Comparative Concept Study of Passive Hybrid Energy Storage Systems in 48 V Mild Hybrid Vehicles Varying Lithium-Ion Battery and Supercapacitor Technologies †
Abstract
:1. Introduction
2. Fundamentals
2.1. Pulse Current Load and Operating Voltage
2.2. Characterization of Energy Storage System (ESS) during Pulse Load Profiles
3. Modeling
3.1. Cell Model (CM)
3.2. Single Cell Characteristics and Parameter Determination
3.3. From Cell Model (CM) to System Model (SM)
4. Analysis
4.1. Experimental Study of Energy Density and Power Density Enhancement
4.1.1. Cell to Cell Analysis (C2C)
4.1.2. System to System Analysis (S2S)
4.2. Model Validation and Virtual Concept Study
4.2.1. Model Validation
4.2.2. Virtual Concept Study for Two Mild Hybrid Electric Vehicle (MHEV) Scenarios (Gen1–Gen3)
5. Results
5.1. Experimental Results
5.2. Model Validation
5.3. Results of the Virtual Concept Study
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The Idaho National Laboratory. U.S. Department of Energy Vehicle Technologies Program Battery Test Manual for 48 Volt Mild Hybrid Electric Vehicles. 2017. Available online: https://inldigitallibrary.inl.gov/sites/sti/sti/7364006.pdf (accessed on 5 June 2019).
- Degenhart, E. Powertrain Review Powertrain Strategy 2020 +. Available online: https://www.continental-corporation.com/resource/blob/33902/50729be3c974864761524b7de1a8f625/2017-04-25-presentatione-powertrain-strategy-data.pdf (accessed on 10 October 2018).
- Chuan, Y.; Mi, C.; Zhang, M. Comparative study of a passive hybrid energy storage system using lithium ion battery and ultracapacitor. World Electr. Veh. J. 2012, 5, 83–90. [Google Scholar] [CrossRef]
- Naoi, K.; Ishimoto, S.; Miyamoto, J.; Naoi, W. Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices. Energy Environ. Sci. 2012, 5, 9363–9373. [Google Scholar] [CrossRef]
- Dubal, D.P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777–1790. [Google Scholar] [CrossRef] [PubMed]
- Cericola, D.; Kötz, R. Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochim. Acta 2012, 72, 1–17. [Google Scholar] [CrossRef]
- Cericola, D.; Ruch, P.W.; Kötz, R.; Novák, P.; Wokaun, A. Simulation of a supercapacitor/Li-ion battery hybrid for pulsed applications. J. Power Sources 2010, 195, 2731–2736. [Google Scholar] [CrossRef]
- Kuperman, A.; Aharon, I. Battery-ultracapacitor hybrids for pulsed current loads: A review. Renew. Sustain. Energy Rev. 2011, 15, 981–992. [Google Scholar] [CrossRef]
- Dougal, R.A.; Liu, S.; White, R.E. Power and life extension of battery-ultracapacitor hybrids. IEEE Trans. Components Packag. Technol. 2002, 25, 120–131. [Google Scholar] [CrossRef] [Green Version]
- Holland, C.E.; Weidner, J.W.; Dougal, R.A.; White, R.E. Experimental characterization of hybrid power systems under pulse current loads. J. Power Sources 2002, 109, 32–37. [Google Scholar] [CrossRef]
- Warner, J. The Handbook of Lithium-Ion Battery Pack Design; Elsevier Science: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Budde-Meiwes, H.; Drillkens, J.; Lunz, B.; Muennix, J.; Rothgang, S.; Kowal, J.; Sauer, D.U. A review of current automotive battery technology and future prospects. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2013, 227, 761–776. [Google Scholar] [CrossRef]
- Mousavi, G.S.M.; Nikdel, M. Various battery models for various simulation studies and applications. Renew. Sustain. Energy Rev. 2014, 32, 477–485. [Google Scholar] [CrossRef]
