Image of a City through Big Data Analytics: Colombo from the Lens of Geo-Coded Social Media Data
Abstract
:1. Introduction
2. Background of the Literature
2.1. Image of a City and Its Elements
2.2. Image of a City and Social Media Big Data
2.3. Social Media Analytics
3. Research Design
3.1. Case Study
3.2. Social Media Analytics with the CUP Framework
3.2.1. Capture: Twitter and Instagram Data
3.2.2. Understand and Present
Descriptive Analysis
Image Processing
Sentiment Analysis
Popularity Analysis
4. Results
4.1. Descriptive Analysis
4.2. Image Processing
4.3. Sentiment Analysis
4.4. Popularity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynch, K. The Image of the City; MIT Press: Boston, MA, USA, 1964. [Google Scholar]
- Pancholi, S.; Yigitcanlar, T.; Guaralda, M. Public space design of knowledge and innovation spaces: Learnings from Kelvin Grove Urban Village, Brisbane. JOItmC 2015, 1, 13. [Google Scholar] [CrossRef] [Green Version]
- Zenker, S. How to Catch a City? J. Place Manag. Dev. 2011, 4, 40–52. [Google Scholar] [CrossRef]
- Asur, S.; Huberman, B.A.; Szabo, G.; Wang, C. Trends in social media: Persistence and decay. In Proceedings of the International AAAI Conference on Web and Social Media, Barcelona, Spain, 17–21 July 2011. [Google Scholar]
- Evans, G. Hard-branding the Cultural City. Int. J. Urban Reg. Res. 2003, 27, 417–440. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, S.X. City Branding and the Olympic Effect. Cities 2009, 26, 245–254. [Google Scholar] [CrossRef]
- Eraydin, A.; Taşan-Kok, T. State response to contemporary urban movements in Turkey: A critical overview of state entrepreneurialism and authoritarian interventions. Antipode 2014, 46, 110–129. [Google Scholar] [CrossRef] [Green Version]
- Anholt, S. Place Branding and Public Diplomacy. Place Brand. 2008, 4, 1–6. [Google Scholar] [CrossRef]
- Zimmerbauer, K. From Image to Identity. Eur. Plan. Stud. 2011, 19, 2243–2260. [Google Scholar] [CrossRef]
- Zagoruyko, S.; Komodakis, N. Wide residual networks. arXiv 2016, arXiv:1605.07146. [Google Scholar]
- Raszkowski, A. Selected aspects of investment attractiveness of regions. ACC J. 2013, 2013, 116–127. [Google Scholar]
- Yigitcanlar, T.; Kankanamge, N.; Preston, A.; Gill, P.S.; Rezayee, M.; Ostadnia, M.; Ioppolo, G. How can social media analytics assist authorities in pandemic-related policy decisions? Insights from Australian states and territories. Health Inf. Sci. Syst. 2020, 8, 37. [Google Scholar] [CrossRef]
- Statcounter. Social Media Statistics Sri Lanka. Available online: https://gs.statcounter.com/social-media-stats/all/sri-lanka (accessed on 15 November 2022).
