avallone, S.; Roy, S.; Zorzi, M. Validation of the ns-3 802.11 ax OFDMA Implementation. In Proceedings of the Proceedings of the Workshop on ns-3, Virtual Event, USA, 23–24 June 2021. [Google Scholar]
- Naik, G.; Bhattarai, S.; Park, J.M. Performance Analysis of Uplink Multi-User OFDMA in IEEE 802.11 ax. In Proceedings of the IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018. [Google Scholar]
- Dolińska, I.; Jakubowski, M.; Masiukiewicz, A. New IEEE 802.11 HEW Standard Throughput Per User Analysis. In Proceedings of the International Conference on Information and Digital Technologies (IDT), Zilina, Slovakia, 25–27 June 2019. [Google Scholar]
- Daldoul, Y.; Meddour, D.E.; Ksentini, A. Performance Evaluation of OFDMA and MU-MIMO in 802.11 ax Networks. Comput. Netw. 2020, 182, 107477. [Google Scholar] [CrossRef]
- Madhavan, N.; Sekiya, M.; Nabetani, T. Development of 802.11 ax-compatible LSI and Performance Evaluation of Uplink OFDMA. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018. [Google Scholar]
- Yang, H.; Deng, D.J.; Chen, K.C. Performance Analysis of IEEE 802.11 ax UL OFDMA-based Random Access Mechanism. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Singapore, 4–8 December 2017. [Google Scholar]
- Naribole, S.; Lee, W.B.; Ranganath, A. Impact of MU EDCA Channel Access on IEEE 802.11 ax WLANs. In Proceedings of the IEEE Semiannual Vehicular Technology Conference (VTC), Honolulu, HI, USA, 22–25 September 2019. [Google Scholar]
- Weller, D.; Mensenkamp, R.D.; van der Vegt, A.; van Bloem, J.W.; de Laat, C. Wi-Fi 6 Performance Measurements of 1024-QAM and DL OFDMA. In Proceedings of the IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020. [Google Scholar]
- Avallone, S.; Imputato, P.; Redieteab, G.; Ghosh, C.; Roy, S. Will OFDMA Improve the Performance of 802.11 WiFi Networks? IEEE Wirel. Commun. 2021, 28, 100–107. [Google Scholar] [CrossRef]
- Ajami, A.K.; Artail, H. Analyzing the Impact of the Coexistence with IEEE 802.11 ax Wi-Fi on the Performance of DSRC using Stochastic Geometry Modeling. IEEE Trans. Commun. 2019, 67, 6343–6359. [Google Scholar] [CrossRef]
- Lee, K.h. Performance Analysis of the IEEE 802.11 ax MAC Protocol for Heterogeneous Wi-Fi Networks in Non-saturated Conditions. Sensors 2019, 19, 1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Mohanty, B.; Sambhwani, S.D. Scheduling based on Effective Target Load with Interference Cancellation in a Wireless Communication System. U.S. Patent 8,676,124, 18 March 2014. [Google Scholar]
- Asterjadhi, A.; Merlin, S.; Tian, B.; Aldana, C.; Cherian, G.; Barriac, G.; Sampath, H.; Wentink, M.; Van Nee, R.; Van Zelst, A.; et al. Identifiers in HE PPDUs for Power Saving. Available online: https://mentor.ieee.org/802.11/dcn/15/11-15-1122-00-00ax-identifiers-in-he-ppdus-for-power-saving.pptx (accessed on 1 September 2022).
- Iwatani, J.; Iwatani, J.; Shinohara, S.; Takatori, Y.; Asai, Y.; Ishihara, K.; Yamada, A.; Watanabe, F.; Papadopoulos, H.; Porat, R.; et al. Number of BSS Color Bits. Available online: https://mentor.ieee.org/802.11/dcn/15/11-15-1075-01-00ax-number-of-bss-color-bits.pptx (accessed on 1 September 2022).
- Khorov, E.; Kiryanov; Schelstraete, S.; Wang, H. Multiple NAVs for Spatial Reuse. Available online: https://mentor.ieee.org/802.11/dcn/15/11-15-1348-00-00ax-multiple-navs-for-spatial-reuse.pptx (accessed on 1 September 2022).
