A Single-Rate Multicast Congestion Control (SRMCC) Mechanism in Information-Centric Networking
Abstract
:1. Introduction
- We design a multicast congestion control mechanism called SRMCC in ICN. SRMCC provides router-assisted awareness of the network congestion state, a congestion control message (MCC) aggregation mechanism, and a single-rate adaptation method. To achieve protocol fairness, a fair shared rate estimation method is also innovatively proposed.
- The single-rate adaptation method proposed in SRMCC adaptively adjusts the multicast rate according to the congestion state indicated by the queue occupancy ratio and introduces a rate selection factor to achieve a balance between packet loss rate and throughput. The definition of network congestion states is provided.
- We develop and implement the SRMCC mechanism in NS-2 [14], and compare it with TFMCC, ASMP, and PerIfwithECN. The experimental results prove that SRMCC achieves protocol fairness, improves throughput and total bandwidth utilization, reduces the packet loss rate, and achieves better TCP friendliness than the other three mechanisms. We also verify the effectiveness of the proposed MCC aggregation mechanism by comparing overhead.
2. Related Work
3. Design Overview
3.1. Overview of SRMCC
3.2. Main Network Elements
4. Rate Adaptation
4.1. Congestion State Value Definition
4.2. Rate Calculation
4.2.1. No Occupancy Stage
4.2.2. Light Occupancy Stage
4.2.3. Moderate Occupancy Stage
4.2.4. Heavy Occupancy Stage
4.3. Rate Selection Strategy
Algorithm 1. The Adaptation Method of Rate |
Input:, Output: 1: initialization: 2: for do 3: if then 4: 5: using Equation (6) 6: else if then 7: 8: 9: using Equation (4) 10: else if then 11: 12: 13: using Equation (4) 14: else if then 15: 16: if then 17: 18: 19: using Equation (4) 20: else if then 21: 22: using Equation (4) 23: end if 24: end if 25: end for 26: 27: return |
5. Evaluation
5.1. Simulation Setup
5.2. Basic Performance of SRMCC
5.2.1. Experiments on the Setting of Value
5.2.2. The Basic Performance of SRMCC
5.3. Performance Comparison with ASMP, TFMCC, and PerIfwithECN
5.3.1. Throughput
5.3.2. Bandwidth Utilization
5.3.3. Packet Loss Rate
5.3.4. Overhead Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xylomenos, G.; Ververidis, C.N.; Siris, V.A.; Fotiou, N.; Tsilopoulos, C.; Vasilakos, X.; Katsaros, K.V.; Polyzos, G.C. A survey of information-centric networking research. IEEE Commun. Surv. Tutor. 2014, 16, 1024–1049. [Google Scholar] [CrossRef]
- Ahlgren, B.; Dannewitz, C.; Imbrenda, C.; Kutscher, D.; Ohlman, B. A survey of information-centric networking. IEEE Commun. Mag. 2012, 50, 26–36. [Google Scholar] [CrossRef]
- Jiang, X.; Bi, J.; Nan, G.; Li, Z. A survey on Information-centric Networking: Rationales, designs and debates. China Commun. 2015, 12, 1–12. [Google Scholar] [CrossRef]
- Jacobson, V.; Smetters, D.K.; Thornton, J.D.; Plass, M.F.; Briggs, N.H.; Braynard, R.L. Networking Named Nontent. In Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, Italy, Rome, 1–4 December 2009; pp. 1–12. [Google Scholar]
- Koponen, T.; Chawla, M.; Chun, B.-G.; Ermolinskiy, A.; Kim, K.H.; Shenker, S.; Stoica, I. A data-oriented (and beyond) network architecture. In Proceedings of the ACM SIGCOMM Computer Communication Review, Kyoto, Japan, 27 August 2007; pp. 181–192. [Google Scholar]
- Raychaudhuri, D.; Nagaraja, K.; Venkataramani, A. MobilityFirst: A robust and trustworthy mobility-centric architecture for the future internet. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2012, 16, 2–13. [Google Scholar] [CrossRef]
- Dannewitz, C.; Kutscher, D.; Ohlman, B.; Farrell, S.; Ahlgren, B.; Karl, H. Network of Information (NetInf)—An informationcentric networking architecture. Comput. Commun. 2013, 36, 721–735. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; You, J.; Sun, P. SEANet: Architecture and Technologies of an On-site, Elastic, Autonomous Network. J. Netw. New Media. 2020, 9, 1–8. [Google Scholar]
- Yang, B.; Chen, X.; Xie, J.; Li, S.; Yang, J. Multicast Design for the MobilityFirst Future Internet Architecture. In Proceedings of the International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 18–21 February 2019. [Google Scholar]
- Li, B.; Wang, J. An Identifier and Locator Decoupled Multicast Approach (ILDM) Based on ICN. Appl. Sci. 2021, 11, 578. [Google Scholar] [CrossRef]
- Lao, L.; Cui, J.H.; Gerla, M.; Maggiorini, D. A comparative study of multicast protocols: Top, bottom, or in the middle? In Proceedings of the IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, Miami, FL, USA, 13–17 March 2005; pp. 2809–2814. [Google Scholar]
- Whetten, B.; Conlan, J.; Communications, G. A Rate Based Congestion Control Scheme for Reliable Multicast. Technical White Paper, GlobalCast Communications. 1998. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.6783&rep=rep1&type=pdf (accessed on 18 December 2021).
