Research on the Synchronization Control Strategy of Regenerative Braking of Distributed Drive Electric Vehicles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vehicle Dynamics Model
2.2. Modeling of Permanent Magnet Synchronous Motor
- (1)
- Saturation of the electromagnetic core is not considered;
- (2)
- Hysteresis and eddy current losses are neglected.
2.3. Energy Storage System
3. Modeling of Synchronous Control Strategy
3.1. A Ring-Coupled Synchronous Control Strategy with a Current Compensation Module
3.2. Synchronous Control Strategy of Regenerative Braking for Distributed Drive Electric Vehicle
4. Design of Non-Singular Fast Terminal Sliding Mode Control (NSFTSMC)
4.1. Motor Speed Controller
4.2. Design of Speed Synchronization Error Compensation Controller
5. Simulation and Analysis of Results
5.1. Simulation of Speed Controller for In-Wheel Motor
5.2. Simulation of Synchronous Control Strategy of Multi-Motor
5.3. Simulation of Regenerative Braking Synchronous Control
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VCU | Vehicle control unit |
MCU | Motor control unit |
BMS | Battery management system |
RBC | Regenerative brake controller |
HBC | Hydraulic brake controller |
PMSM | Permanent magnet synchronous motor |
FOC | Field-oriented control |
SOC | State of charge |
M-S | Master–slave control strategy |
RCC | Ring-coupling control strategy |
CCRCC | Current compensation ring-coupled control strategy |
NSFTSMC | Non-singular fast terminal sliding mode control |
VUFPID | Variable universe fuzzy proportional-integral-derivative controller |
DASMC | Dual adaptive sliding mode controller |
SMC | Sliding mode controller |
Revolving mass coefficient | |
1/4 vehicle mass [kg] | |
Acceleration of gravity [m/s2] | |
Velocity of the vehicle [km/h] | |
Ground braking force [N] | |
Air resistance [N] | |
Rolling resistance of vehicle [N] | |
Wheel rotational inertia | |
Rotational angular velocity [r/min] | |
Wheel radius [m] | |
Braking torque [N·m] | |
Air resistance coefficient | |
Windward area of the vehicle [m2] | |
Rolling resistance coefficient | |
Braking force coefficient | |
Ground normal reaction force [N] | |
Stator voltages in the d-axis and q-axis [V] | |
Currents in the d-axis and q-axis [A] | |
Magnetic chains in the d-axis and q-axis [Wb] | |
Inductances in the d-axis and q-axis [H] | |
Stator resistance [ohm] | |
Mechanical angular velocity of the rotor [r/min] | |
Permanent magnet chain [Wb] | |
Motor output torque [N·m] | |
Moment of inertia [kg·m2] | |
Electromagnetic torque [kg·m2] | |
Load torque [kg·m2] | |
Viscous friction coefficient [N·m·s] | |
Pole pair | |
Tracking speed error [r/min] | |
Output speed [r/min] | |
Ideal speed [r/min] | |
Synchronization error [r/min] | |
Dynamic errors | |
Current compensation required to eliminate speed synchronization errors [A] | |
Speed synchronization error [r/min] |
References
- Verma, S.; Mishra, S.; Gaur, A.; Chowdhury, S.; Mohapatra, S.; Dwivedi, G.; Verma, P. A comprehensive review on energy storage in hybrid electric vehicle. J. Traffic Transp. Eng. 2021, 8, 621–637. [Google Scholar] [CrossRef]
- Chen, T.; Xu, X.; Chen, L.; Jiang, H.; Cai, Y.; Li, Y. Estimation of longitudinal force, lateral vehicle speed and yaw rate for four-wheel independent driven electric vehicles. Mech. Syst. Signal Process. 2018, 101, 377–388. [Google Scholar] [CrossRef]
- Zhai, L.; Sun, T.; Wang, J. Electronic Stability Control Based on Motor Driving and Braking Torque Distribution for a Four In-Wheel Motor Drive Electric Vehicle. IEEE Trans. Veh. Technol. 2016, 65, 4726–4739. [Google Scholar] [CrossRef]