- Mvulla, J.; Park, E.C.; Adnan, M.; Son, J.H. Analysis of Asymmetric Hidden Node Problem in IEEE 802.11 ax Heterogeneous WLANs. In Proceedings of the Information Communication Technologies Conference (ICTC), Jeju, Korea, 28–30 October 2015. [Google Scholar]
- Ali, M.Z.; Mišić, J.; Mišić, V.B. Impact of Hidden Nodes on Uplink Transmission in IEEE 802.11 ax Heterogeneous Network. In Proceedings of the International wireless communications and mobile computing conference (IWCMC), Limassol, Cyprus, 25–29 June 2018. [Google Scholar]
- Ali, M.Z.; Mišić, J.; Mišić, V.B. Performance Analysis of IEEE 802.11 ax Heterogeneous Network in the Presence of Hidden Terminals. arXiv 2019, arXiv:1908.01834. [Google Scholar]
- Sou, S.I.; Lee, Y. Trigger-based Approach with Hidden Node Problem for Uplink Multi-User Transmission in 802.11 ax. In Proceedings of the IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, 3–6 July 2017. [Google Scholar]
- Afaqui, M.S.; Garcia-Villegas, E.; Lopez-Aguilera, E.; Smith, G.; Camps, D. Evaluation of Dynamic Sensitivity Control Algorithm for IEEE 802.11 ax. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, 9–12 March 2015. [Google Scholar]
- Afaqui, M.S.; Garcia-Villegas, E.; Lopez-Aguilera, E.; Camps-Mur, D. Dynamic Sensitivity Control of Access Points for IEEE 802.11 ax. In Proceedings of the IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016. [Google Scholar]
- Zhong, Z.; Cao, F.; Kulkarni, P.; Fan, Z. Promise and Perils of Dynamic Sensitivity Control in IEEE 802.11 ax WLANs. In Proceedings of the International Symposium on Wireless Communication Systems (ISWCS), Poznan, Poland, 20–23 September 2016. [Google Scholar]
- Afaqui, M.S.; Garcia-Villegas, E.; Lopez-Aguilera, E. Dynamic Sensitivity Control Algorithm Leveraging Adaptive RTS/CTS for IEEE 802.11 ax. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Doha, Qatar, 3–6 April 2016. [Google Scholar]
- Khorov, E.; Kiryanov, A.; Krotov, A.; Gallo, P.; Garlisi, D.; Tinnirello, I. Joint Usage of Dynamic Sensitivity Control and Time Division Multiple Access in Dense 802.11 ax Networks. In Proceedings of the International Workshop on Multiple Access Communications, Aalborg, Denmark, 21–22 November 2016. [Google Scholar]
- Yan, Y.; Li, B.; Yang, M.; Yan, Z. ESR: Enhanced Spatial Reuse Mechanism for the Next Generation WLAN-IEEE 802.11 ax. In Proceedings of the International Conference on Internet of Things as a Service, Xi’an, China, 17–18 November 2018. [Google Scholar]
- Iwata, M.; Yamamoto, K.; Yin, B.; Nishio, T.; Morikura, M.; Abeysekera, H. Analysis of Inversely Proportional Carrier Sense Threshold and Transmission Power Setting Based on Received Power for IEEE 802.11 ax. In Proceedings of the IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 11–14 January 2019. [Google Scholar]
- Iwata, M.; Yamamoto, K.; Yin, B.; Nishio, T.; Morikura, M.; Abeysekera, H. Stochastic Geometry Analysis of Individual Carrier Sense Threshold Adaptation in IEEE 802.11 ax WLANs. IEEE Access 2019, 7, 161916–161927. [Google Scholar] [CrossRef]
- Kiryanov, A.; Krotov, A.; Lyakhov, A.; Khorov, E. Algorithm for Dynamic Power Control and Scheduling in IEEE 802.11 ax Infrastructure Networks. J. Commun. Technol. Electron. 2019, 64, 900–909. [Google Scholar] [CrossRef]
- Qian, L.P.; Zhang, Y.J.; Huang, J. MAPEL: Achieving Global Optimality for a Non-Convex Wireless Power Control Problem. IEEE Trans. Wirel. Commun. 2009, 8, 1553–1563. [Google Scholar] [CrossRef] [Green Version]
- Wilhelmi, F.; Cano, C.; Neu, G.; Bellalta, B.; Jonsson, A.; Barrachina-Muñoz, S. Collaborative Spatial Reuse in Wireless Networks via Selfish Multi-Armed Bandits. Ad Hoc Netw. 2019, 88, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Bardou, A.; Begin, T.; Busson, A. Improving the Spatial Reuse in IEEE 802.11ax WLANs: A Multi-Armed Bandit Approach. In Proceedings of the 24th International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), Association for Computing Machinery, Alicante, Spain, 22–26 November 2021; pp. 135–144. [Google Scholar] [CrossRef]
- Ropitault, T. Evaluation of RTOT Algorithm: A First Implementation of OBSS_PD-based SR Method for IEEE 802.11 ax. In Proceedings of the IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018. [Google Scholar]
- Selinis, I.; Katsaros, K.; Vahid, S.; Tafazolli, R. Control OBSS/PD Sensitivity Threshold for IEEE 802.11 ax BSS Color. In Proceedings of the International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 1–9 September 2018. [Google Scholar]
- Valkanis, A.; Iossifides, A.; Chatzimisios, P. An Interference based Dynamic Channel Access Algorithm for Dense WLAN Deployments. In Proceedings of the Panhellenic Conference on Electronics and Telecommunications (PACET), Xanthi, Greece, 17–19 November 2017. [Google Scholar]
