RBCKF-Based Vehicle State Estimation by Adaptive Weighted Fusion Strategy Considering Composite-State Tire Model
Abstract
:1. Introduction
2. Vehicle Model
2.1. Vehicle Dynamic Model
2.2. Nonlinear Tire Model
3. Robust Bias Compensation-Based Kalman Filter for Vehicle State Estimation
3.1. Robust Pseudolinear Kalman Filter
3.2. Overall Estimation Method and Strategy
3.3. Weight Function
4. Adaptive Weighted Fusion Strategy Considering Composite-State Tire Model
4.1. Vehicle State Observer Considering Linear Tire Model
4.2. Vehicle State Observer Considering Nonlinear Tire Model
4.3. Adaptive-Weight-Based Fusion Strategy Considering Composite-State Tire Model
5. Simulation Verification
5.1. Validation of RBCKF Algorithm
5.2. Validation of Fusion Estimation Strategy
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
EKF | extended Kalman filtering |
RBCKF | robust bias compensation Kalman filter |
LTM | linear tire model |
NLTM | nonlinear tire model |
v | longitudinal vehicle speed |
u | lateral vehicle speed |
vehicle yaw rate | |
m | vehicle mass |
Iz | vehicle moment of inertia |
Df/Dr | distances from the vehicle’s mass center to the front/rear axles |
Tyf/Tyr | lateral forces of the front/rear axle tires |
lateral stiffness of the front/rear tires | |
lateral sideslip angles of front/rear tires | |
nominal tire sideslip angle | |
δf | front-wheel steering angle |
θ | vehicle sideslip angle |
θn | vehicle sideslip angle of NLTM-based observer |
θl | vehicle sideslip angle of LTM-based observer |
θf | Fusion estimation result of vehicle sideslip angle |
ax/ay | longitudinal/lateral accelerations of vehicle |
stiffness coefficient | |
curve shape coefficient | |
peak coefficient | |
curve curvature coefficient | |
Fzfl/Fzfr/Fzrl/Fzrr | vertical tire forces of the left-front/right-front/left-rear/right-rear tires |
h | height of vehicle gravity center |
g | gravity acceleration |
References
- Alcala, E.; Puig, V.; Quevedo, J.; Escobet, T.; Comasolivas, R. Autonomous vehicle control using a kinematic Lyapunov-based technique with LQR-LMI tuning. Control Eng. Pract. 2018, 73, 1–12. [Google Scholar] [CrossRef]
- Chen, T.; Cai, Y.F.; Chen, L.; Xu, X. Trajectory and velocity planning method of emergency rescue vehicle based on segmented three-dimensional quartic Bezier curve. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3461–3475. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, W.; Xu, Z.; Zhou, G. Path planning and stability control of collision avoidance system based on active front steering. Sci. China Technol. Sci. 2017, 60, 1231–1243. [Google Scholar] [CrossRef]
- Cheli, F.; Braghin, F.; Brusarosco, M.; Mancosu, F.; Sabbioni, E. Design and testing of an innovative measurement device for tyre-road contact forces. Mech. Syst. Signal Process. 2011, 25, 1956–1972. [Google Scholar] [CrossRef]
- Madhusudhanan, A.K.; Corno, M.; Holweg, E. Vehicle sideslip estimator using load sensing bearings. Control Eng. Pract. 2016, 54, 46–57. [Google Scholar] [CrossRef]
- Chen, T.; Cai, Y.F.; Chen, L.; Xu, X. Sideslip angle fusion estimation method of three-axis autonomous vehicle based on composite model and adaptive cubature Kalman filter. IEEE Trans. Transp. Electrif. 2024, 10, 316–330. [Google Scholar] [CrossRef]
- Liu, W.; He, H.W.; Sun, F.C. Vehicle state estimation based on minimum model error criterion combining with extended Kalman filter. J. Frankl. Inst. 2016, 353, 834–856. [Google Scholar] [CrossRef]
