A Space Vector Based Zero Common-Mode Voltage Modulation Method for a Modular Multilevel Converter
Abstract
:1. Introduction
2. MMC Mathematical Model and Control Strategy
2.1. MMC Topology
2.2. MMC Mathematical Model
2.3. CMV Mathematical Model
3. Suppression Strategy of CMV Based on Zero CMV Vector Selection
3.1. Analysis of Conventional Five-Level SVPWM CMV
3.2. Conventional Five-Level SVPWM
3.3. Zero Common Mode Voltage SVPWM (0CMV-SVPWM)
3.4. The Algorithm of MMC Capacitor Voltage Balancing
4. Experimental Verification and Analysis
4.1. Analysis of Common Mode Voltage
4.2. Analysis of SM’s Capacitor Voltage
4.3. Output Quality and Operational State Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marquardt, R. A new modular voltage source inverter topology. In Proceedings of the European Power Electronics Conference, Toulous, Frarance, 2–4 September 2003. [Google Scholar]
- Martinez-Rodrigo, F.; Ramirez, D.; Rey-Boue, A.B.; De Pablo, S.; Herrero-de Lucas, L.C. Modular Multilevel Converters: Control and Applications. Energies 2017, 10, 1709. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xu, X.; Pan, W.; Xu, S. Impedance Modeling and Analysis of Series-Connected Modular Multilevel Converter (MMC) and its Comparative Study With Conventional MMC for HVDC Applications. IEEE Trans. Power Deliv. 2022, 37, 3270–3281. [Google Scholar] [CrossRef]
- Teng, J.X.; Sun, X.F.; Zhang, Y.R. Two Types of Common-Mode Voltage Suppression in Medium Voltage Motor Speed Regulation System Based on Solid State Transformer With Dual DC Bus. IEEE Trans. Power Electron. 2022, 37, 7082–7099. [Google Scholar] [CrossRef]
- Seo, I.K.; Belaynehn, N.B.; Park, C.H. A study of common mode voltage generation according to modulation methods and reduction strategies on MMC system. IEEE Energy Convers. Congr. Expo. 2018, 23, 3988–3995. [Google Scholar]
- Sun, T.; Pei, X.; Shan, Y. Submodule Switching-State Based EMI Modeling and Mixed-Mode EMI Phenomenon in MMC. IEEE Trans. Power Electron. 2022, 38, 1831–1843. [Google Scholar] [CrossRef]
- Liang, G. Predictive Analysis for Radiated Electromagnetic Disturbance in MMC-HVDC Valve Hall. CPSS Trans. Power Electron. Appl. 2020, 5, 126–134. [Google Scholar] [CrossRef]
- Ji, S.; Palmer, J.; Huang, X. Impact of submodule voltage sensor noise in 10 kV SiC MOSFET modular multilevel converters (MMCs) under high dv/dt environment. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition, New Orleans, LA, USA, 15–19 March 2020; pp. 1089–1093. [Google Scholar]
- Gryzlov, A.A.; Grigor’Ev, M.A. Improving the Reliability of Relay-Protection and Automatic Systems of Electric-Power Stations and Substations. Russ. Electr. Eng. 2018, 89, 245–248. [Google Scholar] [CrossRef]
- Zhou, Y.; Nian, H. Current Zero-Crossing Duration Reduction of a Semicontrolled Open-Winding PMSG System Based on Third Harmonic Current Injection. IEEE Trans. Ind. Electron. 2016, 63, 750–760. [Google Scholar] [CrossRef]
- Karampuri, R.; Jain, S.; Somasekhar, V.T. Sample-averaged zero-sequence current elimination PWM technique for five-phase induction motor with opened stator windings. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 6, 864–873. [Google Scholar] [CrossRef]
- Hota, A.; Jain, S.; Agarwal, V. A Modified T-Structured Three-Level Inverter Configuration Optimized With Respect to PWM Strategy Used for Common-Mode Voltage Elimination. IEEE Trans. Ind. Appl. 2017, 53, 4779–4787. [Google Scholar] [CrossRef]
