Conservative Interference Injection to Minimize Wi-Fi Sensing Privacy Risks and Bandwidth Loss
Abstract
:1. Introduction
1.1. Background
1.2. Motivation and Contributions
- In this study, we replicated keystroke recognition attacks from previous research and discovered new information on the minimum CSI data rates needed to identify and categorize keystrokes through Wi-Fi sensing.
- After verifying that the accuracy of Wi-Fi sensing drops as a function of the CSI data rate, we extend Bianchi’s [9] model of saturated CSMA/CA systems to create a mathematical relationship between the channel contention and the accessible CSI data rate.
- We conducted an experimental validation of our mathematical model that describes the available CSI data rate in relation to the level of contention. Our findings show that as more devices access the Wi-Fi channel, the CSI data rate decreases, which implies that we may not have sufficient information to detect keystrokes.
- Using this contention-based drop in the CSI rate, we motivate a defence strategy against Wi-Fi-based keystroke inference attacks. We achieve this by injecting controlled interference through another device that transmits ping packets to reduce the CSI sensing rate below the required threshold for accurate sensing.
- We present a trade-off study that details the consequences of such contention-based defence strategies on the available Wi-Fi bandwidth for normal users.
2. State of the Art
2.1. Channel State Information
2.2. Large-Scale Applications
2.3. Fine-Grained Gesture Recognition
2.4. Protection Methods
3. System Description
3.1. Wi-Fi Sensing System
3.2. CSI Sensing Rate and Coherence Time
4. Keystroke Recognition Using Wi-Fi Sensing
4.1. Keystroke Recognition Model
4.2. Experimental Setup
4.3. Results
4.4. Minimum CSI Sensing Rate for Reliable Sensing
5. Proposed Contention Model for Defence Against Wi-Fi Sensing
5.1. CSMA/CA in 802.11 Networks
5.2. Throughput of CSMA/CA WLANs
5.3. Empirical Validation
5.3.1. Experimental Setup
5.3.2. Results
6. Application of Defence Model Against Keystroke Attacks
6.1. Experimental Setup
6.2. Results
7. Tradeoff Between Privacy and Utility
7.1. Experimental Setup
7.2. Empirical Results
8. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Zhou, G.; Lin, Y. Cross-Domain WiFi Sensing with Channel State Information: A Survey. ACM Comput. Surv. 2023, 55, 1–37. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, H.; Zhu, R.; Wu, F.; Yin, L.; Yang, Y. WiTransformer: A Novel Robust Gesture Recognition Sensing Model with WiFi. Sensors 2023, 23, 2612. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.; Liu, A.X.; Wang, W.; Shahzad, M. Recognizing Keystrokes Using WiFi Devices. IEEE J. Sel. Areas Commun. 2017, 35, 1175–1190. [Google Scholar] [CrossRef]
- Li, M.; Meng, Y.; Liu, J.; Zhu, H.; Liang, X.; Liu, Y.; Ruan, N. When CSI Meets Public WiFi: Inferring Your Mobile Phone Password via WiFi Signals. In Proceedings of the ACM SIGSAC, Vienna, Austria, 24–28 October 2016; pp. 1068–1079. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Tang, Z.; Gong, X.; Wang, W.; Fang, D.; Wang, Z. Defeat Your Enemy Hiding behind Public WiFi: WiGuard Can Protect Your Sensitive Information from CSI-Based Attack. Appl. Sci. 2018, 8, 515. [Google Scholar] [CrossRef]
- Zhu, Y.; Xiao, Z.; Chen, Y.; Li, Z.; Liu, M.; Zhao, B.Y.; Zheng, H. Et Tu Alexa? When Commodity WiFi Devices Turn into Adversarial Motion Sensors. In Proceedings of the Network and Distributed Systems Security (NDSS) Symposium 2020, San Diego, CA, USA, 23–26 February 2020. [Google Scholar] [CrossRef]
- Liu, J.; He, Y.; Xiao, C.; Han, J.; Ren, K. Time to Think the Security of WiFi-Based Behavior Recognition Systems. IEEE Trans. Dependable Secur. Comput. 2024, 21, 449–462. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, X.; Yu, S.; Guo, L. IS-WARS: Intelligent and Stealthy Adversarial Attack to Wi-Fi-Based Human Activity Recognition Systems. IEEE Trans. Dependable Secur. Comput. 2022, 19, 3899–3912. [Google Scholar] [CrossRef]
- Bianchi, G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 2000, 18, 535–547. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Z.; Zhang, C.; Dou, W.; Guo, Y.; Chen, D. CSI-based human sensing using model-based approaches: A survey. J. Comput. Des. Eng. 2021, 8, 510–523. [Google Scholar] [CrossRef]