- Portugali, J. Geography, environment and cognition: An introduction. Geoforum 1992, 23, 107–109. [Google Scholar] [CrossRef]
- Al-Ghamdi, S.A.; Al-Harigi, F. Rethinking image of the city in the information age. Procedia Comput. Sci. 2015, 65, 734–743. [Google Scholar] [CrossRef]
- Filomena, G.; Verstegen, J.; Manley, E. A computational approach to ‘The Image of the City’. Cities 2019, 89, 14–25. [Google Scholar] [CrossRef]
- Huang, J.; Obracht-Prondzynska, H.; Kamrowska-Zaluska, D.; Sun, Y.; Li, L. The image of the city on social media: A comparative study using “Big Data” and “Small Data” methods in the Tri-City Region in Poland. Landsc. Urban Plan. 2021, 206, 103977. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Kankanamge, N. Urban Analytics with Social Media Data: Foundations, Applications and Platforms; Chapman and Hall/CRC: London, UK, 2022. [Google Scholar]
- Jang, K.M.; Youngchul, K. Crowd-sourced cognitive mapping: A new way of displaying people’s cognitive perception of urban space. PLoS ONE 2019, 14, e0218590. [Google Scholar] [CrossRef] [Green Version]
- Meier, S.; Glinka, K. Psychogeography in the Age of the Quantified Self—Mental Map Modelling with Georeferenced Personal Activity Data. In Advances in Cartography and GIScience; International Cartographic Association: Bern, Switzerland, 2017. [Google Scholar]
- Bahrehdar, A.R.; Adams, B.; Purves, R.S. Streets of London: Using Flickr and OpenStreetMap to build an interactive. Comput. Environ. Urban Syst. 2020, 84, 101524. [Google Scholar] [CrossRef]
- Fan, W.; Gordon, M. The power of social media analytics. Commun. ACM 2014, 57, 74–81. [Google Scholar] [CrossRef]
- Lynch, K. Reconsidering the image of the city. In Cities of the Mind; Springer: Boston, MA, USA, 1984; pp. 151–161. [Google Scholar]
- Sainz, M. (Re) Building an Image for a City: Is A Landmark Enough? Bilbao and the Guggenheim Museum, 10 Years Together 1. J. Appl. Soc. Psychol. 2012, 42, 100–132. [Google Scholar] [CrossRef]
- Radosavljević, U.; Đorđević, A.; Lalović, K.; Živković, J.; Đukanović, Z. Nodes and networks: The generative role of cultural heritage for urban revival in Kikinda. Sustainability 2019, 11, 2509. [Google Scholar] [CrossRef] [Green Version]
- Whyte, W.H. The design of spaces. In The City Reader; Routledge: London, UK, 2015; pp. 631–639. [Google Scholar]
- Gehl, J.; Kaefer, L.J.; Reigstad, S. Close encounters with buildings. Urban Des. Int. 2006, 11, 29–47. [Google Scholar] [CrossRef]
- Creswell, T. Place: A Short Introduction; Wiley-Blackwell: London, UK, 2011. [Google Scholar]
- Meyer, M.; Kuusisto, J.; Grant, K.; De Silva, M.; Flowers, S.; Choksy, U. Towards new Triple Helix organisations? A comparative study of competence centres as knowledge, consensus and innovation spaces. RD Manag. 2019, 49, 555–573. [Google Scholar] [CrossRef]
- Cuff, D. The Provisional City: Los Angeles Stories of Architecture and Urbanism; MIT Press: Boston, MA, USA, 2000. [Google Scholar]
- Castells, M. Power of Identity; Wiley-Blackwell: London, UK, 2009. [Google Scholar]
- Meshur, H.F.A. Evaluation of urban spaces from the perspective of universal design principles: The case of Konya/Turkey. TeMA-J. Land Use Mobil. Environ. 2016, 9, 191–208. [Google Scholar]
- Ng, E.; Yuan, C.; Chen, L.; Ren, C.; Fung, J.C. Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landsc. Urban Plan. 2011, 101, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Ciuccarelli, P.; Lupi, G.; Simeone, L. Visualizing the Data City: Social Media as a Source of Knowledge for Urban Planning and Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Zander, K.K.; Sibarani, R.; Lassa, J.; Nguyen, D.; Dimmock, A. How do Australians use social media during natural hazards? A survey. Int. J. Disaster Risk Reduct. 2022, 81, 103207. [Google Scholar] [CrossRef]
- Alalwan, A.; Rana, N.; Dwivedi, Y.; Algharabat, R. Social media in marketing: A review and analysis of the existing literature. Telemat. Inform. 2017, 34, 1177–1190. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.; Musa, R.; Harun, M. The impact of social media content marketing (SMCM) towards brand health. Procedia Econ. Financ. 2016, 37, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A. How engaging are disaster management related social media channels? The case of Australian state emergency organisations. Int. J. Disaster Risk Reduct. 2020, 48, 101571. [Google Scholar] [CrossRef]
- Saroj, A.; Pal, S. Use of social media in crisis management: A survey. Int. J. Disaster Risk Reduct. 2020, 48, 101584. [Google Scholar] [CrossRef]
- Nadeem, M. Social customer relationship management (SCRM): How connecting social analytics to business analytics enhances customer care and loyalty? Int. J. Bus. Soc. Sci. 2012, 21, 1–15. [Google Scholar]