- Li, X.; Xing, X.; Zhang, C. Simultaneous common-mode resonance circulating current and leakage current suppression for transformerless three-level T-type PV inverter system. IEEE Trans. Ind. Electron. 2018, 66, 4457–4467. [Google Scholar] [CrossRef]
- Du, S.; Wu, B.; Zargari, N. Common-mode voltage minimization for grid-tied modular multilevel converter. IEEE Trans. Ind. Electron. 2018, 66, 7480–7487. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Yang, Z. Common-Mode Voltage Reduction of Modular Multilevel Converter Based on Chaotic Carrier Phase Shifted Sinusoidal Pulse Width Modulation. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity, Reno, NV, USA, 28 July–28 August 2020; pp. 626–631. [Google Scholar]
- Wang, J.; Li, H.; Wang, Z. A Novel Common-Mode Voltage Reduction Method of MMC: Pulse Sequential Connection Carrier Phase-Shifted SPWM. In Proceedings of the IEEE International Joint EMC/SI/PI and EMC Europe Symposium, Raleigh, NC, USA, 26 July–13 August 2021; pp. 89–93. [Google Scholar]
- Chen, J.; Jiang, D.; Sun, W.; Pei, X. Common-Mode Voltage Reduction Scheme for MMC With Low Switching Frequency in AC–DC Power Conversion System. IEEE Trans. Ind. Inform. 2022, 18, 278–287. [Google Scholar] [CrossRef]
State | T1 | T2 | Arm Current Direction | Output Voltage | Capacitance State |
---|---|---|---|---|---|
input | 1 | 0 | + | vc | charge |
1 | 0 | − | vc | discharge | |
removal | 0 | 1 | + | 0 | bypass |
0 | 1 | − | 0 | bypass | |
blocking | 0 | 0 | + | 0 | charge |
0 | 0 | − | 0 | bypass |
vcmv | Number |
---|---|
0 | 19 |
±Vdc/12 | 36 |
±2Vdc/12 | 30 |
±3Vdc/12 | 20 |
±4Vdc/12 | 12 |
±5Vdc/12 | 6 |
±6Vdc/12 | 2 |
Sector | The Action Order of Synthetic Vector |
---|---|
① | 321-222-231-231-222-321 |
② | 321-222-312-312-222-321 |
③ | 321-312-411-411-312-321 |
④ | 321-231-330-330-231-321 |
⑤ | 321-411-420-420-411-321 |
⑥ | 321-330-420-420-330-321 |
n | Tx | Ty | Tz |
---|---|---|---|
① | (1/3Vg* + 2/3Vh*)·Ts | (1 − 2/3Vg* − 1/3Vh*)·Ts | (1/3Vg* − 1/3Vh*)·Ts |
② | (2/3Vg* + 1/3Vh*)·Ts | (1 − 1/3Vg* − 2/3Vh*)·Ts | (−1/3Vg* + 1/3Vh*)·Ts |
③ | (1 − 1/3Vg* + 1/3Vh*)·Ts | (−1/3Vg* − 2/3Vh* + 1)·Ts | (2/3Vg* + 1/3Vh* − 1)·Ts |
④ | (1 + 1/3Vg* − 1/3Vh*)·Ts | (−2/3Vg* − 1/3Vh* − 1)·Ts | (1/3Vg* + 2/3Vh* − 1)·Ts |
⑤ | (2 − 2/3Vg* − 1/3Vh*)·Ts | (1/3Vg* − 1/3Vh*)·Ts | (2/3Vg* + 2/3Vh* − 1)·Ts |
⑥ | (2 − 1/3Vg* − 2/3Vh*)·Ts | (1/3Vg* + 1/3Vh*)·Ts | (2/3Vg* + 1/3Vh* − 1)·Ts |
Parameters | Value |
---|---|
DC voltage/Vdc | 200 V |
Number of SMs/N | 4 |
SM’s capacitance/C | 5.04 mF |
Arm inductors/Lm | 5 mH |
Control period/Ts | 0.5 ms |
Fundamental frequency/f | 50 Hz |
Modulation index/m | 0.3~0.85 |
Load resistance/R | 5 Ω |
Load inductance/L | 9.45 mH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Wang, S.; Li, C.; Li, X.; Gu, X. A Space Vector Based Zero Common-Mode Voltage Modulation Method for a Modular Multilevel Converter. World Electr. Veh. J. 2023, 14, 53. https://doi.org/10.3390/wevj14020053
Zhang G, Wang S, Li C, Li X, Gu X. A Space Vector Based Zero Common-Mode Voltage Modulation Method for a Modular Multilevel Converter. World Electric Vehicle Journal. 2023; 14(2):53. https://doi.org/10.3390/wevj14020053
Chicago/Turabian StyleZhang, Guozheng, Shuo Wang, Chen Li, Xinmin Li, and Xin Gu. 2023. "A Space Vector Based Zero Common-Mode Voltage Modulation Method for a Modular Multilevel Converter" World Electric Vehicle Journal 14, no. 2: 53. https://doi.org/10.3390/wevj14020053
APA StyleZhang, G., Wang, S., Li, C., Li, X., & Gu, X. (2023). A Space Vector Based Zero Common-Mode Voltage Modulation Method for a Modular Multilevel Converter. World Electric Vehicle Journal, 14(2), 53. https://doi.org/10.3390/wevj14020053