- Liang, J.; Feng, J.; Fang, Z.; Lu, Y.; Yin, G.; Mao, X. An energy-oriented torque-vector control framework for distributed drive electric vehicles. IEEE Trans. Transp. Electrif. 2023, 9, 4014–4031. [Google Scholar] [CrossRef]
- Liang, J.; Feng, J.; Lu, Y.; Yin, G.; Zhuang, W.; Mao, X. A direct yaw moment control framework through robust TS fuzzy approach considering vehicle stability margin. IEEE/ASME Trans. Mechatron. 2023, 29, 166–178. [Google Scholar] [CrossRef]
- Liang, J.; Tian, Q.; Feng, J.; Pi, D.; Yin, G. A polytopic model-based robust predictive control scheme for path tracking of autonomous vehicles. IEEE Trans. Intell. Veh. 2023, 9, 3928–3939. [Google Scholar] [CrossRef]
- Liang, J.; Lu, Y.; Yin, G.; Fang, Z.; Zhuang, W.; Ren, Y. A distributed integrated control architecture of AFS and DYC based on MAS for distributed drive electric vehicles. IEEE Trans. Veh. Technol. 2021, 70, 5565–5577. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, J.; Zhuang, W.; Yin, G.; Feng, J.; Zhou, C. Four-Wheel Independent Drive Vehicle Fault Tolerant Strategy Using Stochastic Model Predictive Control With Model Parameter Uncertainties. IEEE Trans. Veh. Technol. 2023, 73, 3287–3299. [Google Scholar] [CrossRef]
- Peng, H.; Wang, W.; Xiang, C.; Li, L.; Wang, X. Torque Coordinated Control of Four In-Wheel Motor Independent-Drive Vehicles With Consideration of the Safety and Economy. IEEE Trans. Veh. Technol. 2019, 68, 9604–9618. [Google Scholar] [CrossRef]
- Deng, Z.; Dong, Z. Research on Stability Simulation for Four-Wheel Independent Steering Electric Vehicle. Adv. Mater. Res. 2012, 512–515, 2657–2661. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, S.; Ren, H.; Gao, Z.; Liu, Z. Path tracking and handling stability control strategy with collision avoidance for the autonomous vehicle under extreme conditions. IEEE Trans. Veh. Technol. 2020, 69, 14602–14617. [Google Scholar] [CrossRef]
- Niu, F.; Sun, K.; Huang, S.; Hu, Y.; Liang, D.; Fang, Y. A review on multimotor synchronous control methods. IEEE Trans. Transp. Electrif. 2022, 9, 22–33. [Google Scholar] [CrossRef]
- Lan, C.-Y.; Wang, H.; Deng, X.; Zhang, X.-F.; Song, H. Multi-motor position synchronization control method based on non-singular fast terminal sliding mode control. PLoS ONE 2023, 18, e0281721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Xia, Y.; Chen, Y.; Li, H.; Feng, Z. Study of Multi-motor Synchronous Operation Based on Sliding Mode Virtual Spindle Adjacent Cross-coupling Control. Acad. J. Sci. Technol. 2024, 9, 59–65. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, Y.; Wang, Y. Research on a Multi-Motor Coordinated Control Strategy Based on Fuzzy Ring Network Control. IEEE Access 2020, 8, 39375–39388. [Google Scholar] [CrossRef]
- Liu, D.; Song, C.; Du, M.; Chen, G.; Liu, P. Research on self-coupling PID for multi-driven synchronization control with ring adjacent compensation. Meas. Control 2024, 57, 291–300. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, Z.; Zhang, G.; Geng, Q. Cooperative Control for Dual Permanent Magnet Motor System with Unified Nonlinear Predictive Control. World Electr. Veh. J. 2021, 12, 266. [Google Scholar] [CrossRef]
- Mu, Y.; Qi, L.; Sun, M.; Han, W. An Improved Deviation Coupling Control Method for Speed Synchronization of Multi-Motor Systems. Appl. Sci. 2024, 14, 5300. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, M.; Zhang, R.; Zhu, X.; Yang, L.; Guo, X.; Cai, B. A new synchronous control method for dual motor electric vehicle based on cognitive-inspired and intelligent interaction. Future Gener. Comput. Syst. 2019, 94, 536–548. [Google Scholar] [CrossRef]
- Zou, S.; Zhao, W.; Wang, C.; Liang, W.; Chen, F. Tracking and synchronization control strategy of vehicle dual-motor steer-by-wire system via active disturbance rejection control. IEEE/ASME Trans. Mechatron. 2022, 28, 92–103. [Google Scholar] [CrossRef]