- Liu, Y. Big data and predictive business analytics. J. Bus. Forecast. 2014, 33, 40. [Google Scholar]
- Bennett, W. The personalization of politics: Political identity, social media, and changing patterns of participation. The annals of the American academy of political and social science. SAGE J. 2012, 644, 20–39. [Google Scholar]
- Wolfsfeld, G.; Segev, E.; Sheafer, T. Social media and the Arab Spring: Politics comes first. Int. J. Press/Politics 2013, 18, 115–137. [Google Scholar] [CrossRef] [Green Version]
- Oboler, A.; Welsh, K.; Cruz, L. The danger of big data: Social media as computational social science. First Monday 2012, 17, 1–10. [Google Scholar] [CrossRef]
- Ruths, D.; Pfeffer, J. Social media for large studies of behavior. Science 2014, 346, 1063–1064. [Google Scholar] [CrossRef]
- Huynh, H.T.; Nguyen, H. Joint age estimation and gender classification of Asian faces using wide ResNet. SN Comput. Sci. 2020, 1, 1–9. [Google Scholar] [CrossRef]
- Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A.; Kamruzzaman, M. Determining disaster severity through social media analysis: Testing the methodology with Southeast Queensland Flood tweets. Int. J. Disaster Risk Reduct. 2020, 42, 101360. [Google Scholar] [CrossRef]
- Kolar, T.; Cater, B. Managing group flow experiences in escape rooms. Int. J. Contemp. Hosp. Manag. 2018, 30, 2637–2661. [Google Scholar] [CrossRef]
- Bertrand, K.; Bialik, M.; Virdee, K.; Gros, A.; Bar-Yam, Y. Sentiment in new york city: A high resolution spatial and temporal view. arXiv 2013, arXiv:1308.5010. [Google Scholar]
- Martí, P.; García-Mayor, C.; Serrano-Estrada, L. Identifying opportunity places for urban regeneration through LBSNs. Cities 2019, 90, 191–206. [Google Scholar] [CrossRef]
- Wang, J.; Cao, S.; Yu, C.W. Development trend and challenges of sustainable urban design in the digital age. Indoor and Built Environment. SAGE J. 2021, 30, 3–6. [Google Scholar]
- Nolasco-Cirugeda, A.; García-Mayor, C. Social dynamics in cities: Analysis through LBSN data. Procedia Comput. Sci. 2022, 207, 877–886. [Google Scholar] [CrossRef]
- Dufty, N. Twitter turns ten: Its use to date in disaster management. Aust. J. Emerg. Manag. 2016, 31, 50–54. [Google Scholar]
- Guan, X.; Chen, C. Using social media data to understand and assess disasters. Nat. Hazards 2014, 74, 837–850. [Google Scholar] [CrossRef]
- Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A.; Kamruzzaman, M. Can volunteer crowdsourcing reduce disaster risk? A systematic review of the literature. Int. J. Disaster Risk Reduct. 2019, 35, 101097. [Google Scholar] [CrossRef]
- Cebeillac, A.; Rault, Y. Contribution of geotagged twitter data in the study of a social group’s activity space. The case of the upper middle class in Delhi, India. Netcom. Réseaux Commun. Territ. 2016, 30, 231–248. [Google Scholar]
- Lin, J.; Cromley, R.G. Evaluating geo-located Twitter data as a control layer for areal interpolation of population. Appl. Geogr. 2015, 58, 41–47. [Google Scholar] [CrossRef]
- Brandt, H.; Turner-McGrievy, G.; Friedman, D.; Gentile, D.; Schrock, C.; Thomas, T.; West, D. Examining the role of Twitter in response and recovery during and after historic flooding in South Carolina. J. Public Health Manag. Pract. 2019, 25, E6–E12. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Liu, R. Identifying damage-related social media data during Hurricane Matthew: A machine learning approach. In Computing in Civil Engineering 2019: Visualization, Information Modeling, and Simulation; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 207–214. [Google Scholar]
- Chapman, A. Principles and methods of data cleaning; GBIF Publishing: Towoomba South, QLD, Australia, 2005. [Google Scholar]
- Yigitcanlar, T.; Kankanamge, N.; Regona, M.; Ruiz Maldonado, A.; Rowan, B.; Ryu, A.; Desouza, K.C.; Corchado, J.; Mehmood, R.; Li, R. Artificial intelligence technologies and related urban planning and development concepts: How are they perceived and utilized in Australia? J. Open Innov. Technol. Mark. Complex. 2020, 6, 187. [Google Scholar] [CrossRef]
- Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; Chen, Y. Incremental network quantization: Towards lossless CNNs with low-precision weights. arXiv 2017, arXiv:1702.03044. [Google Scholar]
- Jiang, Y.; Li, Z.; Cutter, S. Social network, activity space, sentiment, and evacuation: What can social media tell us? Ann. Am. Assoc. Geogr. 2019, 109, 1795–1810. [Google Scholar] [CrossRef]
- ArcMap. How IDW Works. Available online: https://pro.arcgis.com/en/pro-app/2.8/tool-reference/3d-analyst/how-idw-works.htm (accessed on 4 May 2022).