- Valkanis, A.; Iossifides, A.; Chatzimisios, P.; Angelopoulos, M.; Katos, V. IEEE 802.11 ax Spatial Reuse Improvement: An Interference-based Channel-Access Algorithm. IEEE Veh. Technol. Mag. 2019, 14, 78–84. [Google Scholar] [CrossRef]
- Lanante, L.; Roy, S. Performance Analysis of the IEEE 802.11 ax OBSS_PD-Based Spatial Reuse. IEEE/ACM Trans. Netw. 2021, 30, 616–628. [Google Scholar] [CrossRef]
- Karakoç, A.; Kuran, M.Ş.; Yilmaz, H.B. More WiFi for Everyone: Increasing Spectral Efficiency in WiFi6 Networks using OBSS/PD Mechanism. arXiv 2021, arXiv:2108.13909. [Google Scholar]
- Menth, M.; Hauser, F. On Moving Averages, Histograms and Time-Dependent Rates for Online Measurement. In Proceedings of the ACM/SPEC International Conference on Performance Engineering (ICPE), L’Aquila, Italy, 22–26 April 2017. [Google Scholar]
- Lee, H.; Kim, H.S.; Bahk, S. LSR: Link-aware Spatial Reuse in IEEE 802.11 ax WLANs. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021. [Google Scholar]
- Kim, Y.; Kim, G.; Kim, T.; Choi, W. Transmission Opportunity-Based Distributed OBSS/PD Determination Method in IEEE 802.11 ax Networks. In Proceedings of the International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Fukuoka, Japan, 19–21 February 2020. [Google Scholar]
- Kwon, D.; Kim, J. Opportunistic Medium Access for Hyper-Dense beamformed IEEE 802.11 ax Wireless Networks. In Proceedings of the Information Communication Technologies Conference (ICTC), Jeju Island, Korea, 17–19 October 2018. [Google Scholar]
- Kwon, D.; Kim, S.W.; Kim, J.; Mohaisen, A. Interference-aware Adaptive Beam Alignment for Hyper-Dense IEEE 802.11 ax Internet-of-Things Networks. Sensors 2018, 18, 3364. [Google Scholar] [CrossRef] [Green Version]
- Selinis, I.; Katsaros, K.; Vahid, S.; Tafazolli, R. An IEEE 802.11 ax Interference-Aware MAC Queue. In Proceedings of the International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), London, UK, 31 August–3 September 2020. [Google Scholar]
- Kawamura, K.; Inoki, A.; Nakayama, S.; Wakao, K.; Takatori, Y. Cooperative Control of 802.11 ax Access Parameters in High Density Wireless LAN Systems. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019. [Google Scholar]
- Selinis, I.; Katsaros, K.; Vahid, S.; Tafazolli, R. Damysus: A Practical IEEE 802.11 ax BSS Color Aware Rate Control Algorithm. Int. J. Wirel. Inf. Netw. 2019, 26, 285–307. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Li, B.; Yang, M.; Yan, Z.; Li, X.; Jin, Y. Research and performance evaluation of spatial reuse technology for next generation WLAN. In Proceedings of the International Wireless Internet Conference, Taipei, Taiwan, 15–16 October 2018. [Google Scholar]
- Selinis, I.; Filo, M.; Vahid, S.; Rodriguez, J.; Tafazolli, R. Evaluation of the DSC Algorithm and the BSS Color Scheme in Dense Cellular-like IEEE 802.11 ax Deployments. In Proceedings of the International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–8 September 2016. [Google Scholar]
- Selinis, I.; Katsaros, K.; Vahid, S.; Tafazolli, R. Exploiting the Capture Effect on DSC and BSS Color in Dense IEEE 802.11 ax Deployments. In Proceedings of the Proceedings of the Workshop on ns-3, Porto, Portugal, 13–14 June 2017. [Google Scholar]
- Malhotra, A.; Maity, M.; Dutta, A. How Much Can We Reuse? An Empirical Analysis of the Performance Benefits Achieved by Spatial-Reuse of IEEE 802.11 ax. In Proceedings of the International Conference on COMmunication Systems and NETworks (COMSNETS), Bangalore, India, 7–11 January 2019. [Google Scholar]
- Wilhelmi, F.; Barrachina-Muñoz, S.; Bellalta, B. On the Performance of the Spatial Reuse Operation in IEEE 802.11 ax WLANs. In Proceedings of the IEEE Conference on Standards for Communications and Networking (CSCN), Granada, Spain, 28–30 October 2019. [Google Scholar]
- Šepić, N.; Kočan, E.; Pejanović-Djurišić, M. Evaluating Spatial Reuse in 802.11 ax Networks with Interference Threshold Adjustment. In Proceedings of the International Conference on Information Technology (IT), Zabljak, Montenegro, 18–22 February 2020. [Google Scholar]
- Rodrigues, E.d.C.; Garcia-Rodriguez, A.; Giordano, L.G.; Geraci, G. On the Latency of IEEE 802.11 ax WLANs with Parameterized Spatial Reuse. arXiv 2020, arXiv:2008.07482. [Google Scholar]
- Bai, J.; Fang, H.; Suh, J.; Aboul-Magd, O.; Au, E.; Wang, X. Adaptive Uplink OFDMA Random Access Grouping Scheme for Ultra-Dense Networks in IEEE 802.11 ax. In Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC), Beijing, China, 16–18 August 2018. [Google Scholar]
- Chen, Q.; Liang, G.; Weng, Z. A Target Wake Time based Power Conservation Scheme for Maximizing Throughput in IEEE 802.11 ax WLANs. In Proceedings of the IEEE International Conference on Parallel and Distributed Systems (ICPADS), Tianjin, China, 4–6 December 2019. [Google Scholar]