- Zhu, J.J.; Wang, Z.P.; Zhang, L.; Zhang, W.L. State and parameter estimation based on a modified particle filter for an in-wheel-motor-drive electric vehicle. Mech. Mach. Theory 2019, 133, 606–624. [Google Scholar] [CrossRef]
- Chen, T.; Chen, L.; Xu, X.; Cai, Y.F.; Sun, X.Q. Simultaneous path following and lateral stability control of 4WD-4WS autonomous electric vehicles with actuator saturation. Adv. Eng. Softw. 2019, 128, 46–54. [Google Scholar] [CrossRef]
- Yang, C.; Gao, Y.; Wang, W.; Zhang, Y.; Li, Y.; Wang, X.; Zhao, X. A synergistic predictive fusion control method and application for steering feel feedback of steer-by-wire system. IEEE Trans. Transport. Electrif. 2023, 9, 293–310. [Google Scholar] [CrossRef]
- Leng, B.; Jin, D.; Xiong, L.; Yang, X.; Yu, Z.P. Estimation of tire-road peak adhesion coefficient for intelligent electric vehicles based on camera and tire dynamics information fusion. Mech. Syst. Signal Process. 2021, 150, 107275. [Google Scholar] [CrossRef]
- Xia, X.; Xiong, L.; Lu, Y.S.; Gao, L.T.; Yu, Z.P. Vehicle sideslip angle estimation by fusing inertial measurement unit and global navigation satellite system with heading alignment. Mech. Syst. Signal Process. 2021, 150, 107290. [Google Scholar] [CrossRef]
- Song, R.; Fang, Y.C. Vehicle state estimation for INS/GPS aided by sensors fusion and SCKF-based algorithm. Mech. Syst. Signal Process. 2021, 150, 107315. [Google Scholar] [CrossRef]
- Liu, Y.H.; Li, T.; Yang, Y.Y.; Ji, X.W.; Wu, J. Estimation of tire-road friction coefficient based on combined APF-IEKF and iteration algorithm. Mech. Syst. Signal Process. 2017, 88, 25–35. [Google Scholar] [CrossRef]
- Dell’Annunziata, N.G.; Arricale, V.M.; Farroni, F.; Genovese, A.; Pasquino, N.; Tranquillo, G. Estimation of vehicle longitudinal velocity with artificial neural network. Sensors 2022, 22, 9516. [Google Scholar] [CrossRef]
- Carputo, F.; D’Andrea, D.; Risitano, G.; Sakhnevych, A.; Santonocito, D.; Farroni, F. A neural-network-based methodology for the evaluation of the center of gravity of a motorcycle rider. Vehicles 2021, 3, 377–389. [Google Scholar] [CrossRef]
- D’Andrea, D.; Cucinotta, F.; Farroni, F.; Risitano, G.; Santonocito, D.; Scappaticci, L. Development of machine learning algorithms for the determination of the centre of mass. Symmetry 2021, 13, 401. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Xie, W.; Zhao, Q.; Lin, F. Hierarchical estimation of vehicle state and tire forces for distributed in-wheel motor drive electric vehicle without previously established tire model. J. Frankl. Inst. 2022, 359, 7051–7068. [Google Scholar] [CrossRef]
- Genovese, A.; D’Angelo, G.A.; Sakhnevych, A.; Farroni, F. Review on friction and wear test rigs: An overview on the state of the art in tyre tread fiction evaluation. Lubricants 2020, 8, 91. [Google Scholar] [CrossRef]
- Berntorp, K.; Cairano, S.D. Tire-stiffness and vehicle-state estimation based on noise-adaptive particle filtering. IEEE Trans. Control Syst. Technol. 2019, 27, 1100–1114. [Google Scholar] [CrossRef]
- Mosconi, L.; Farroni, F.; Sakhnevych, A.; Timpone, F.; Gerbino, F.S. Adaptive vehicle dynamics state estimator for onboard automotive applications and performance analysis. Veh. Syst. Dyn. 2022, 61, 3244–3268. [Google Scholar] [CrossRef]
