An Ensemble Deep CNN Approach for Power Quality Disturbance Classification: A Technological Route Towards Smart Cities Using Image-Based Transfer
Abstract
:1. Introduction
1.1. Motivation
1.2. Related Work
1.3. Research Gap
1.4. Problem Statement
1.5. Contributions
- (1)
- We present a method for transforming time domain PQD signals to time–frequency domain images based on CWT. This transformation allows deep models to more effectively identify and extract high-level disturbance features.
- (2)
- We propose an ensemble classification framework based on transfer learning with DCNN models to classify PQDs using time–frequency images. The framework includes four pre-trained DCNN models, ResNet-50, VGG-16, AlexNet, and SqueezeNet, which were selected after rigorous experimental evaluation. We evaluate their performance across a spectrum of sixteen different PQD classes.
- (3)
- The proposed ensemble approach uses the voting approach to improve the accuracy and generalization capabilities of individual classifiers. This method aggregates predictions from multiple classifiers using a voting scheme.
2. Proposed Methodology
2.1. PQDs Dataset Generation
2.2. Time–Frequency Transformation
2.3. DCNN Models
2.3.1. ResNet-50
2.3.2. VGG-16
2.3.3. AlexNet
2.3.4. SqueezeNet
2.4. Soft Voting Ensemble Approach
2.5. Performance Evaluation Metrices
- Accuracy (A): This is the ratio of the model’s true predictions to the overall prediction. Mathematically, it can be formulated as Equation (5).
- Precision (P): this denotes the ratio of accurately predicted positive occurrences out of the total number of predicted positive occurrences and is expressed as Equation (6).
- Recall (R): this refers to the proportion of accurately predicted positive instances among all instances in the class and can be stated as Equation (7).
- F1-score: this denotes a weighted mean of the precision and recall, formulated as Equation (8).
3. Experimental Results and Discussion
3.1. Experimental Setup
3.2. Training and Evaluation of DCNNs
3.2.1. ResNet-50 Classification Results
3.2.2. VGG-16 Classification Results
3.2.3. AlexNet Classification Results
3.2.4. Ensemble Model Results
3.3. Comparative Analysis with Literature
4. Conclusions
5. Disclaimer
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chakravorti, T.; Nayak, N.; Bisoi, R.; Dash, P.; Tripathy, L. A new robust kernel ridge regression classifier for islanding and power quality disturbances in a multi distributed generation based microgrid. Renew. Energy Focus 2019, 28, 78–99. [Google Scholar] [CrossRef]
- Conrado, B.R.; de Souza, W.A.; Liberado, E.V.; Paredes, H.K.; Brandao, D.I.; Moreira, A.C. Towards technical and economic feasibility of power quality compensators. Electr. Power Syst. Res. 2023, 216, 109020. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Wang, D.; Bi, T. Classification of power quality disturbance based on S-transform and convolution neural network. Front. Energy Res. 2021, 9, 708131. [Google Scholar] [CrossRef]
- Priyadarshini, M.; Bajaj, M.; Prokop, L.; Berhanu, M. Perception of power quality disturbances using Fourier, Short-Time Fourier, continuous and discrete wavelet transforms. Sci. Rep. 2024, 14, 3443. [Google Scholar] [CrossRef]
- Chen, S.; Li, Z.; Pan, G.; Xu, F. Power quality disturbance recognition using empirical wavelet transform and feature selection. Electronics 2022, 11, 174. [Google Scholar] [CrossRef]
- Rodriguez, M.A.; Sotomonte, J.F.; Cifuentes, J.; Bueno-López, M. Classification of power quality disturbances using hilbert huang transform and a multilayer perceptron neural network model. In Proceedings of the 2019 International Conference on Smart Energy Systems and Technologies (SEST), Porto, Portugal, 9–11 September 2019; IEEE: New York, NY, USA, 2019; pp. 1–6. [Google Scholar]