- Chen, Q.; Weng, Z.; Chen, G. A Target Wake Time Scheduling Scheme for Uplink Multiuser Transmission in IEEE 802.11 ax-Based Next Generation WLANs. IEEE Access 2019, 7, 158207–158222. [Google Scholar] [CrossRef]
- Chen, Q.; Zhu, Y.H. Scheduling Channel Access Based on Target Wake Time Mechanism in 802.11 ax WLANs. IEEE Trans. Wirel. Commun. 2020, 20, 1529–1543. [Google Scholar]
- Yang, C.; Lee, J.; Bahk, S. Target Wake Time Scheduling Strategies for Uplink Transmission in IEEE 802.11 ax Networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021. [Google Scholar]
- Bankov, D.; Khorov, E.; Lyakhov, A.; Stepanova, E. Clock Drift Impact on Target Wake Time in IEEE 802.11 ax/ah Networks. In Proceedings of the Engineering and Telecommunication (EnT-MIPT), Moscow, Russia, 15–16 November 2018. [Google Scholar]
- Yang, H.; Deng, D.J.; Chen, K.C. On Energy Saving in IEEE 802.11 ax. IEEE Access 2018, 6, 47546–47556. [Google Scholar] [CrossRef]
- KARACA, M. Joint optimization of target wake time mechanism and scheduling for IEEE 802.11 ax. Turk. J. Electr. Eng. Comput. Sci. 2021, 29, 1659–1671. [Google Scholar] [CrossRef]
- Karaca, M. Joint Optimization of TWT Mechanism and Scheduling for IEEE 802.11 ax. arXiv 2020, arXiv:2006.02235. [Google Scholar]
- Qiu, W.; Chen, G.; Nguyen, K.N.; Sehgal, A.; Nayak, P.; Choi, J. Category-Based 802.11 ax Target Wake Time Solution. IEEE Access 2021, 9, 100154–100172. [Google Scholar] [CrossRef]
- Lee, K.H. Using OFDMA for MU-MIMO User Selection in 802.11 ax-based Wi-Fi Networks. IEEE Access 2019, 7, 186041–186055. [Google Scholar] [CrossRef]
- Karmakar, R.; Chattopadhyay, S.; Chakraborty, S. Intelligent MU-MIMO User Selection with Dynamic Link Adaptation in IEEE 802.11 ax. IEEE Trans. Wirel. Commun. 2019, 18, 1155–1165. [Google Scholar] [CrossRef]
- Oni, P.B.; Blostein, S.D. PCS Threshold Selection for Spatial Reuse in High Density CSMA/CA MIMO Wireless Networks. IEEE Access 2019, 7, 112470–112482. [Google Scholar] [CrossRef]
- Hoefel, R.P.F. IEEE 802.11 ax: A Study on Techniques to Mitigate the Frequency Offset in the Uplink Multi-User MIMO. In Proceedings of the IEEE Latin-American Conference on Communications (LATINCOM), Medellin, Colombia, 15–17 November 2016. [Google Scholar]
- Hoefel, R.P.F. IEEE 802.11 ax: Joint Effects of Power Control and IQ Imbalance Mitigation Schemes on the Performance of OFDM Uplink Multi-User MIMO. In Proceedings of the IEEE Semiannual Vehicular Technology Conference (VTC), Sydney, Australia, 4–7 June 2017. [Google Scholar]
- Hoefel, R.P.F. IEEE 802.11 ax: On Hardware Impairments and Mitigation Schemes for OFDM Uplink Multi-User MIMO PHY. In Proceedings of the IEEE Semiannual Vehicular Technology Conference (VTC), Porto, Portugal, 3–6 June 2018. [Google Scholar]
- Jeon, E.; Lee, W.B.; Ahn, M.; Kim, S.; Kim, J. Adaptive Feedback of the Channel Information for Beamforming in IEEE 802.11 ax WLANs. In Proceedings of the IEEE Semiannual Vehicular Technology Conference (VTC), Honolulu, HI, USA, 22–25 September 2019. [Google Scholar]
- Nabetani, T.; Madhavan, N.; Mori, H.; Aoki, T. A Novel Low-Overhead Channel Sounding Protocol for Downlink Multi-User MIMO in IEEE 802.11 ax WLAN. IEICE Trans. Commun. 2017, 101, 924–932. [Google Scholar]
- Sangdeh, P.K.; Zeng, H. DeepMux: Deep-Learning-Based Channel Sounding and Resource Allocation for IEEE 802.11 ax. IEEE J. Sel. Areas Commun. 2021, 39, 2333–2346. [Google Scholar] [CrossRef]
- Zeng, H.; Li, H.; Yan, Q. Uplink MU-MIMO in Asynchronous Wireless LANs. In Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing, Los Angeles, CA, USA, 26–29 June 2018. [Google Scholar]
- Machrouh, Z.; Najid, A. High Efficiency IEEE 802.11 ax MU-MIMO and Frame Aggregation Analysis. In Proceedings of the International Conference on Advanced Communication Technologies and Networking (CommNet), Marrakech, Morocco, 2–4 April 2018. [Google Scholar]
- Heo, Y.; Jang, J.; Kim, Y.; Yang, H.J. Performance Comparison of SU-and MU-MIMO in 802.11 ax: Delay and Throughput. In Proceedings of the Information Communication Technologies Conference (ICTC), Nanjing, China, 29–31 May 2020. [Google Scholar]
- Hoefel, R.P.F. IEEE 802.11 ax (Wi-Fi 6): DL and UL MU-MIMO Channel Sounding Compression Schemes Impaired with IQ Imbalance and CFO. In Proceedings of the IEEE Semiannual Vehicular Technology Conference (VTC), Antwerp, Belgium, 25–28 May 2020. [Google Scholar]
- IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa-2012); IEEE Standard for Information technology–Telecommunications and Information exchange between Systems–Local and Metropolitan Area Networks–Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. IEEE: Piscataway, NJ, USA, 2012.