- Huang, H.; Tu, Q.; Jiang, C.; Pan, M.; Zhu, C. An Electronic Line-Shafting Control Strategy Based on Sliding Mode Observer for Distributed Driving Electric Vehicles. IEEE Access 2021, 9, 38221–38235. [Google Scholar] [CrossRef]
- Cocron, P.; Neumann, I.; Kreusslein, M.; Wanner, D.; Bierbach, M.; Krems, J.F. Regenerative braking failures in battery electric vehicles and their impact on the driver. Appl Erg. 2018, 71, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Salari, A.H.; Mirzaeinejad, H.; Mahani, M.F. A new control algorithm of regenerative braking management for energy efficiency and safety enhancement of electric vehicles. Energy Convers. Manag. 2023, 276, 116564. [Google Scholar] [CrossRef]
- Satzger, C.; de Castro, R. Predictive brake control for electric vehicles. IEEE Trans. Veh. Technol. 2017, 67, 977–990. [Google Scholar] [CrossRef]
- Geraee, S.; Mohammadbagherpoor, H.; Shafiei, M.; Valizadeh, M.; Montazeri, F.; Feyzi, M.R. Regenerative braking of electric vehicle using a modified direct torque control and adaptive control theory. Comput. Electr. Eng. 2018, 69, 85–97. [Google Scholar] [CrossRef]
- Youssef, O.E.M.; Hussien, M.G.; El-Wahab Hassan, A. A Robust Regenerative-Braking Control of Induction Motors for EVs Applications. Int. Trans. Electr. Energy Syst. 2024, 2024, 5526545. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, R.; Wang, L.; Zhang, J. Novel PMSM Control for Anti-Lock Braking Considering Transmission Properties of the Electric Vehicle. IEEE Trans. Veh. Technol. 2018, 67, 10378–10386. [Google Scholar] [CrossRef]
- Wang, J.C.; He, R.; Kim, Y.B. Optimal Anti-Lock Braking Control With Nonlinear Variable Voltage Charging Scheme for an Electric Vehicle. IEEE Trans. Veh. Technol. 2020, 69, 7211–7222. [Google Scholar] [CrossRef]
- Zhang, R.; Feng, Y.; Shi, P.; Zhao, L.; Du, Y.; Liu, Y. Tire-Road Friction Coefficient Estimation for Distributed Drive Electric Vehicles Using PMSM Sensorless Control. IEEE Trans. Veh. Technol. 2023, 72, 8672–8685. [Google Scholar] [CrossRef]
- Shi, P.; Sun, W.; Yang, X.; Rudas, I.J.; Gao, H. Master-Slave Synchronous Control of Dual-Drive Gantry Stage With Cogging Force Compensation. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 216–225. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, M.; Li, S. Multi-PMSM adjacent cross-coupling iterative learning synchronisation control. Int. J. Veh. Des. 2024, 94, 177–190. [Google Scholar] [CrossRef]
- Zhang, Y.; An, Y.; Wang, G.; Kong, X. Multi motor neural PID relative coupling speed synchronous control. Arch. Electr. Eng. 2020, 69, 69–88. [Google Scholar]
- Zhu, C.; Tu, Q.; Jiang, C.; Pan, M.; Huang, H.; Tu, Z. Mean deviation coupling control for multimotor system via global fast terminal sliding mode control. Adv. Math. Phys 2021, 2021, 9200267. [Google Scholar] [CrossRef]
- Hao, Y.; Zhao, Y. Research on coupling control of multiple permanent magnet synchronous motors based on NAISMC and SMDO. PLoS ONE 2023, 18, e0292913. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yu, Y.; Xiao, C.; Wang, B. SPMSM sensorless control of a new non-singular fast terminal sliding mode speed controller. Syst. Sci. Control Eng. 2021, 9 (Suppl. 2), 102–111. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, L.; Chen, Z. An improved sliding mode control method to increase the speed stability of permanent magnet synchronous motors. Energies 2022, 15, 6313. [Google Scholar] [CrossRef]
- Li, L.; Sun, L.; Zhang, S.; Yang, Q.Q. Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control. ISA Trans. 2015, 58, 635–649. [Google Scholar] [CrossRef]