- Dutt, P.V.B.P.; Balaga, H. Detection and Classification of Power Quality Disturbances Using Variational Mode Decomposition and Deep Learning Networks. In Proceedings of the International Conference on Flexible Electronics for Electric Vehicles, Jaipur, India, 28–29 July 2022; Springer: Singapore, 2022; pp. 1–12. [Google Scholar]
- Eldar, Y.C.; Hero, A.O., III; Deng, L.; Fessler, J.; Kovacevic, J.; Poor, H.V.; Young, S. Challenges and open problems in signal processing: Panel discussion summary from ICASSP 2017 [panel and forum]. IEEE Signal Process. Mag. 2017, 34, 8–23. [Google Scholar] [CrossRef]
- Ijaz, M.; Shafiullah, M.; Abido, M. Classification of power quality disturbances using Wavelet Transform and Optimized ANN. In Proceedings of the 2015 18th International Conference on Intelligent System Application to Power Systems (ISAP), Porto, Portugal, 11–16 September 2015; IEEE: New York, NY, USA, 2015; pp. 1–6. [Google Scholar]
- Borges, F.A.; Fernandes, R.A.; Silva, I.N.; Silva, C.B. Feature extraction and power quality disturbances classification using smart meters signals. IEEE Trans. Ind. Inform. 2015, 12, 824–833. [Google Scholar] [CrossRef]
- Mahela, O.P.; Shaik, A.G.; Khan, B.; Mahla, R.; Alhelou, H.H. Recognition of complex power quality disturbances using S-transform based ruled decision tree. IEEE Access 2020, 8, 173530–173547. [Google Scholar] [CrossRef]
- Puliyadi Kubendran, A.K.; Loganathan, A.K. Detection and classification of complex power quality disturbances using S-transform amplitude matrix–based decision tree for different noise levels. Int. Trans. Electr. Energy Syst. 2017, 27, e2286. [Google Scholar] [CrossRef]
- Luo, Y.; Li, K.; Li, Y.; Cai, D.; Zhao, C.; Meng, Q. Three-layer Bayesian network for classification of complex power quality disturbances. IEEE Trans. Ind. Inform. 2017, 14, 3997–4006. [Google Scholar] [CrossRef]
- Saleem, A.; Khosiljonovich, K.I.; Qizi, K.M.M.; Sokhib, K.; Ugli, S.M.S.; Obidovich, S.S. Estimation of power quality in distribution system using fuzzy logic theory. Indones. J. Electr. Eng. Comput. Sci. 2023, 323, 1236–1245. [Google Scholar]
- Moreira, A.C.; Paredes, H.K.; de Souza, W.A.; Marafao, F.P.; Da Silva, L.C. Intelligent expert system for power quality improvement under distorted and unbalanced conditions in three-phase AC microgrids. IEEE Trans. Smart Grid 2017, 9, 6951–6960. [Google Scholar] [CrossRef]
- Thirumala, K.; Pal, S.; Jain, T.; Umarikar, A.C. A classification method for multiple power quality disturbances using EWT based adaptive filtering and multiclass SVM. Neurocomputing 2019, 334, 265–274. [Google Scholar] [CrossRef]
- Naderian, S.; Salemnia, A. An implementation of type-2 fuzzy kernel based support vector machine algorithm for power quality events classification. Int. Trans. Electr. Energy Syst. 2017, 27, e2303. [Google Scholar] [CrossRef]
- Dekhandji, F.Z.; Recioui, A.; Ladada, A.; Moulay Brahim, T.S. Detection and Classification of Power Quality Disturbances Using LSTM. Eng. Proc. 2023, 29, 2. [Google Scholar] [CrossRef]
- Chiam, D.H.; Lim, K.H.; Law, K.H. LSTM power quality disturbance classification with wavelets and attention mechanism. Electr. Eng. 2023, 105, 259–266. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H. A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network. Appl. Energy 2019, 235, 1126–1140. [Google Scholar] [CrossRef]
- Perez-Anaya, E.; Jaen-Cuellar, A.Y.; Elvira-Ortiz, D.A.; Romero-Troncoso, R.d.J.; Saucedo-Dorantes, J.J. Methodology for the Detection and Classification of Power Quality Disturbances Using CWT and CNN. Energies 2024, 17, 852. [Google Scholar] [CrossRef]