- Yigitcanlar, T.; Guaralda, M.; Taboada, M.; Pancholi, S. Place making for knowledge generation and innovation: Planning and branding Brisbane’s knowledge community precincts. J. Urban Technol. 2016, 23, 115–146. [Google Scholar] [CrossRef]
- Mohammed, A.I.; Tahir, A.A. A New Optimizer for Image Classification using Wide ResNet (WRN). Acad. J. Nawroz Univ. 2020, 9, 1–13. [Google Scholar] [CrossRef]
- Vasavi, S.; Vineela, P.; Raman, S.V. Age detection in a surveillance video using deep learning technique. SN Comput. Sci. 2021, 2, 1–11. [Google Scholar] [CrossRef]
- Brunec, I.K.; Moscovitch, M.; Barense, M.D. Boundaries shape cognitive representations of spaces and events. Trends Cogn. Sci. 2018, 22, 637–650. [Google Scholar] [CrossRef]
- Breckler, S.J.; Pratkanis, A.R.; McCann, C.D. The representation of self in multidimensional cognitive space. Br. J. Soc. Psychol. 1991, 30, 97–112. [Google Scholar] [CrossRef]
- Omer, I. Effect of city form and sociospatial divisions on cognitive representation of an urban environment. J. Urban Aff. 2018, 40, 560–575. [Google Scholar] [CrossRef]
- O’Brien, D.T. Using small data to interpret big data: 311 reports as individual contributions to informal social control in urban neighborhoods. Soc. Sci. Res. 2016, 59, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Zhen, F.; Gong, Y. Combination of big and small data: Empirical study on the distribution and factors of catering space popularity in Nanjing, China. J. Urban Plan. Dev. 2019, 145, 05018022. [Google Scholar] [CrossRef]
- Kavaratzis, M.; Ashworth, G.J. City branding: An effective assertion of identity or a transitory marketing trick? Place Brand. 2006, 2, 183–194. [Google Scholar] [CrossRef]
- López-Lita, R.; Benlloch, M.T. De la marca comercial a la marca territorio. Recer. Rev. De Pensam. I Anàlisi 2005, 5, 87–100. [Google Scholar]
- Govers, R.; Go, F. Place Branding: Virtual and Physical Identities, Glocal, Imagined and Experienced; Palgrave-Macmillan: Basingstoke, UK, 2009. [Google Scholar]
- Fernández-Cavia, J. Ciudades, regiones y países como marcas: Luces y sombras del place branding en J de San Eugenio (Coord). In Manual de Comunicación Turística. De la Información a la Persuasion. de la Promoción a la Emoción; Documenta Universitaria: Barcelona, Spain, 2011; pp. 103–113. [Google Scholar]
- Laaksonen, P.; Laaksonen, M.; Borisov, P.; Halkoaho, J. Measuring image of a city: A qualitative approach with case example. Place Brand. 2006, 2, 210–219. [Google Scholar] [CrossRef]
- Li, J.; Webster, D.; Cai, J.; Muller, L. Innovation clusters revisited: On dimensions of agglomeration, institution, and built environment. Sustainability 2019, 11, 3338. [Google Scholar] [CrossRef]
- Papp-Váry, Á. The Anholt-GMI city brand hexagon and the saffron European city brand barometer: A comparative study. Reg. Bus. Stud. 2011, 3, 555–562. [Google Scholar]
- Fernández-Cavia, J.; Kavaratzis, M.; Morgan, N. Place branding: A communication perspective. Commun. Soc. 2018, 31, 1–7. [Google Scholar] [CrossRef]
- Ginesta, X.; de San Eugenio, J. The use of football as a country branding strategy. Case study: Qatar and the Catalan sports press. Commun. Sport 2014, 2, 225–241. [Google Scholar]