- Chen, T.; Chen, L.; Xu, X.; Cai, Y.F.; Jiang, H.B.; Sun, X.Q. Passive fault-tolerant path following control of autonomous distributed drive electric vehicle considering steering system fault. Mech. Syst. Signal Process. 2019, 123, 298–315. [Google Scholar] [CrossRef]
- Duran, O.; Turan, B. Vehicle-to-vehicle distance estimation using artificial neural network and a toe-in-style stereo camera. Measurement 2023, 190, 110732. [Google Scholar] [CrossRef]
- Xu, N.; Tang, Z.P.; Askari, H.; Zhou, J.F.; Khajepour, A. Direct tire slip ratio estimation using intelligent tire system and machine learning algorithms. Mech. Syst. Signal Process. 2022, 175, 109085. [Google Scholar] [CrossRef]
- Chen, H.; Lou, S.H.; Lv, C. Hybrid physics-data-driven online modelling: Framework, methodology and application to electric vehicles. Mech. Syst. Signal Process. 2023, 185, 109791. [Google Scholar] [CrossRef]
- Woongsun, J.; Ankush, C.; Ali, Z.; Rajesh, R. Simultaneous state estimation and tire model learning for autonomous vehicle applications. IEEE/ASME Trans. Mechatron. 2021, 26, 1941–1950. [Google Scholar]
- Chen, T.; Cai, Y.F.; Chen, L.; Xu, X.; Sun, X.Q. Trajectory tracking control of steer-by-wire autonomous ground vehicle considering the complete failure of vehicle steering motor. Simul. Model. Pract. Theory 2021, 109, 102235. [Google Scholar] [CrossRef]
- Ding, X.L.; Wang, Z.P.; Zhang, L. Event-triggered vehicle sideslip angle estimation based on low-cost sensors. IEEE Trans. Ind. Inform. 2022, 18, 4466–4476. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Fioravanti, A.R.; Moutinho, A.; Paiva, E.C. Nonlinear state-feedback design for vehicle lateral control using sum-of-squares programming. Veh. Syst. Dyn. 2022, 60, 743–769. [Google Scholar] [CrossRef]
- Genovese, A.; Garofano, D.; Sakhnevych, A.; Timpone, F.; Farroni, F. Static and dynamic analysis of non-pneumatic tires based on experimental and numerical methods. Appl. Sci. 2021, 11, 11232. [Google Scholar] [CrossRef]
- Farroni, F.; Mancinelli, N.; Timpone, F. A real-time thermal model for the analysis of tire/road interaction in motorcycle applications. Appl. Sci. 2020, 10, 1604. [Google Scholar] [CrossRef]
- Li, Q.; He, H.; Chen, X.; Gao, J. Learning-based vehicle state estimation using Gaussian process regression combined with extended Kalman filter. J. Frankl. Inst. 2024, 361, 106907. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Lou, S.; Lv, C. Interacting multiple model-based ETUKF for efficient state estimation of connected vehicles with V2V communication. Green Energy Intell. Transp. 2023, 2, 100044. [Google Scholar] [CrossRef]
- Zhao, J.; Xiao, Y.; Liang, Z.; Wong, P.K.; Xie, Z.; Ma, X. Adaptive event-triggered interval type-2 T-S fuzzy control for lateral dynamic stabilization of AEVs with intermittent measurements and actuator failure. IEEE Trans. Transport. Electrif. 2023, 9, 254–265. [Google Scholar] [CrossRef]
- Ding, X.L.; Wang, Z.P.; Zhang, L.; Wang, C. Longitudinal vehicle speed estimation for four-wheel-independently-actuated electric vehicles based on multi-sensor fusion. IEEE Trans. Veh. Technol. 2020, 69, 12797–12806. [Google Scholar] [CrossRef]
- Jeong, D.; Ko, G.; Choi, S.B. Estimation of sideslip angle and cornering stiffness of an articulated vehicle using a constrained lateral dynamics model. Mechatronics 2022, 85, 102810. [Google Scholar] [CrossRef]