- Ercolano, G.; Rossi, S. Combining CNN and LSTM for activity of daily living recognition with a 3D matrix skeleton representation. Intell. Serv. Robot. 2021, 14, 175–185. [Google Scholar] [CrossRef]
- Mohan, N.; Soman, K.; Vinayakumar, R. Deep power: Deep learning architectures for power quality disturbances classification. In Proceedings of the 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 21–23 December 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Wang, J.; Zhang, D.; Zhou, Y. Ensemble deep learning for automated classification of power quality disturbances signals. Electr. Power Syst. Res. 2022, 213, 108695. [Google Scholar] [CrossRef]
- El-Rashidy, M.A.; Abd-elhamed, S.A.; El-Fishawy, N.A.; Shouman, M.A. Efficient online detection system of power disturbances based on deep-learning approach. Alex. Eng. J. 2023, 70, 377–394. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, T.; Mohamed, M.A. A novel dual-attention optimization model for points classification of power quality disturbances. Appl. Energy 2023, 339, 121011. [Google Scholar] [CrossRef]
- Manikonda, S.K.; Santhosh, J.; Sreekala, S.P.K.; Gangwani, S.; Gaonkar, D.N. Power quality event classification using transfer learning on images. In Proceedings of the 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Tamilnadu, India, 11–13 April 2019; IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Todeschini, G.; Kheta, K.; Giannetti, C. An image-based deep transfer learning approach to classify power quality disturbances. Electr. Power Syst. Res. 2022, 213, 108795. [Google Scholar] [CrossRef]
- Fu, L.; Deng, X.; Chai, H.; Ma, Z.; Xu, F.; Zhu, T. PQEventCog: Classification of power quality disturbances based on optimized S-transform and CNNs with noisy labeled datasets. Electr. Power Syst. Res. 2023, 220, 109369. [Google Scholar] [CrossRef]
- Radhakrishnan, P.; Ramaiyan, K.; Vinayagam, A.; Veerasamy, V. A stacking ensemble classification model for detection and classification of power quality disturbances in PV integrated power network. Measurement 2021, 175, 109025. [Google Scholar] [CrossRef]
- Dhalaria, M.; Gandotra, E.; Saha, S. Comparative analysis of ensemble methods for classification of android malicious applications. In Proceedings of the Advances in Computing and Data Sciences: Third International Conference, ICACDS 2019, Ghaziabad, India, 12–13 April 2019; Springer: Singapore, 2019; pp. 370–380. [Google Scholar]
- Kiruthiga, B.; Narmatha Banu, R.; Devaraj, D. Detection and classification of power quality disturbances or events by adaptive NFS classifier. Soft Comput. 2020, 24, 10351–10362. [Google Scholar] [CrossRef]
- Sindi, H.; Nour, M.; Rawa, M.; Öztürk, Ş.; Polat, K. A novel hybrid deep learning approach including combination of 1D power signals and 2D signal images for power quality disturbance classification. Expert Syst. Appl. 2021, 174, 114785. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, C.; Chai, Z.; He, Y. Adversarial attack and training for deep neural network based power quality disturbance classification. Eng. Appl. Artif. Intell. 2024, 127, 107245. [Google Scholar] [CrossRef]
- Salles, R.S.; Ribeiro, P.F. The use of deep learning and 2-D wavelet scalograms for power quality disturbances classification. Electr. Power Syst. Res. 2023, 214, 108834. [Google Scholar] [CrossRef]
- Machlev, R.; Chachkes, A.; Belikov, J.; Beck, Y.; Levron, Y. Open source dataset generator for power quality disturbances with deep-learning reference classifiers. Electr. Power Syst. Res. 2021, 195, 107152. [Google Scholar] [CrossRef]
- 1159-1995; IEEE Recommended Practice for Monitoring Electric Power Quality. IEEE: New York, NY, USA, 1995.