- Govers, R. Rethinking virtual and online place branding. In Rethinking Place Branding; Springer: Singapore, 2015; pp. 73–83. [Google Scholar]
- Go, F.; Govers, R. International Place Branding Yearbook 2010: Place Branding in The New Age of Innovation; Springer: Singapore, 2010. [Google Scholar]
- Yigitcanlar, T.; Sabatini-Marques, J.; da-Costa, E.; Kamruzzaman, M.; Ioppolo, G. Stimulating technological innovation through incentives: Perceptions of Australian and Brazilian firms. Technol. Forecast. Soc. Change 2019, 146, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Yigitcanlar, T. Planning for smart urban ecosystems: Information technology applications for capacity building in environmental decision making. Theor. Empir. Res. Urban Manag. 2009, 4, 5–21. [Google Scholar]
- Butler, L.; Yigitcanlar, T.; Paz, A. Barriers and risks of Mobility-as-a-Service (MaaS) adoption in cities: A systematic review of the literature. Cities 2021, 109, 103036. [Google Scholar] [CrossRef]
Place Name and Code | Number of Photos | Prediction Class | Probability | Lynchian Category |
---|---|---|---|---|
Altair Residential Condominium (ARC) | 25 | Skyscraper | 51.98% | Landmark |
Arcade Independence Square (AIS) | 30 | Mosque/Outdoor | 31.34% | Landmark |
Beddagana Wetland Park (BWP) | 28 | Broadwalk | 72.48% | District |
Beira Lake (BL) | 30 | Canal | 42.81% | Edge |
Bellanvila Park (BP) | 28 | Park | 32.46% | District |
Bandaranaike Memorial International Conference Hall (BMICH) | 30 | Elevator lobby | 22.94% | Landmark |
Borella Cemetery (BC) | 25 | Cemetery | 75.40% | Landmark |
Colombo City Center (CCC) | 30 | Department Store | 47.91% | Landmark |
Diyatha Uyana (DU) | 25 | Park | 25.36% | District |
Colombo Fort (CF) | 25 | Library | 21.52% | District |
Galle Face (GF) | 30 | Ocean | 22.62% | Edge |
Galle Face Hotel (GFH) | 30 | Ballroom | 30.78% | Landmark |
Gangaramaya Temple (GT) | 25 | Temple | 40.98% | Landmark |
Hilton Hotel (HH) | 28 | Hotel | 42.35% | Landmark |
Kelaniya Temple (KT) | 15 | Temple | 57.16% | Landmark |
Kingsbury Hotel (KH) | 30 | Hotel/Outdoor | 45.87 | Landmark |
Liberty Plaza Building (LPB) | 30 | Department Store | 36.96% | Landmark |
Lotus Tower (LT) | 30 | Tower | 42.21% | Landmark |
Mount Lavinia Beach (MLB) | 30 | Beach | 27.41% | Edge |
One Galle Face Building (OGFB) | 30 | Skyscraper | 33.44% | Landmark |
Parliament (P) | 15 | Legislative Chamber | 59.2% | Landmark |
Pettah Market (PM) | 28 | Bazaar | 43.13% | District |
Port City (PC) | 30 | Harbor | 28.07% | District |
Savoy Cinema (SC) | 25 | Movie Theatre | 32.53% | Landmark |
Shangri La Hotel (SLH) | 30 | Hotel | 45.64% | Landmark |
Viharamahadevi Park (VP) | 30 | Park | 55.60% | District |
World Trade Center (WTC) | 25 | Skyscraper | 60.06% | Landmark |
Zoo (Zoo) | 25 | Aquarium | 31.99% | District |
Total | 762 |
Place Name and Code | Lynchian Category | 2015/16 | 2017/18 | 2019/20 | C%P | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | N | T | % P | P | N | T | % P | P | N | T | % P | |||
Altair Residential Condominium (ARC) | Landmark | 2 | 1 | 3 | 66.67% | 40 | 3 | 43 | 93.02% | 7 | 0 | 7 | 100.00% | 86.56% |