- Seaman, A.; Dao, T.S.; McPhee, J. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. J. Power Sources 2014, 256, 410–423. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, Z.; Hu, X.; Sun, F.; Dorrell, D.G. A comparative study of equivalent circuit models of ultracapacitors for electric vehicles. J. Power Sources 2015, 274, 899–906. [Google Scholar] [CrossRef]
- Schweiger, H.-G.; Obeidi, O.; Komesker, O.; Raschke, A.; Schiemann, M.; Zehner, C.; Gehnen, M.; Keller, M.; Birke, P. Comparison of several methods for determining the internal resistance of lithium ion cells. Sensors (Basel) 2010, 10, 5604–5625. [Google Scholar] [CrossRef] [PubMed]
- Dubarry, M.; Vuillaume, N.; Liaw, B.Y. From single cell model to battery pack simulation for Li-ion batteries. J. Power Sources 2009, 186, 500–507. [Google Scholar] [CrossRef]
- Wu, X.; Freese, D.; Cabrera, A.; Kitch, W.A. Electric vehicles energy consumption measurement and estimation. Transp. Res. Part. D Transp. Environ. 2015, 34, 52–67. [Google Scholar] [CrossRef]
Cell Type | Cell Design | Capacity (Ah) | Voltage Range (V) | Mass (kg) | Volume (l) | C-Rate Max CHG | eESS (Whkg−1) | pESS (Wkg−1) |
---|---|---|---|---|---|---|---|---|
LCO | 18650 | 2.45 | 2.5–4.2 | 0.045 | 0.017 | 0.75 | 209.45 | 149.71 |
LFPHE | 26650 | 3.00 | 2.0–3.6 | 0.085 | 0.036 | 1 | 109.54 | 109.89 |
LICSHC | Pouch | 1.28 | 2.2–3.8 | 0.250 | 0.150 | 117 | 11.29 | 1722.96 |
LICPHC | Pouch | 4.30 | 2.2–3.8 | 0.270 | 0.150 | 35 | 35.14 | 1555.65 |
EDLC | Cylindrical | 2.25 | 0.1–2.7 | 0.540 | 0.390 | 471 | 5.88 | 745.43 * |
LFPHP | 26650 | 2.50 | 2.0–3.6 | 0.076 | 0.036 | 4 | 101.14 | 411.98 |
System/Parameter | Topology | Voltage Range (V) | Capacity (Ah) | eESS (Whkg−1) | pESS (Wkg−1) |
---|---|---|---|---|---|
LFPHE | 14S8P | 32.0–48.5 | 22.45 | 103.08 | 99.67 |
LICPHC | 13S1P | 30.7–47.5 | 3.46 | 21.69 | 1328.20 * |
EDLC | 18S1P | 0.1–48 | 2.22 | 1.47 | 538.55 * |
Mass of Vehicle mv (kg) | Gravitational Acceleration g (ms−2) | Rolling Resistance Cr (-) | Density of Air ρair (kgm−3) | Drag Coefficient Cd (-) | Cross-Sectional Area Afront (m2) | ESS Max Chg/Dis Power (kW) |
---|---|---|---|---|---|---|
1615 | 9.81 | 0.01 | 1.22 | 0.30 | 2.30 | 25 |
Mode | Condition | Description |
---|---|---|
Inner City Driving | v < 50 kmh−1 | Pv is powered by ESS |
Engine Mode | 50 kmh−1 < v < 70 kmh−1 | Pv is powered by ESS and CE Linear decrease of PESS at 50 kmh−1 to 0 kW at 70 kmh−1 is assumed |
Freeway Mode | v > 70 kmh−1 | Pv powered by CE |
Regenerative Braking | a < 0 | Until 25 kW ESS is getting charged |
Characteristic/Profile | Gen1–HEV | Gen3–WLTP | ||||||
---|---|---|---|---|---|---|---|---|
EDLC | LICSHC | LICPHC | ESS | EDLC | LICSHC | LICPHC | ESS | |
LIB bank (xSyP) HESSmin/HESSv | 14S6P/14S67P | 14S1P/14S69P | 14S2P/14S69P | -/14S77P | 14S39P/14S160P | 14S37P/14S170P | 14S34P/14S170P | -/14S174P |
SC bank (xSyP) HESSmin/HESSv | 18S7P/18S1P | 13S8P/13S2P | 13S9P/13S2P | - | 18S6P/18S1P | 13S8P/13S1P | 13S11P/13S1P | - |
Weight (kg) HESSmin/HESSv | 75.18/89.45 | 27.19/88.61 | 33.97/89.13 | -/91.62 | 104.73/200.12 | 70.03/205.55 | 79.07/205.81 | -/207.05 |
Volume (l) HESSmin/HESSv | 52.16/40.78 | 16.29/38.72 | 18.77/38.72 | -/38.80 | 61.77/87.66 | 34.34/87.65 | 38.84/87.65 | -/87.69 |
Capacity (kWh) HESSmin/HESSv | 1.11/9.55 | 0.49/9.84 | 1.80/9.85 | -/11.64 | 5.84/22.81 | 5.70/24.23 | 6.67/24.24 | -/25.05 |
Internal Resistance (mΩ) 50% SOC | ||||||||
LIB HESSmin | 91.25 | 547.52 | 273.76 | 7.11 | 14.03 | 14.80 | 16.10 | 3.15 |