- Zhang, H.; Wang, L.; Chu, L.; Jiang, J.; Zhang, Y.; Cao, Y.; Srinivasa, S.; Yu, B.; Tamhane, S.; Yu, M.; et al. LDPC for 1024QAM. Available online: https://mentor.ieee.org/802.11/dcn/16/11-16-0891-00-00ax-ldpc-for-1024qam.pptx (accessed on 1 September 2022).
- Hoefel, R.P.F. IEEE 802.11 ax: On Performance of Multi-Antenna Technologies with LDPC Codes. In Proceedings of the International Conference on Communications and Electronics (ICCE), Hue City, Vietnam, 18–20 July 2018. [Google Scholar]
- Taniguchi, K.; Adachi, T.; Kajihara, H.; Ban, K.; Horisaki, K.; Madhavan, N.; Nabetani, T.; Aoki, T.; Halls, D.; Tosato, F.; et al. Allocation sizes for BCC in OFDMA. Available online: https://mentor.ieee.org/802.11/dcn/16/11-16-0079-02-00ax-allocation-sizes-for-bcc-in-ofdma.pptx (accessed on 1 September 2022).
- Adame, T.; Carrascosa, M.; Bellalta, B. The TMB Path Loss Model for 5 GHz Indoor WiFi Scenarios: On the Empirical Relationship Between RSSI, MCS, and Spatial Streams. In Proceedings of the Wireless Days (WD), Manchester, UK, 24–26 April 2019. [Google Scholar]
- Krotov, A.; Kiryanov, A.; Khorov, E. Rate Control With Spatial Reuse for Wi-Fi 6 Dense Deployments. IEEE Access 2020, 8, 168898–168909. [Google Scholar] [CrossRef]
- Del Moral, P. Nonlinear Filtering: Interacting Particle Resolution. Comptes Rendus l’Académie Sci.-Ser. I-Math. 1997, 325, 653–658. [Google Scholar] [CrossRef]
- Hussien, M.; Ahmed, M.F.; Dahman, G.; Nguyen, K.K.; Cheriet, M.; Poitau, G. Towards More Reliable Deep Learning-based Link Adaptation for WiFi 6. In Proceedings of the IEEE International Conference on Communications (ICC), Montreal, QC, Canada, 14–23 June 2021. [Google Scholar]
- Ha, V.N.; Kaddoum, G.; Poitau, G. Joint Radio Resource Management and Link Adaptation for Multicasting 802.11ax-based WLAN Systems. IEEE Trans. Wirel. Commun. 2021, 20, 6122–6138. [Google Scholar] [CrossRef]
- Anwar, W.; Dev, S.; Kulkarni, K.; Franchi, N.; Fettweis, G. On PHY Abstraction Modeling for IEEE 802.11ax based Multi-Connectivity Networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019. [Google Scholar]
- Sharon, O.; Alpert, Y. Single User MAC Level Throughput Comparision: IEEE 802.11 ax vs. IEEE 802.11 ac. Wirel. Sens. Netw. 2017, 9, 166–177. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Mahecha, J.S.; Céspedes, S.; Bustos-Jiménez, J. QoS Evaluation of the Future High-efficiency IEEE 802.11 ax WLAN Standard. In Proceedings of the IEEE Colombian Conference on Communications and Computing (COLCOM), Medellin, Colombia, 16–18 May 2018. [Google Scholar]
- Muhammad, S.; Zhao, J.; Refai, H.H. An Empirical Analysis of IEEE 802.11 ax. In Proceedings of the International Conference on Communications, Signal Processing, and their Applications (ICCSPA), Sharjah, UAE, 16–18 March 2021. [Google Scholar]
- Malekzadeh, M. Spectrum Efficiency of Modulation Schemes for Network Optimization in 5GHz Dense Environments. Pertanika J. Sci. Technol. 2020, 28, 1063–1080. [Google Scholar]
- Rochim, A.F.; Harijadi, B.; Purbanugraha, Y.P.; Fuad, S.; Nugroho, K.A. Performance Comparison of Wireless Protocol IEEE 802.11 ax vs 802.11 ac. In Proceedings of the International Conference on Smart Technology and Applications (ICoSTA), Surabaya, Indonesia, 20 February 2020. [Google Scholar]
- Openwifi. Available online: https://github.com/open-sdr/openwifi (accessed on 1 September 2022).