Arcade Independence Square (AIS) | Landmark | 16 | 0 | 16 | 100.00% | 20 | 4 | 24 | 83.33% | 21 | 7 | 28 | 75.00% | 86.11% |
Beddagana Wetland Park (BWP) | District | 15 | 0 | 15 | 100.00% | 22 | 0 | 22 | 100.00% | 7 | 1 | 8 | 87.50% | 95.83% |
Beira Lake (BL) | Edge | 12 | 7 | 19 | 63.15% | 13 | 7 | 20 | 65% | 11 | 6 | 17 | 64.75% | 64.30% |
Bellanvila Park (BP) | District | 122 | 1 | 123 | 99.19% | 47 | 2 | 49 | 95.92% | 20 | 8 | 28 | 71.43% | 88.85% |
Bandaranaike Memorial International Conference Hall (BMICH) | Landmark | 268 | 10 | 278 | 96.40% | 80 | 7 | 87 | 91.95% | 59 | 7 | 66 | 89.39% | 92.58% |
Borella Cemetery (BC) | Landmark | 13 | 3 | 16 | 81.25% | 2 | 1 | 3 | 66.67% | 4 | 1 | 5 | 80.00% | 75.97% |
Colombo City Center (CCC) | Landmark | 8 | 1 | 9 | 88.89% | 13 | 1 | 14 | 92.86% | 25 | 0 | 25 | 100.00% | 93.92% |
Colombo Fort (CF) | District | 202 | 31 | 233 | 86.70% | 183 | 21 | 204 | 89.71% | 101 | 12 | 113 | 89.38% | 88.60% |
Diyatha Park (DP) | District | 5 | 0 | 5 | 100.00% | 6 | 2 | 8 | 75.00% | 4 | 2 | 6 | 66.67% | 80.56% |
Galle Face (GF) | Edge | 106 | 37 | 143 | 74.13% | 128 | 15 | 143 | 89.51% | 256 | 13 | 269 | 95.17% | 86.27% |
Galle Face Hotel (GFH) | Landmark | 169 | 4 | 173 | 97.69% | 257 | 19 | 276 | 93.12% | 153 | 11 | 164 | 93.29% | 94.70% |
Gangaramaya Temple (GT) | Landmark | 225 | 14 | 239 | 94.14% | 168 | 11 | 179 | 93.85% | 24 | 1 | 25 | 96.00% | 94.66% |
Hilton Hotel (HH) | Landmark | 122 | 18 | 140 | 87.14% | 164 | 16 | 180 | 91.11% | 41 | 5 | 46 | 89.13% | 89.13% |
Kelaniya Temple (KT) | Landmark | 34 | 7 | 41 | 82.93% | 22 | 7 | 29 | 75.86% | 39 | 8 | 47 | 82.98% | 80.59% |
Kingsbury Hotel (KH) | Landmark | 322 | 19 | 341 | 94.43% | 217 | 12 | 229 | 94.76% | 314 | 11 | 325 | 96.62% | 95.27% |
Liberty Plaza Building (LPB) | Landmark | 118 | 2 | 120 | 98.33% | 298 | 3 | 301 | 99.00% | 41 | 14 | 55 | 74.55% | 90.63% |
Lotus Tower (LT) | Landmark | 102 | 25 | 135 | 75.55% | 135 | 17 | 152 | 88.81% | 100 | 16 | 116 | 86.2% | 83.52% |
Mount Lavinia Beach (MLB) | Edge | 78 | 5 | 83 | 93.98% | 65 | 7 | 72 | 90.28% | 36 | 2 | 38 | 94.74% | 93.00% |
One Galle Face Building (OGFB) | Landmark | 0 | 0 | 0 | N/A | 0 | 0 | 0 | N/A | 77 | 6 | 83 | 92.77% | 30.92% |
Parliament (P) | Landmark | 14 | 7 | 21 | 66.66% | 6 | 3 | 9 | 66.7% | 3 | 2 | 5 | 60.00% | 64.45% |
Pettah Market (PM) | District | 218 | 80 | 298 | 73.15% | 130 | 23 | 153 | 84.97% | 27 | 8 | 35 | 77.14% | 78.42% |
Port City (PC) | District | 22 | 6 | 28 | 78.57% | 47 | 12 | 59 | 79.66% | 28 | 13 | 41 | 68.28% | 75.50% |
Savoy Cinema (SC) | Landmark | 261 | 7 | 268 | 97.39% | 108 | 3 | 111 | 97.30% | 15 | 1 | 16 | 93.75% | 96.15% |
Shangri La Hotel (SLH) | Landmark | 0 | 0 | 0 | N/A | 24 | 3 | 27 | 88.89% | 38 | 3 | 41 | 92.68% | 60.52% |
Viharamahadevi Park (VP) | District | 2 | 0 | 2 | 100.00% | 3 | 1 | 4 | 75.00% | 2 | 1 | 3 | 66.67% | 80.56% |
World Trade Center (WTC) | Landmark | 3 | 3 | 100.00% | 7 | 0 | 7 | 100.00% | 9 | 2 | 11 | 81.82% | 93.94% | |
Zoo (Zoo) | District | 5 | 1 | 6 | 83.33% | 3 | 2 | 5 | 60.00% | 8 | 5 | 13 | 61.54% | 68.29% |
Total | 2758 | 2410 | 1637 |
Place Code | Lynchian Category | Date | Text | Geo-coordinate | Sentiment |
---|---|---|---|---|---|