SC HESSmin | 1.23 | 2.11 | 3.32 | - | 1.44 | 2.11 | 2.71 | - |
LIB HESSV | 8.17 | 7.93 | 7.93 | - | 3.42 | 3.22 | 3.22 | - |
SC HESSV | 8.64 | 8.45 | 14.95 | - | 8.64 | 16.90 | 29.90 | - |
Characteristic/Profile | Gen1–HEV | Gen3–WLTP | ||||||
---|---|---|---|---|---|---|---|---|
EDLC | LICSHC | LICPHC | ESS | EDLC | LICSHC | LICPHC | ESS | |
LIB bank (xSyP) HESSmin/HESSv | 12S7P/12S86P | 12S2P/12S65P | 12S1P/12S65P | -/12S125P | 12S66P/12S248P | 12S59P/12S272P | 12S60P/12S272P | -/12S284P |
SC bank (xSyP) HESSmin/HESSv | 18S6P/18S2P | 13S6P/13S6P | 13S8P/13S6P | - | 18S5P/18S1P | 13S6P/13S1P | 13S9P/13S1P | - |
Weight (kg) HESSmin/HESSv | 62.35/68.97 | 20.25/56.94 | 28.65/58.50 | -/72.00 | 86.61/152.56 | 53.48/159.92 | 66.15/160.18 | -/163.58 |
Volume (l) HESSmin/HESSv | 43.54/31.58 | 12.25/25.10 | 15.99/25.10 | -/25.50 | 48.56/57.61 | 23.87/57.46 | 30.00/57.46 | -/57.93 |
Capacity (kWh) HESSmin/HESSv | 0.87/8.49 | 0.45/7.04 | 1.40/7.08 | -/15.44 | 6.48/24.50 | 6.38/29.43 | 7.10/29.43 | -/33.39 |
Internal Resistance (mΩ) 50% SOC | ||||||||
LIB HESSmin | 147.23 | 515.33 | 1030 | 8.25 | 15.62 | 17.45 | 17.18 | 3.63 |
SC HESSmin | 1.44 | 2.82 | 3.74 | - | 1.73 | 2.82 | 3.32 | - |
LIB HESSV | 11.98 | 15.86 | 15.86 | - | 4.15 | 3.78 | 3.79 | - |
SC HESSV | 4.32 | 2.82 | 4.98 | - | 8.64 | 16.90 | 29.90 | - |
Characteristic/HESS | LCO-LICSHC | LFPHE-LICSHC | LFPHP-LICSHC | ESS LFPHP | LFPHP-LICSHC | ESS LFPHP |
---|---|---|---|---|---|---|
Gen1–HEV | Gen1–HEV | Gen1–HEV | Gen1–HEV | Gen3–WLTP | Gen3–WLTP | |
LIB bank (xSyP) | 12S2P | 14S1P | 14S2P | 14S23P | 14S12P | 14S53P |
SC bank (xSyP) | 13S6P | 13S8P | 13S4P | - | 13S4P | - |
Weight (kg) | 20.25 | 27.19 | 15.10 | 24.47 | 25.60 | 56.39 |
Volume (l) | 12.25 | 16.29 | 8.90 | 11.59 | 13.90 | 26.71 |
Capacity (kWh) | 0.45 | 0.49 | 0.41 | 2.90 | 1.43 | 6.36 |
Internal Resistance (mΩ) 50% SOC | ||||||
LIB | 515.33 | 547.52 | 187.21 | 16.28 | 31.20 | 7.06 |
SC | 2.82 | 2.11 | 4.22 | - | 4.22 | - |
Characteristic | Gen1 [1] | Gen3 [2,11,18] |
---|---|---|
Maximum weight (kg) | <8 | <40 |
Maximum power (kW) | 11 | 25 |
Energy (kWh) | 0.3 | 1–5 |
Energy density (Whkg−1) * | 37.5 | 25–125 |
P/E ratio * | 37 | 25–5 |
Campaign | Number of Errors | Voltage (%) | Current (%) |
---|---|---|---|
CM | 6 | 1.95 | - |
C2C | 12 | 2.94 | 6.33 |
S2S | 4 | 3.44 | 7.42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grün, T.; Doppelbauer, M. Comparative Concept Study of Passive Hybrid Energy Storage Systems in 48 V Mild Hybrid Vehicles Varying Lithium-Ion Battery and Supercapacitor Technologies. World Electr. Veh. J. 2019, 10, 71. https://doi.org/10.3390/wevj10040071
Grün T, Doppelbauer M. Comparative Concept Study of Passive Hybrid Energy Storage Systems in 48 V Mild Hybrid Vehicles Varying Lithium-Ion Battery and Supercapacitor Technologies. World Electric Vehicle Journal. 2019; 10(4):71. https://doi.org/10.3390/wevj10040071
Chicago/Turabian StyleGrün, Thorsten, and Martin Doppelbauer. 2019. "Comparative Concept Study of Passive Hybrid Energy Storage Systems in 48 V Mild Hybrid Vehicles Varying Lithium-Ion Battery and Supercapacitor Technologies" World Electric Vehicle Journal 10, no. 4: 71. https://doi.org/10.3390/wevj10040071
APA StyleGrün, T., & Doppelbauer, M. (2019). Comparative Concept Study of Passive Hybrid Energy Storage Systems in 48 V Mild Hybrid Vehicles Varying Lithium-Ion Battery and Supercapacitor Technologies. World Electric Vehicle Journal, 10(4), 71. https://doi.org/10.3390/wevj10040071