- Xia, D.; Zheng, X.; Yu, F.; Liu, L.; Ma, H. WiRa: Enabling Cross-Technology Communication from WiFi to LoRa with IEEE 802.11ax. In Proceedings of the IEEE INFOCOM, Online, 2–5 May 2022. [Google Scholar] [CrossRef]
- NS3-802.11ax-Simulator. Available online: https://www.nsnam.org/docs/models/html/wifi-design.html (accessed on 1 September 2022).
- NS3-802.11ax-Simulator limitations. Available online: https://www.nsnam.org/docs/release/3.35/models/ns-3-model-library.pdf#chapter.34 (accessed on 1 September 2022).
- ns-3 11ax Project. Available online: https://depts.washington.edu/funlab/projects/improvements-to-ns-3-simulator/ns-3-11ax-project/ (accessed on 1 September 2022).
- Lin, W.; Li, B.; Yang, M.; Qu, Q.; Yan, Z.; Zuo, X.; Yang, B. Integrated Link-system Level Simulation Platform for the Next Generation WLAN-IEEE 802.11 ax. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016. [Google Scholar]
- Barrachina-Munoz, S.; Wilhelmi, F.; Selinis, I.; Bellalta, B. Komondor: A Wireless Network Simulator for Next-Generation High-Density WLANs. In Proceedings of the Wireless Days (WD), Manchester, UK, 24–26 April 2019. [Google Scholar]
- Perform Waveform Generation and End-to-End Link Level Simulation for the IEEE 802.11ax Standard. Available online: https://ch.mathworks.com/products/wlan.html#802-11ax (accessed on 1 September 2022).
- Milos, J.; Polak, L.; Slanina, M. Performance Analysis of IEEE 802.11 ac/ax WLAN Technologies under the Presence of CFO. In Proceedings of the International Conference Radioelektronika (RADIOELEKTRONIKA), Brno, Czech Republic, 19 April 2017. [Google Scholar]
- Lei, T.; Wen, X.; Lu, Z.; Li, Y. A Semi-Matching based Load Balancing Scheme for Dense IEEE 802.11 WLANs. IEEE Access 2017, 28, 15332–15339. [Google Scholar] [CrossRef]
- Ertürk, M.A.; Vollero, L.; Aydın, M.A. Development of Software-based Vendor Independent WLAN Controller. Int. J. Mob. Commun. 2019, 17, 537–559. [Google Scholar] [CrossRef]
- Kiryanov, A.G.E.; Krotov, A.V.E.; Khorov, E.M.; Akyildiz, I.F. Enhancing the Energy Efficiency of Dense Wi-Fi Networks Using Cloud Technologies. Autom. Remote. Control. 2020, 81, 94–106. [Google Scholar] [CrossRef]
- Khorov, E.; Kiryanov, A.; Krotov, A. Cloud-based Management of Energy-Efficient Dense IEEE 802.11 ax Networks. In Proceedings of the IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Sochi, Russia, 3–6 June 2019. [Google Scholar]
- Khorov, E.; Ivanov, A.; Lyakhov, A.; Akyildiz, I.F. Cloud Control to Optimize Real-Time Video Transmission in Dense IEEE 802.11 aa/ax Networks. In Proceedings of the IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS), Chengdu, China, 9–12 October 2018. [Google Scholar]
- Gallo, P.; Kosek-Szott, K.; Szott, S.; Tinnirello, I. CADWAN: A Control Architecture for Dense WiFi Access Networks. IEEE Commun. Mag. 2018, 56, 194–201. [Google Scholar] [CrossRef]
- Calhoun, P.; Montemurro, M.; Stanley, D. Control and Provisioning of Wireless Access Points (CAPWAP) Protocol specification; IETF RFC 5415; Cisco Systems Inc.: San Jose, CA, USA, 2009. [Google Scholar]
- Robust Rate Adaptation for 802.11 Wireless Networks. In Proceedings of the Annual International Conference on Mobile Computing and Networking, New York City, NY, USA, 3–7 October 2016.
- Dürr, F.; Nayak, N.G. No-Wait Packet Scheduling for IEEE Time-Sensitive Networks (TSN). In Proceedings of the International Conference on Real-Time Networks and Systems, Brest, France, 19–21 October 2016. [Google Scholar]
- Barakabitze, A.A.; Ahmad, A.; Mijumbi, R.; Hines, A. 5G Network Slicing Using SDN and NFV: A Survey of Taxonomy, Architectures and Future Challenges. Comput. Netw. 2020, 167, 106984. [Google Scholar] [CrossRef]
- Adame, T.; Carrascosa-Zamacois, M.; Bellalta, B. Time-Sensitive Networking in IEEE 802.11 be: On the Way to Low-Latency WiFi 7. Sensors 2021, 21, 4954. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Lee, S.; Gwak, S.; Kim, T.; An, D. Time-Sensitive Networking Technologies for Industrial Automation in Wireless Communication Systems. Energies 2021, 14, 4497. [Google Scholar] [CrossRef]
- Cavalcanti, D.; Venkatesan, G.; Cariou, L.; Cordiro, C. TSN Support in 802.11 and Potential Extensions for TGbe. Available online: https://mentor.ieee.org/802.11/dcn/19/11-19-1287-01-00be-tsn-support-in-802-11-and-potential-extensions-for-tgbe.pptx (accessed on 1 September 2022).