ARC | Landmark | 13 March 06:18:32 +0000 2021 | Altair Colombo #cmb Sri Lanka next best thing architecture #Altair | 6.91862, 79.8541 | Positive |
CCC | Landmark | 23 November 16:13:07 +0000 2021 | We do not remember days, we remember moments friends happy Sunday movies Scope Cinema Gold Class at CCC | 6.9176001, 79.85552449 | Positive |
BWP | District | 12 January 11:30:35 +0000 2017 | Beautiful greenish naturephotography Beddagana Wetland Park | 6.89136398, 79.90899324 | Positive |
DP | District | 9 August 14:54:01 +0000 2020 | Diyatha Uyana then and now low maintenance, fading 3D arts | 6.9045, 79.9098 | Negative |
BL | Edge | 18 May 03:23:00 +0000 2017 | The remote and picturesque view of Colombo from the historic beiralake | 6.93333333, 79.85 | Positive |
Zoo | District | 1 February 03:56 00 +0000 2022 | Reality of Sri Lanka’s National Zoological Gardens at Dehiwala. Elephants being trained for any performance is cruel. This is slavery. #DehiwalaZooCruelty #SayNoToCaptivity #CaptivityIsCruel #SayNoToElephantSlavery #DehiwalaZoo #ShermilaOut #ElephantAbuse | 6.85680556, 79.87288889 | Negative |
Place Code | Frequently Used Words |
---|---|
GF (Landmark) | Photo (39), sunset (35), beautiful (14), time (14), night (11), view (11), evening (11) |
AIS (Landmark) | Time (24), night (23), evening (17), love (15), selfie (15), life (14), friends (13), good (12), architecture (11), lounge (11), tea (10) |
CF (District) | Station (278), railway (272), café (34), train (18), Dutch (13) |
KH (Landmark) | Sky (32), night (30), love (21), view (21), time (19), good (18), dinner (16), life (14), party (14), sunset (14), family (13), happy (13), harbor (13), good times (12), evening (11), travel (10) |
HH (Landmark) | Photo (125), night (57), dinner (51), ballroom (41), good (29), Christmas (24), life (21), party (21), happy (19), poolside (17), love (15), #beautiful (14), beautiful (14), graze (14), thank (14), #love (13), #oktoberfest (13), #weddings (13), best (13), grand (13), view (13), #family (12), #life (12), #travel (12), tower (11), video (11), |
MLB (Edge) | Beach (53), hotel (27), sunset (21), family (15), #mountleviniabeach (15), #mountlaviniahotel (15), sea (10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abesinghe, S.; Kankanamge, N.; Yigitcanlar, T.; Pancholi, S. Image of a City through Big Data Analytics: Colombo from the Lens of Geo-Coded Social Media Data. Future Internet 2023, 15, 32. https://doi.org/10.3390/fi15010032
Abesinghe S, Kankanamge N, Yigitcanlar T, Pancholi S. Image of a City through Big Data Analytics: Colombo from the Lens of Geo-Coded Social Media Data. Future Internet. 2023; 15(1):32. https://doi.org/10.3390/fi15010032
Chicago/Turabian StyleAbesinghe, Sandulika, Nayomi Kankanamge, Tan Yigitcanlar, and Surabhi Pancholi. 2023. "Image of a City through Big Data Analytics: Colombo from the Lens of Geo-Coded Social Media Data" Future Internet 15, no. 1: 32. https://doi.org/10.3390/fi15010032
APA StyleAbesinghe, S., Kankanamge, N., Yigitcanlar, T., & Pancholi, S. (2023). Image of a City through Big Data Analytics: Colombo from the Lens of Geo-Coded Social Media Data. Future Internet, 15(1), 32. https://doi.org/10.3390/fi15010032