Improvement on Electromagnetic Performance of Axial–Radial Flux Type Permanent Magnet Machines by Optimal Stator Slot Number
Abstract
:1. Introduction
2. Machine Topologies and Operating Principle
3. Winding Configuration and Winding Factor
4. Performance Comparisons
4.1. No-Load Back-EMF
4.2. Cogging Torque
4.3. Flux Regulation
4.4. Average Torque
4.5. Summary of Electromagnetic Performance
5. Experimental Validation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Fan, Y.; Lorenz, R. Design and analysis of a new five-phase brushless hybrid-excitation fault-tolerant machine for electric vehicles. IEEE Trans. Ind. Appl. 2017, 53, 3428–3437. [Google Scholar] [CrossRef]
- Qiu, H.; Yuan, C.; Chen, W.; Ma, X.; Xiong, B. Combined Regulation Performance Research of the Novel Flux-Torque Regulation Hybrid Excitation Machine with Axial-Radial Magnetic Circuit. IEEE Trans. Transp. Electrif. 2022. [Google Scholar] [CrossRef]
- Li, W.; Ching, T.W.; Chau, K.T. A hybrid-excited vernier permanent magnet machine using homopolar topology. IEEE Trans. Magn. 2017, 53, 1–7. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Zhou, Y. Design of hybrid excitation flux switching machine based on air-gap field modulation. In Proceedings of the 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Korea, 31 October–3 November 2021; pp. 1073–1078. [Google Scholar]
- Frederick, B. Hybrid Excited Generator with Flux Control of Consequent-Pole Rotor. U.S. Patent 4,656,379, 4 July 1987. [Google Scholar]
- Kato, T.; Minowa, M.; Hijikata, H.; Akatsu, K.; Lorenz, R.D. Design methodology for variable leakage flux IPM for automobile traction drives. IEEE Trans. Ind. Appl. 2015, 51, 3811–3821. [Google Scholar] [CrossRef]
- Zhou, X.; Buticchi, G.; Migliazza, G.; Wang, S.; Galea, M.; Gerada, C. Review of speed-extension of permanent magnet synchronous motor with reconfigurable-winding system. In Proceedings of the 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), Kyoto, Japan, 20–23 June 2021; pp. 1–6. [Google Scholar]
- Gong, Y.; Chau, K.T.; Jiang, J.Z.; Yu, C.; Li, W. Analysis of doubly salient memory motors using Preisach theory. IEEE Trans. Magn. 2009, 45, 4676–4679. [Google Scholar] [CrossRef]
- Hua, H.; Zhu, Z.Q.; Hua, W.; Zhu, L.; Jiang, S.; Luo, X. Investigation of partitioned stator hybrid excited switched flux machines with different rotor piece numbers. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–5. [Google Scholar]
- Wu, Z.; Fan, Y.; Chen, H.; Wang, X. Electromagnetic force and vibration study of dual-stator consequent-pole hybrid excitation machine for electric vehicles. IEEE Trans Veh. Technol. 2021, 70, 4377–4388. [Google Scholar] [CrossRef]
- Qiu, H.; Ran, Y.; Li, W. Influence of rectifiers on highspeed permanent magnet generator electromagnetic and temperature fields in distributed power generation systems. IEEE Trans. Energy Convers. 2015, 30, 655–662. [Google Scholar]
- Orlowska-Kowalska, T. Fault diagnosis and fault-tolerant control of pmsm drives–state of the art and future challenges. IEEE Access 2022, 10, 59979–60024. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.; Zhang, X. Design and optimization of hybrid excitation synchronous machines with magnetic shunting rotor for electric vehicle traction applications. IEEE Trans. Ind. Appl. 2017, 53, 5252–5261. [Google Scholar] [CrossRef]
- Xu, F. Influence of slot number on Electromagnetic Performance of 2-pole High-Speed Permanent Magnet Motors with Toroidal Windings. IEEE Trans. Ind. Appl. 2021, 57, 6023–6033. [Google Scholar] [CrossRef]