- Cavalcanti, D.; Perez-Ramirez, J.; Rashid, M.M.; Fang, J.; Galeev, M.; Stanton, K.B. Extending Accurate Time Distribution and Timeliness Capabilities over the Air to Enable Future Wireless Industrial Automation Systems. Proc. IEEE 2019, 107, 1132–1152. [Google Scholar] [CrossRef]
- Ibrahim, M.; Liu, H.; Jawahar, M.; Nguyen, V.; Gruteser, M.; Howard, R.; Yu, B.; Bai, F. Verification: Accuracy Evaluation of WiFi Fine Time Measurements on an Open Platform. In Proceedings of the MobiCom, New Delhi, India, 29 October–2 November 2018; pp. 417–427. [Google Scholar]
- Grünblatt, R.; Guérin-Lassous, I.; Simonin, O. Simulation and Performance Evaluation of the Intel Rate Adaptation Algorithm. In Proceedings of the Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWIM), Barcelona, Spain, 3–8 November 2013. [Google Scholar]
- Sabbatel, G.B.; Grunenberger, Y.; Heusse, M.; Rousseau, F.; Duda, A. Interarrival Histograms: A Method for Measuring Transmission Delays in 802.11 WLANs; Technical Report; LIG: Grenoble, France, 2007. [Google Scholar]
- Yap, K.K.; Kobayashi, M.; Sherwood, R.; Huang, T.Y.; Chan, M.; Handigol, N.; McKeown, N. OpenRoads: Empowering Research in Mobile Networks. ACM SIGCOMM Comput. Commun. Rev. 2010, 40, 125–126. [Google Scholar] [CrossRef]
- Heusse, M.; Rousseau, F.; Berger-Sabbatel, G.; Duda, A. Performance Anomaly of 802.11b. In Proceedings of the IEEE International Conference on Computer Communications (INFOCOM), San Franciso, CA, USA, 30 March– 3 April 2003. [Google Scholar]
- Khorov, E.; Levitsky, I.; Akyildiz, I.F. Current Status and Directions of IEEE 802.11 be, the Future Wi-Fi 7. IEEE Access 2020, 8, 88664–88688. [Google Scholar] [CrossRef]
- 11BE Project Authorizations (PARs). Available online: https://development.standards.ieee.org/myproject-web/public/view.html#pardetail/6886 (accessed on 1 September 2022).
- Thubert, P.; Cavalcanti, D.; Vilajosana, X.; Schmitt, C.; Farkas, J. Reliable and Available Wireless Technologies. In Internet-Draft Draft-Ietf-Raw-Technologies-04, Internet Engineering Task Force; Work in Progress; IETF: Fremont, CA, USA, 2021. [Google Scholar]
- Deng, C.; Fang, X.; Han, X.; Wang, X.; Yan, L.; He, R.; Long, Y.; Guo, Y. IEEE 802.11 be Wi-Fi 7: New Challenges and Opportunities. IEEE Commun. Surv. Tutor. 2020, 22, 2136–2166. [Google Scholar] [CrossRef]
- Specification Framework for TGbe. Available online: https://mentor.ieee.org/802.11/dcn/19/11-19-1262-15-00be-specification-framework-for-tgbe.docx (accessed on 1 September 2022).
Amendment | Year Released | Target |
---|---|---|
IEEE 802.11b | 1999 | Wi-Fi 1 |
IEEE 802.11a | 1999 | Wi-Fi 2 |
IEEE 802.11g | 2003 | Wi-Fi 3 |
IEEE 802.11e | 2005 | QoS enhancements |
IEEE 802.11n | 2009 | Wi-Fi 4 |
IEEE 802.11ac | 2013 | Wi-Fi 5 |
IEEE 802.11ah | 2017 | Low-power WLAN Extended range |
IEEE 802.11ax | 2021 | Wi-Fi 6 |
Paper | Date | References | Focus | #Common References with Current Paper |
---|---|---|---|---|
Bellalta [6] | 2016 | 15 | All features | 0 |
Afaqui [7] | 2016 | 12 | All features | 4 |
Yang [8] | 2017 | 9 | All features | 0 |
Ali [9] | 2018 | 117 | Resource allocation | 4 |
Khorov [11] | 2018 | 79 | All features mainly: random OFDMA and spatial reuse | 18 |
Yang [10] | 2020 | 17 | MAC layer | 3 |
Paper | Date | References | Focus | #Common References with Current Paper |
---|---|---|---|---|
Nurchis [13] | 2019 | 15 | TWT | 5 |
Wilhelmi [12] | 2020 | 56 | Spatial reuse | 18 |
Masri [14] | 2019 | 20 | Scheduling and resource allocation | 15 |
Qu [15] | 2019 | 18 | Simulator | 3 |
Current paper | 2022 | 221 | All features | – |
MCS Index | Modulation | Coding | Data Rate (Mb/s) |