- Singh, G.; Pal, Y.; Dahiya, A.K. Classification of power quality disturbances using linear discriminant analysis. Appl. Soft Comput. 2023, 138, 110181. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; IEEE: New York, NY, USA, 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Çığşar, B.; Ünal, D. Comparison of data mining classification algorithms determining the default risk. Sci. Program. 2019, 2019, 8706505. [Google Scholar] [CrossRef]
- Panigrahi, R.R.; Mishra, M.; Nayak, J.; Shanmuganathan, V.; Naik, B.; Jung, Y.-A. A power quality detection and classification algorithm based on FDST and hyper-parameter tuned light-GBM using memetic firefly algorithm. Measurement 2022, 187, 110260. [Google Scholar] [CrossRef]
- Sepasi, S.; Talichet, C.; Pramanik, A.S. Power quality in microgrids: A critical review of fundamentals, standards, and case studies. IEEE Access 2023, 11, 108493–108531. [Google Scholar] [CrossRef]
- Balouji, E.; Salor, O. Classification of power quality events using deep learning on event images. In Proceedings of the 2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA), Shahrekord, Iran, 19–20 April 2017; IEEE: New York, NY, USA, 2017; pp. 216–221. [Google Scholar]
- Minh Khoa, N.; Van Dai, L. Detection and classification of power quality disturbances in power system using modified-combination between the stockwell transform and decision tree methods. Energies 2020, 13, 3623. [Google Scholar] [CrossRef]
- Wang, H.; Wang, P.; Liu, T. Power quality disturbance classification using the S-transform and probabilistic neural network. Energies 2017, 10, 107. [Google Scholar] [CrossRef]
Ref. | Publication Year | Methodology | No. of PQD Classes | Features | ||
---|---|---|---|---|---|---|
Ensemble Approach | Unified Model Approach | Time Domain | Frequency Domain | |||
[12] | 2021 | × | DWT, MLP, SVM | 9 | √ | × |
[30] | 2021 | DWT, LR, NB, DT, | × | 9 | √ | × |
[33] | 2021 | × | Hybrid CNN | 13 | √ | √ |
[24] | 2022 | Bagging-LSTM | × | 15 | √ | × |
[28] | 2022 | × | CNN | 3 | √ | √ |
[34] | 2023 | × | CNN-LSTM | 14 | √ | × |
[29] | 2023 | × | S-transform- CNN | 16 | √ | × |
[26] | 2023 | × | HT-CNN | 16 | √ | × |
[35] | 2023 | × | CWT-CNN | 7 | √ | × |
Parameters | Specifications | ||
---|---|---|---|
Number of PQD classes | 16 | ||
PQD class, characteristics, equation and parameter range | Flicker (D1) | [1 + αf sin(ωt)] sin(ωt)] | 0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤ 20 Hz |
Flicker + Harmonics (D2) | [1 + αf sin(βωt)] × [α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)] | 0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤ 20 0.05 ≤ α3, α5, α7 ≤ 0.15, Σ(αi2) = 1 | |
Flicker + Sag (D3) | [1 + αf sin(βωt)][1 − α(u(t − t1) − u(t − t2))] sin(ωt)] | 0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤ 20 0.1 ≤ α ≤ 0.9, T ≤ (t2 − t1) ≤ 9T | |
Flicker + Swell (D4) | [1 + αf sin(βωt)][1 + α(u(t − t1) − u(t − t2))] sin(ωt)] | 0.1 ≤ αf ≤ 0.2, 5 ≤ β ≤ 20 0.1 ≤ α ≤ 0.8, T ≤ (t2 − t1) ≤ 9T | |
Harmonics (D5) | α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt) | 0.05 ≤ α3, α5, α7, ≤ 0.15, Σ(αi2) = 1 | |