- Geng, H. Performance Optimization Analysis of Hybrid Excitation Generator with the Electromagnetic Rotor and Embedded Permanent Magnet Rotor for Vehicle. IEEE Access 2021, 9, 163640–163653. [Google Scholar] [CrossRef]
- Chau, K.T.; Cheng, M.; Chan, C.C. Nonlinear magnetic circuit analysis for a novel stator doubly fed doubly salient machine. IEEE Trans. Magn. 2002, 38, 2382–2384. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, S.I.; Hong, J.P. Characteristics of PM Synchronous Motors According to Pole-slot Combinations for EPS Applications. Int. J. Automot. Technol. 2014, 15, 1183–1187. [Google Scholar] [CrossRef]
- Islam, M.S.; Mir, S.; Sebastian, T. Issues in reducing the cogging torque of mass-produced permanent-magnet brushless DC motor. IEEE Trans. Ind. Appl. 2004, 40, 813–820. [Google Scholar] [CrossRef]
Parameter | 9-Slot | 12-Slot | 15-Slot |
---|---|---|---|
0.9598 | 0.9659 | 1 | |
0.9848 | 0.9659 | 0.866 | |
0.9452 | 0.933 | 0.866 | |
LCM | 90 | 60 | 30 |
Parameters | Value |
---|---|
Calculation step length (s) | 0.001 |
Mesh elements | 140,000 |
Residual value | 0.005 |
Permanent magnet remanent magnetism (T) | 1.2 |
Permanent magnet coercive force (A/m) | −890,000 |
Parameters | Value |
---|---|
Rated power (kW) | 3.5 |
Rated speed (r/min) | 250 |
Pole number | 10 |
Air-gap length (mm) | 0.5 |
Radial PM length (mm) | 10 |
Radial PM thickness (mm) | 13 |
Radial PM volume (mm3) | 6500 |
Tangential PM volume (mm3) | 10,000 |
Tangential PM length (mm) | 40 |
Tangential PM thickness (mm) | 5 |
Parameter | 9-Slot | 12-Slot | 15-Slot |
---|---|---|---|
Stator outer radius (mm) | 115 | ||
Rotor outer radius (mm) | 69.5 | ||
Air-gap length g (mm) | 0.5 | ||
Stator slot number Z | 9 | 12 | 15 |
Slot body height (mm) | 17.6 | 17.6 | 17.6 |
Slot body bottom width (mm) | 15.75 | 13.8 | 10.5 |
Slot wedge maximum width (mm) | 23.75 | 21.6 | 17.5 |
Performance | 9-Slot | 12-Slot | 15-Slot |
---|---|---|---|
Winding coefficient | 0.945 | 0.933 | 0.866 |
Back-EMF per turn (V) | 61 | 71 | 68 |
Back-EMF amplitude with ±450 AT on FC slots (V) | 83~92 | 96~106 | 93~103 |
Back-EMF amplitude with −900~1800 AT on FC slots (V) | 82~102 | 95~114 | 92~109 |
Peak cogging (mN.m.) | 53 | 312 | 1260 |
Torque maximum (N.m.) | 14 | 22 | 27 |
Cogging cycle number | 10 | 5 | 2 |
Excitation Potential (AT) | Phase No-Load Back-EMF (Phase Voltage) | |
---|---|---|
Measured Data (V) | Calculated Result (V) | |
0 | 73.0 | 71.5 |
375 | 75.9 | 74.2 |
750 | 78.0 | 77.7 |
1050 | 78.8 | 79.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the World Electric Vehicle Association. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, R.; Yuan, C.; Qiu, H.; Gao, W.; Ren, J. Improvement on Electromagnetic Performance of Axial–Radial Flux Type Permanent Magnet Machines by Optimal Stator Slot Number. World Electr. Veh. J. 2024, 15, 535. https://doi.org/10.3390/wevj15110535
Yi R, Yuan C, Qiu H, Gao W, Ren J. Improvement on Electromagnetic Performance of Axial–Radial Flux Type Permanent Magnet Machines by Optimal Stator Slot Number. World Electric Vehicle Journal. 2024; 15(11):535. https://doi.org/10.3390/wevj15110535
Chicago/Turabian StyleYi, Ran, Chunwei Yuan, Hongbo Qiu, Wenhao Gao, and Junyi Ren. 2024. "Improvement on Electromagnetic Performance of Axial–Radial Flux Type Permanent Magnet Machines by Optimal Stator Slot Number" World Electric Vehicle Journal 15, no. 11: 535. https://doi.org/10.3390/wevj15110535
APA StyleYi, R., Yuan, C., Qiu, H., Gao, W., & Ren, J. (2024). Improvement on Electromagnetic Performance of Axial–Radial Flux Type Permanent Magnet Machines by Optimal Stator Slot Number. World Electric Vehicle Journal, 15(11), 535. https://doi.org/10.3390/wevj15110535