---|---|---|---|
0 | BPSK | 1/2 | 72 |
1 | QPSK | 1/2 | 144 |
2 | QPSK | 3/4 | 216 |
3 | 16-QAM | 1/2 | 282 |
4 | 16-QAM | 3/4 | 432 |
5 | 64-QAM | 2/3 | 576 |
6 | 64-QAM | 3/4 | 649 |
7 | 64-QAM | 5/6 | 721 |
8 | 256-QAM | 3/4 | 865 |
9 | 256-QAM | 5/6 | 961 |
10 | 1024-QAM | 3/4 | 1081 |
11 | 1024-QAM | 5/6 | 1201 |
Features | Benefits |
---|---|
MU OFDMA | Higher throughput Overhead reduction High spectral efficiency |
Longer OFDM symbol | Higher efficiency for indoors Robustness for outdoors |
Spatial reuse | Spectral efficiency Increased capacity Higher throughput |
TWT | Reliability Lower latency Power saving Reduced jitter |
MU MIMO | Up to 8× capacity increase in uplink Up to 2× capacity increase in downlink |
1024-QAM | 25% higher data rate |
RU | 20 MHz | 40 MHz | 80 MHz | 160 MHz (or MHz) |
---|---|---|---|---|
26-tone | 9 | 18 | 37 | 74 |
52-tone | 4 | 8 | 16 | 32 |
106-tone | 2 | 4 | 8 | 16 |
242-tone | 1 | 2 | 4 | 8 |
484-tone | - | 1 | 2 | 4 |
996-tone | - | - | 1 | 2 |
2 × 996-tone | - | - | - | 1 |
Waves | Features |
---|---|
Wave 1 |
|
Wave 2 |
|
Features | MU OFDMA | MU-MIMO | SR | Additional Features | Language | |
---|---|---|---|---|---|---|
Simulators | ||||||
Official NS-3.35 | ✓ | OBSS PD | round-robin scheduler for MU OFDMA MU EDCA | C++ Python | ||
UW NS-3 | UL random access | DL | BSS coloring Two NAVs | Spectrum coexistence | C++ Python | |
NS-2 | ✓ | ✓ | Channel bonding Link adaptation | C++ TCL | ||
Komondor | OBSS PD [12] | DCF, MCS Channel bonding Packet aggregation RTS/CTS, NAV | C++ | |||
Matlab WLAN toolbox | DL OFDMA | ✓ | HE format packets PHY Abstraction | Matlab | ||
SLISP | ✓ | ✓ | ✓ | 1024-QAM | C++ |
Standards | 802.11n (Wi-Fi 4) | 802.11ac (Wi-Fi 5) | 802.11ax (Wi-Fi 6) | 802.11be (Wi-Fi 7) | |
---|---|---|---|---|---|
Features | |||||
Frequency band (GHz) | 2.4/5 | 5 | 2.4/5/6 | 2.4/5/6 | |
PHY technology | OFDM | OFDM | OFDM, OFDMA | OFDM, OFDMA | |
Channel width (MHz) | 20/40 | 20/40/80/160 | 20/40/80/80+80/160 | 20/40/80/80+80/160/ 160+80/240/160+160/320 | |
Resource Unit size (tones) | Full channel bandwidth | Full channel bandwidth | 26, 52, 106, 242, 484 996, 2*996 | 26, 52, 106, 242, 484, 996 2*996, 3*996 | |
Max data subcarrier modulation | 64-QAM | 256-QAM | 1024-QAM | 4096-QAM | |
Subcarrier spacing (KHz) | 312.5 | 312.5 | 78.125 | 78.125 | |
Symbol duration () | 3.2 | 3.2 | 12.8 | 12.8 | |
Guard interval () | 0.4, 0.8 | 0.4, 0.8 | 0.8, 1.6, 3.2 | 0.8, 1.6, 3.2 | |
MIMO technology | MIMO | MU MIMO: DL, 4 users | MU MIMO: UL & DL, 8 users OFDMA: UL & DL | MU MIMO: UL & DL, 16 users OFDMA: UL & DL | |
Power saving | PSM | PSM | TWT | TWT | |
Coding | BCC (mandatory) LDPC (optional) | BCC (mandatory) LDPC (optional) | BCC (mandatory) LDPC (mandatory) | BCC (mandatory) LDPC (mandatory) | |
Nominal data rate (Gb/s) | 0.6 | 6.93 | 9.6 | 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozaffariahrar, E.; Theoleyre, F.; Menth, M. A Survey of Wi-Fi 6: Technologies, Advances, and Challenges. Future Internet 2022, 14, 293. https://doi.org/10.3390/fi14100293
Mozaffariahrar E, Theoleyre F, Menth M. A Survey of Wi-Fi 6: Technologies, Advances, and Challenges. Future Internet. 2022; 14(10):293. https://doi.org/10.3390/fi14100293
Chicago/Turabian StyleMozaffariahrar, Erfan, Fabrice Theoleyre, and Michael Menth. 2022. "A Survey of Wi-Fi 6: Technologies, Advances, and Challenges" Future Internet 14, no. 10: 293. https://doi.org/10.3390/fi14100293
APA StyleMozaffariahrar, E., Theoleyre, F., & Menth, M. (2022). A Survey of Wi-Fi 6: Technologies, Advances, and Challenges. Future Internet, 14(10), 293. https://doi.org/10.3390/fi14100293