- Chakraborty, D.; Chakraborty, G.; Shiratori, N. A dynamic multicast routing satisfying multiple QoS constraints. Int. J. Netw. Manag. 2003, 13, 321–335. [Google Scholar] [CrossRef]
- NS-2 Simulator. Available online: https://www.isi.edu/nsnam/ns/ns-build.html (accessed on 4 November 2005).
- Singhal, N.; Sharma, R.M. Survey on TCP Friendly Congestion Control for Unicast and Multicast Traffic. Int. J. Comput. Appl. 2011, 26, 23–30. [Google Scholar] [CrossRef]
- Matrawy, A.; Lambadaris, I. A survey of congestion control schemes for multicast video applications. Commun. Surv. Tutor. IEEE 2003, 5, 22–31. [Google Scholar] [CrossRef]
- Kammoun, W.; Youssef, H. An Adaptive Mechanism for End-to-End Multirate Multicast Congestion Control. In Proceedings of the 2008 the Third International Conference on Digital Telecommunications (ICDT 2008), Bucharest, Romania, 29 June–5 July 2008; pp. 88–93. [Google Scholar]
- Huo, L.; Yi, J. Research on Multicast Congestion Control. In Proceedings of the 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), Beijing, China, 10–14 August 2015; pp. 846–850. [Google Scholar]
- Zhao, J.; Yang, M.; Zhang, F. Review of multicast Congestion Control. J. Small Microcomput. Syst. 2004, 25, 511–518. [Google Scholar]
- Shi, F.; Wu, J. Summary of Multicast Congestion Control. J. Softw. 2002, 13, 1441–1448. [Google Scholar]
- Kumar, S.; Singh, K. Logarithmic Based Multicast Congestion Control Mechanism. In Proceedings of the Industrial and Intelligent Information (ICIII 2012), Singapore; 2012; pp. 102–108. [Google Scholar]
- Jiang, L.; Yuksel, M.; Kalyanaraman, S. Explicit rate multicast congestion control. Comput. Netw. 2006, 50, 2614–2640. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, L. pgmcc: A tcp-friendly single-rate multicast congestion control scheme. ACM SIGCOMM Comput. Commun. Rev. 2000, 30, 17–28. [Google Scholar] [CrossRef]
- Widmer, J.; Handley, M. TCP-Friendly Multicast Congestion Control (TFMCC): Protocol Specification. IETF RFC 4654. Available online: https://datatracker.ietf.org/doc/rfc4654/ (accessed on 2 June 2021).
- Handley, M.; Floyd, S.; Padhye, J.; Widmer, J. TCP Friendly Rate Control (TFRC): Protocol Specification. IETF RFC 5348. Available online: https://datatracker.ietf.org/doc/html/rfc5348 (accessed on 2 February 2021).