- Sharma, A.; Mishra, D.; Zia, T.; Seneviratne, A. A Novel Approach to Channel Profiling Using the Frequency Selectiveness of WiFi CSI Samples. In Proceedings of the 2020 IEEE Global Communications Conference (IEEE GLOBECOM), Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Gringoli, F.; Schulz, M.; Link, J.; Hollick, M. Free Your CSI: A Channel State Information Extraction Platform For Modern Wi-Fi Chipsets. In Proceedings of the 13th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, Los Cabos, Mexico, 25 October 2019; pp. 21–28. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, G.; Wang, S. WiFi Sensing with Channel State Information: A Survey. ACM Comput. Surv. 2019, 52, 1–36. [Google Scholar] [CrossRef]
- Hernandez, S.M.; Bulut, E. WiFi Sensing on the Edge: Signal Processing Techniques and Challenges for Real-World Systems. IEEE Commun. Surv. Tutor. 2023, 25, 46–76. [Google Scholar] [CrossRef]
- Wang, F.; Han, J.; Lin, F.; Ren, K. WiPIN: Operation-Free Passive Person Identification Using Wi-Fi Signals. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Big Island, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ge, Y.; Taha, A.; Shah, S.A.; Dashtipour, K.; Zhu, S.; Cooper, J.; Abbasi, Q.H.; Imran, M.A. Contactless WiFi Sensing and Monitoring for Future Healthcare—Emerging Trends, Challenges, and Opportunities. IEEE Rev. Biomed. Eng. 2023, 16, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, Y.; Qian, K.; Zhang, G.; Liu, Y.; Wu, C.; Yang, Z. Widar3.0: Zero-Effort Cross-Domain Gesture Recognition With Wi-Fi. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 8671–8688. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, A.X.; Shahzad, M.; Ling, K.; Lu, S. Device-Free Human Activity Recognition Using Commercial WiFi Devices. IEEE J. Sel. Areas Commun. 2017, 35, 1118–1131. [Google Scholar] [CrossRef]
- Sharma, A.; Jiang, W.; Mishra, D.; Jha, S.; Seneviratne, A. Optimised CNN for Human Counting Using Spectrograms of Probabilistic WiFi CSI. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, K.; Hou, Y.; Dou, W.; Zhang, C.; Huang, Z.; Guo, Y. A Survey on Human Behavior Recognition Using Channel State Information. IEEE Access 2019, 7, 155986–156024. [Google Scholar] [CrossRef]
- Li, J.; Mishra, D.; Seneviratne, A. CSI-Based NTC Using Ambient WiFi: Opportunities and Challenges. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Xiong, J.; Jamieson, K. SecureArray: Improving Wifi Security with Fine-Grained Physical-Layer Information. In Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, Miami, FL, USA, 30 September–4 October 2013; ACM: New York, NY, USA, 2013; pp. 441–452. [Google Scholar] [CrossRef]
- Tay, Y.C.; Chua, K.C. A Capacity Analysis for the IEEE 802.11 MAC Protocol. Wirel. Netw. 2001, 7, 159–171. [Google Scholar] [CrossRef]
- Ziouva, E.; Antonakopoulos, T. CSMA/CA performance under high traffic conditions: Throughput and delay analysis. Comput. Commun. 2002, 25, 313–321. [Google Scholar] [CrossRef]
- Chen, Y.; Agrawal, D.P. Effect of Contention Window on the performance of IEEE 802.11 WLANs. In Proceedings of the 3rd Annual Mediterranean Ad Hoc Networking Workshop, Bodrum, Turkey, 27–30 June 2004; Citeseer: University Park, PA, USA, 2004; pp. 27–30. [Google Scholar]
- Manshaei, M.H.; Hubaux, J.P. Performance Analysis of the IEEE 802.11 Distributed Coordination Function: Bianchi Model. Mobile Networks. 2007. Available online: http://www.manshaei.org/files/C1-80211-Perf-Bianchi.pdf (accessed on 15 July 2023).
Activity | Speed (m/s) | (s) | Req. CSI Rate (Hz) |
---|---|---|---|
Walking | 1.5 | 0.016 | 63 |
Running | 2.7 | 0.008 | 129 |
Typing | 4 | 0.005 | 189 |
Occupancy | 0.7 | 0.031 | 33 |
Parameter | Value |
---|---|
Slot Time | 20 μs |
DIFS | s |
Short Inter-Frame Space (SIFS) | s |
Acknowledgement (ACK) Time | s |
s | |
3.4 ms | |
Minimum Contention Window (W) | 16 slots |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.; Wang, H.; Mishra, D.; Seneviratne, A. Conservative Interference Injection to Minimize Wi-Fi Sensing Privacy Risks and Bandwidth Loss. Future Internet 2025, 17, 20. https://doi.org/10.3390/fi17010020
Sharma A, Wang H, Mishra D, Seneviratne A. Conservative Interference Injection to Minimize Wi-Fi Sensing Privacy Risks and Bandwidth Loss. Future Internet. 2025; 17(1):20. https://doi.org/10.3390/fi17010020
Chicago/Turabian StyleSharma, Aryan, Haoming Wang, Deepak Mishra, and Aruna Seneviratne. 2025. "Conservative Interference Injection to Minimize Wi-Fi Sensing Privacy Risks and Bandwidth Loss" Future Internet 17, no. 1: 20. https://doi.org/10.3390/fi17010020
APA StyleSharma, A., Wang, H., Mishra, D., & Seneviratne, A. (2025). Conservative Interference Injection to Minimize Wi-Fi Sensing Privacy Risks and Bandwidth Loss. Future Internet, 17(1), 20. https://doi.org/10.3390/fi17010020