Impulsive transient (D6) | [1 − α(u(t − t1) − u(t − t2))] sin(ωt)] | 0.1 ≤ α ≤ 0.414, T/20 ≤ (t2 − t1) ≤ T/10 | |
Interruption (D7) | [1 − α(u(t − t1) − u(t − t2))] sin(ωt)] | 0.9 ≤ α ≤ 1, T ≤ (t2 − t1) ≤ 9T | |
Interruption + Harmonics (D8) | [1 − α(u(t − t1) − u(t − t2))] × [α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)] | 0.9 ≤ α ≤ 1, T ≤ (t2 − t1) ≤ 9T 0.05 ≤ α3, α5, α7 ≤ 0.15, Σ(αi2) = 1 | |
Normal (D9) | [1 ± α(u(t − t1) − u(t − t2))] sin(ωt) | α < 0.04, T ≤ (t2 − t1) ≤ 9T | |
Notch (D10) | sin(ωt) − sign(sin(ωt)) × Σ k[u(t − (t1 − 0.02n)) − u(t − (t2 − 0.02n))] | 0 ≤ t1, t2 ≤ 0.5T, 0.1 ≤ K ≤ 0.4, 0.01T ≤ t2 − t1 ≤ 0.05T | |
Oscillatory transient (D11) | sin(ωt) + α − (t − t1)/τ sin(ωn(t − t1))(u(t2) − u(t1)) | 0.1 < α ≤ 0.8, 0.5T ≤ (t2 − t1) ≤ 3T, 8 ≤ τ ≤ 40, 300 ≤ 2πωn ≤ 900 | |
Sag (D12) | [1 − α(u(t − t1) − u(t − t2))] sin(ωt) | 0.1 ≤ α < 0.9, T ≤ (t2 − t1) ≤ 9T | |
Sag + Harmonics (D13) | [1 − α(u(t − t1) − u(t − t2))] × [α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)] | 0.1 ≤ α < 0.9, T ≤ (t2 − t1) ≤ 9T, 0.05 ≤ α3, α5, α7 ≤ 0.15, Σ(αi2) = 1 | |
Spike (D14) | sin(ωt) + sign(sin(ωt)) × Σ k[u(t − (t1 − 0.02n)) − u(t − (t2 − 0.02n))] | 0 ≤ t1, t2 ≤ 0.5T, 0.1 ≤ K ≤ 0.4, 0.01T ≤ t2 − t1 ≤ 0.05T | |
Swell (D15) | [1 + α(u(t − t1) − u(t − t2))] sin(ωt) | 0.1 ≤ α ≤ 0.8, T ≤ (t2 − t1) ≤ 9T | |
Swell + Harmonics (D16) | [1 + α(u(t − t1) − u(t − t2))] × [α1 sin(ωt) + α3 sin(3ωt) + α5 sin(5ωt) + α7 sin(7ωt)] | 0.1 ≤ α < 0.8, T ≤ (t2 − t1) ≤ 9T, 0.05≤ α3, α5, α7 ≤ 0.15, Σ(αi2) = 1 | |
Samples for each class | 500 | ||
Reference frequency | 50 Hz | ||
Sampling frequency | 3.2 kHz | ||
Number of cycles/class sample | 10 | ||
Magnitude of the signal | 1 p.u. | ||
Noise levels | 20 dB, 30 dB and random noise |
DCNN Model | Training Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Optimizer | Hyperparameter with Search Space | Optimized Value | |||||||
Learning Rate | Batch Size | Epoch | Learning Rate | Batch Size | Epoch | Number of Layers | Input Image Size (Pixel) | ||
ResNet-50 | SGD | [0.01, 0.001, 0.00015] | [16, 32, 48] | [10, 20, 30] | 0.0001 | 32 | 30 | 177 | 224 × 224 |
VGG-16 | SGD | 41 | 224 × 224 | ||||||
AlexNet | SGD | 25 | 227 × 227 | ||||||
SqueezeNet | SGD | 68 | 227 × 227 | ||||||
ResNet-50 with attention mechanism | SGD | 177 | 224 × 224 |
Model | Without Noise | 20 dB Noise | 30 dB Noise | Random Noise | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | |
ResNet-50 | 99.75 | 98.04 | 98 | 98 | 99.25 | 94.55 | 94 | 94.13 | 99.5 | 96.18 | 96 | 96.02 | 99.38 | 95.29 | 95 | 95.07 |
VGG-16 | 99.48 | 96.17 | 95.88 | 95.90 | 99.13 | 93.50 | 93 | 93.07 | 99.39 | 95.36 | 95.13 | 95.16 | 99.25 | 94.26 | 94. | 94.05 |
AlexNet | 99.38 | 95.21 | 95 | 95.01 | 98.91 | 91.73 | 91.25 | 91.23 | 99.08 | 93.23 | 92.63 | 92.71 | 98.94 | 92.05 | 91.49 | 91.60 |
SqueezeNet | 98.75 | 90.75 | 90 | 90.01 | 98.59 | 89.31 | 88.75 | 88.75 | 98.66 | 90.10 | 89.25 | 89.30 | 98.59 | 89.21 | 88.75 | 88.75 |
ResNet-50 with SE mechanism | 99.86 | 98.46 | 98 | 98.23 | 99.35 | 94.66 | 94 | 94.33 | 99.5 | 96.22 | 96 | 96.11 | 99.68 | 95.51 | 95 | 95.25 |