- Bouras, C.; Gkamas, A.; Kioumourtzis, G. Adaptive smooth multicast protocol for multimedia transmission: Implementation details and performance evaluation. Int. J. Commun. Syst. 2010, 23, 299–333. [Google Scholar] [CrossRef]
- Li, J.; Yuksel, M.; Fan, X.; Kalyanaraman, S. Generalized multicast congestion control. Comput. Netw. Int. J. Comput. Telecommun. Netw. 2007, 51, 1421–1443. [Google Scholar] [CrossRef]
- Jiang, L.; Kalyanaraman, S. MCA: A Rate-based End-to-end Multicast Congestion Avoidance Scheme. In Proceedings of the 2002 IEEE International Conference on Communications (ICC 2002), New York, NY, USA, 28 April–2 May 2002; pp. 2341–2347. [Google Scholar]
- Chen, J.; Arumaithurai, M.; Fu, X.; Ramakrishnan, K.K. Reliable Publish/Subscribe in Content-Centric Networks. In Proceedings of the 3rd ACM SIGCOMMWorkshop on Information-Centric Networking, Hong Kong, China, 12–16 August 2013; pp. 21–26. [Google Scholar]
- Stais, C.; Xylomenos, G.; Voulimeneas, A. A reliable multicast transport protocol for information-centric networks. J. Netw. Comput. Appl. 2015, 50, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Su, K.; Ramakrishnan, K.K.; Raychaudhuri, D. Scalable, network-assisted congestion control for the MobilityFirst future internet architecture. In Proceedings of the 2016 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN), Rome, Italy, 13–15 June 2016; pp. 1–2. [Google Scholar]
- Nour, B.; Mastorakis, S.; Ullah, R.; Stergiou, N. Information-Centric Networking in Wireless Environments: Security Risks and Challenges. IEEE Wirel. Commun. 2021, 28, 121–127. [Google Scholar] [CrossRef]
- Khelifi, H.; Luo, S.; Nour, B.; Moungla, H. LQCC: A Link Quality-based Congestion Control Scheme in Named Data Networks. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–6. [Google Scholar]
- Nguyen, D.; Fukushima, M.; Sugiyama, K.; Tagami, A. Efficient multipath forwarding and congestion control without route-labeling in CCN. In Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW), London, UK, 8–12 June 2015; pp. 1533–1538. [Google Scholar]
- Nour, B.; Khelifi, H.; Hussain, R.; Moungla, H.; Bouk, S.H. A Collaborative Multi-Metric Interface Ranking Scheme for Named Data Networks. In Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15–19 June 2020; pp. 2088–2093. [Google Scholar]
- Zeng, L.; Ni, H.; Han, R. An Incrementally Deployable IP-Compatible-Information-Centric Networking Hierarchical Cache System. Appl. Sci. 2020, 10, 6228. [Google Scholar] [CrossRef]
- Dukkipati, N.; Kobayashi, M.; Rui, Z.S.; McKeown, N. Processor sharing flows in the Internet. Lect. Notes Comput. Sci. 2005, 3552, 271–285. [Google Scholar]
- Badov, M.; Seetharam, A.; Kurose, J.; Firoiu, V.; Nanda, S. Congestion-aware caching and search in information-centric networks. In Proceedings of the 1st ACM Conference on Information-Centric Networking, Paris, France, 24–26 September 2014; pp. 37–46. [Google Scholar]
- Papageorgiou, M.; Hadj-Salem, H.; Blosseville, J.M. ALINEA: A local feedback control law for on-ramp metering. Transp. Res. Rec. J. Transp. Res. Board 1991, 1320, 58–64. [Google Scholar]
Parameter | Value |
---|---|
) | 50 packets |
) | 0.25 |
) | 0.50 |
0.9 | |
Packet size | 1000 bytes |
) | 0.15 |
Rate adaptation cycle | |
Simulation time | 200 s |
The rate of CBR application Initial rate of multicast | 600 Kb/s 50 Kb/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Ni, H.; Zhu, X.; Wang, X. A Single-Rate Multicast Congestion Control (SRMCC) Mechanism in Information-Centric Networking. Future Internet 2022, 14, 38. https://doi.org/10.3390/fi14020038
Duan Y, Ni H, Zhu X, Wang X. A Single-Rate Multicast Congestion Control (SRMCC) Mechanism in Information-Centric Networking. Future Internet. 2022; 14(2):38. https://doi.org/10.3390/fi14020038
Chicago/Turabian StyleDuan, Yingjie, Hong Ni, Xiaoyong Zhu, and Xu Wang. 2022. "A Single-Rate Multicast Congestion Control (SRMCC) Mechanism in Information-Centric Networking" Future Internet 14, no. 2: 38. https://doi.org/10.3390/fi14020038
APA StyleDuan, Y., Ni, H., Zhu, X., & Wang, X. (2022). A Single-Rate Multicast Congestion Control (SRMCC) Mechanism in Information-Centric Networking. Future Internet, 14(2), 38. https://doi.org/10.3390/fi14020038