- Boada, B.L.; Boada, M.J.L.; Diaz, V. Vehicle side slip angle measurement based on sensor data fusion using an integrated ANFIS and an Unscented Kalman Filter algorithm. Mech. Syst. Signal Process. 2016, 72, 832–845. [Google Scholar] [CrossRef]
- Chen, T.; Chen, L.; Cai, Y.F.; Xu, X. Estimation of vehicle sideslip angle via pseudo-multisensor information fusion method. Metrol. Meas. Syst. 2018, 25, 499–516. [Google Scholar] [CrossRef]
- Jensen, K.M.; Santos, I.F.; Clemmensen, L.K.H.; Theodorsen, S.; Corstens, H.J.P. Mass estimation of ground vehicles based on longitudinal dynamics using IMU and CAN-bus data. Mech. Syst. Signal Process. 2022, 162, 107982. [Google Scholar] [CrossRef]
Algorithm of RBCKF |
---|
(1) Initialization: Set initial state quantity and initial covariance matrix for filtering. (2) Time update: Calculate predicted state value and its covariance matrix . (3) Calculate the innovation vector and its covariance matrix , and then calculate the square of the Mahalanobis distance dimension by dimension. (4) Determine the outlier discrimination value of Mahalanobis distance and the corresponding quantile size, and calculate the corresponding weight coefficients . (5) Update the covariance matrix of the new information, and then update the state and its covariance matrix . (6) Calculate the error of the filter state estimation value and perform state compensation. (7) Repeat steps 2 to 6. |
k | ||||||
T | S | M | L | H | ||
v | T | T | S | M | M | L |
S | T | S | M | L | L | |
M | S | S | M | L | H | |
L | H | M | L | H | H |
Vehicle State | Error | EKF+LTM | RBCKF+LTM | EKF+NLTM | RBCKF+NLTM |
---|---|---|---|---|---|
Yaw rate (deg/s) | eAVE | 1.1736 | 0.7622 | 1.1771 | 0.8386 |
eRMSE | 0.5665 | 0.2968 | 0.5927 | 0.3019 | |
Vehicle sideslip angle (deg) | eAVE | 0.1385 | 0.0634 | 0.1409 | 0.0677 |
eRMSE | 0.3228 | 0.1693 | 0.3479 | 0.1725 |
Vehicle State | Error | EKF+LTM | RBCKF+LTM | EKF+NLTM | RBCKF+NLTM |
---|---|---|---|---|---|
Yaw rate (deg/s) | eAVE | 1.3975 | 1.0682 | 1.1865 | 0.7931 |
eRMSE | 0.6465 | 0.3580 | 0.4988 | 0.2997 | |
Vehicle sideslip angle (deg) | eAVE | 0.3381 | 0.2616 | 0.2903 | 0.2333 |
eRMSE | 0.3677 | 0.2596 | 0.3018 | 0.2109 |
Maneuver | Error | θn (LTM-Based) | θl (NLTM-Based) | θf (Fusion Estimation) |
---|---|---|---|---|
Double lane change | eAVE | 0.0068 | 0.0061 | 0.0034 |
eRMSE | 0.0182 | 0.0159 | 0.0127 | |
Fishhook steering | eAVE | 0.1912 | 0.1753 | 0.0076 |
eRMSE | 0.0754 | 0.0811 | 0.0535 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Cheng, X. RBCKF-Based Vehicle State Estimation by Adaptive Weighted Fusion Strategy Considering Composite-State Tire Model. World Electr. Veh. J. 2024, 15, 517. https://doi.org/10.3390/wevj15110517
Chen X, Cheng X. RBCKF-Based Vehicle State Estimation by Adaptive Weighted Fusion Strategy Considering Composite-State Tire Model. World Electric Vehicle Journal. 2024; 15(11):517. https://doi.org/10.3390/wevj15110517
Chicago/Turabian StyleChen, Xi, and Xinlong Cheng. 2024. "RBCKF-Based Vehicle State Estimation by Adaptive Weighted Fusion Strategy Considering Composite-State Tire Model" World Electric Vehicle Journal 15, no. 11: 517. https://doi.org/10.3390/wevj15110517
APA StyleChen, X., & Cheng, X. (2024). RBCKF-Based Vehicle State Estimation by Adaptive Weighted Fusion Strategy Considering Composite-State Tire Model. World Electric Vehicle Journal, 15(11), 517. https://doi.org/10.3390/wevj15110517