- Kewei, S.; Zhang, Z.; Wang, H.; Hui, F. Online self-adaptive proportional-integral-derivative control for brushless DC motor based on variable universe fuzzy inference system optimized by genetic algorithm. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 5127–5142. [Google Scholar] [CrossRef]
- Tran, H.; Jeon, J. Robust speed controller using dual adaptive sliding mode control (DA-SMC) method for PMSM drives. IEEE Access 2023, 11, 63261–63270. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, L.; Ji, W. Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives. IEEE Trans. Transp. Electrif. 2021, 7, 2753–2762. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Mass of the vehicle | M | 325 kg |
Air resistance coefficient | CD | 0.3 |
Revolving mass coefficient | δ | 1.05 |
Rolling resistance coefficient | f | 0.018 |
Windward area of the vehicle | A | 2.05 m2 |
Wheel radius | r | 0.317 m |
Parameter | Symbol | Value |
---|---|---|
Stator resistance | 2.875 ohm | |
Inductances | 0.0085 H | |
Permanent magnet chain | 0.175 Wb | |
Moment of inertia | 0.003 kg·m2 | |
Viscous friction coefficient | 0.008 N·m·s | |
Pole pair | 4 |
Parameter | Value | Unit |
---|---|---|
Nominal voltage (V) | 72 | V |
Rated capacity (Ah) | 20 | Ah |
Fully charged voltage (V) | 90 | V |
Internal resistance (Ohms) | 0.013 | Ohms |
Initial state of charge (%) | 80 | % |
Nominal voltage (V) | 72 | V |
Types | Advantages | Disadvantages |
---|---|---|
Master command control | Simple structure and high applicability | The motors are independent of each other and are too poorly synchronized |
Master–slave (M-S) control | The main motor can control the rest of the motors and keep them synchronized | The master motor is unable to react and compensate when the slave motors are out of synchronization |
Cross-coupling control | Coupling between motors, changes in individual motors can be fed back to the entire multi-motor system | Poor dynamic compensation and general synchronization between motors |
Relative-coupling control | The motor’s error can be fed back to the two neighboring motors, making the error compensation more accurate | Slow compensation for the rest of the motor and only applicable to systems with more than three motors |
Deviation-coupling control | Efficient feedback and compensation for errors in any motor | Very complex calculations and long feedback times |
Ring-coupling control | Unidirectional ring transfer reduces the amount of computation | Time delays in error transmission are more severe |
Current compensation ring-coupled control | Reduces compensation latency problems and improves error compensation accuracy | Need for fast response, high control accuracy and anti-stability controllers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, R.; Xie, Y. Research on the Synchronization Control Strategy of Regenerative Braking of Distributed Drive Electric Vehicles. World Electr. Veh. J. 2024, 15, 512. https://doi.org/10.3390/wevj15110512
He R, Xie Y. Research on the Synchronization Control Strategy of Regenerative Braking of Distributed Drive Electric Vehicles. World Electric Vehicle Journal. 2024; 15(11):512. https://doi.org/10.3390/wevj15110512
Chicago/Turabian StyleHe, Ren, and Yukun Xie. 2024. "Research on the Synchronization Control Strategy of Regenerative Braking of Distributed Drive Electric Vehicles" World Electric Vehicle Journal 15, no. 11: 512. https://doi.org/10.3390/wevj15110512
APA StyleHe, R., & Xie, Y. (2024). Research on the Synchronization Control Strategy of Regenerative Braking of Distributed Drive Electric Vehicles. World Electric Vehicle Journal, 15(11), 512. https://doi.org/10.3390/wevj15110512