Voting Ensemble | 99.98 | 99.97 | 99.80 | 99.85 | 99.73 | 98.23 | 97.23 | 97.78 | 99.90 | 99.83 | 99.65 | 99.80 | 99.88 | 98.68 | 98.10 | 98.05 |
Method | Without Noise | 20 dB Noise | 30 dB Noise | Random Noise | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | |
1-D Signals | ||||||||||||||||
FDST+MFA_LGBM [44] | 99.71 | - | - | - | 96.85 | - | - | - | 98.45 | - | - | - | - | - | - | - |
SE with (LR+NB+J48 DT) [30] | 91 | 91.5 | 91 | 91.10 | - | - | - | - | - | - | - | - | 89.33 | 89.60 | 89.3 | 89.3 |
DR with (KNN, SVM, NB, RF) [38] | - | - | - | - | 99.72 | - | - | - | 99.48 | - | - | - | 99.65 | - | - | - |
Bagging-LSTM [24] | - | - | - | - | 98.67 | - | - | - | 99.20 | - | - | - | - | - | - | - |
HT+DAOM [26] | 99.44 | 99.24 | 99.15 | 99.19 | - | - | - | - | 98.95 | 98.58 | 98.05 | 98.31 | - | - | - | - |
2-D Images | ||||||||||||||||
Pre-trained deep Networks [28] | 99.80 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
ST+CNN [29] | 99.12 | - | - | - | 98.57 | - | - | - | 98.14 | - | - | - | 83.45 | - | - | - |
1-D+2-D CNN [33] | 99.71 | - | 99.53 | 99.80 | - | - | - | - | - | - | - | - | - | - | - | - |
Proposed Approach | 99.98 | 99.97 | 99.80 | 99.85 | 99.73 | 98.23 | 97.23 | 97.78 | 99.90 | 99.83 | 99.65 | 99.80 | 99.88 | 98.68 | 98.10 | 98.05 |
Model | Training Time | Test Time (Batch of Fifty Samples) | Test Time (Single Sample) |
---|---|---|---|
ResNet-50 | 298 min 48 s | 2.98 s | 59.8 ms |
VGG-16 | 293 min. 50 s | 2.77 s | 55.6 ms |
AlexNet | 270 min 59 s | 2.51 s | 50.4 ms |
SqueezeNet | 330 min 25 s | 4.02 s | 80.6 ms |
ResNet-50 with SA mechanism | 283 min 41 s | 2.69 s | 53.9 ms |
Voting Ensemble | - | 2.75 s | 55.1 ms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baig, M.A.A.; Ratyal, N.I.; Amin, A.; Jamil, U.; Liaquat, S.; Khalid, H.M.; Zia, M.F. An Ensemble Deep CNN Approach for Power Quality Disturbance Classification: A Technological Route Towards Smart Cities Using Image-Based Transfer. Future Internet 2024, 16, 436. https://doi.org/10.3390/fi16120436
Baig MAA, Ratyal NI, Amin A, Jamil U, Liaquat S, Khalid HM, Zia MF. An Ensemble Deep CNN Approach for Power Quality Disturbance Classification: A Technological Route Towards Smart Cities Using Image-Based Transfer. Future Internet. 2024; 16(12):436. https://doi.org/10.3390/fi16120436
Chicago/Turabian StyleBaig, Mirza Ateeq Ahmed, Naeem Iqbal Ratyal, Adil Amin, Umar Jamil, Sheroze Liaquat, Haris M. Khalid, and Muhammad Fahad Zia. 2024. "An Ensemble Deep CNN Approach for Power Quality Disturbance Classification: A Technological Route Towards Smart Cities Using Image-Based Transfer" Future Internet 16, no. 12: 436. https://doi.org/10.3390/fi16120436
APA StyleBaig, M. A. A., Ratyal, N. I., Amin, A., Jamil, U., Liaquat, S., Khalid, H. M., & Zia, M. F. (2024). An Ensemble Deep CNN Approach for Power Quality Disturbance Classification: A Technological Route Towards Smart Cities Using Image-Based Transfer. Future Internet, 16(12), 436. https://doi.org/10.3390/fi16120436