Nutritional Consequences of Celiac Disease and Gluten-Free Diet
Abstract
:1. Introduction
2. Nutritional Impairment of CD and Restoration on GFD
2.1. Global Malabsorption
2.2. Specific Deficiencies in CD and Correction in GFD
2.2.1. Iron Deficiency and Anemia
2.2.2. Other Anemias
2.2.3. Coagulopathies Due to Malnutrition
2.2.4. Bone Metabolism Impairment
2.2.5. Neuromyopathies from Nutritional Deficiencies
2.2.6. Electrolyte Deficiencies
2.2.7. Other Vitamin and Mineral Deficiencies and Their Clinical Consequences
2.2.8. Diabetes Mellitus in CD and Metabolic Control on a GFD
2.2.9. Pancreatic Exocrine Deficiency
2.2.10. Gluten-Induced Hepatitis
3. Nutritional Consequences of a GFD
3.1. Nutritional Excesses in GFD and Cardiovascular Risk
3.2. Induced Deficiencies by a GFD
3.3. Dietary Management of the GFD
4. Nutritional Consequences of Physical Activity as a Complement to a GFD
5. Discussion
6. Practical Conclusions
- Screening for CD in high-risk groups, such as individuals with autoimmune diseases, infertile women, and selectively malnourished patients, is recommended.
- A GFD is a nutritionally safe intervention that leads to CD remission in most cases.
- The involvement of an expert dietitian at diagnosis is encouraged to promote dietary adherence and establish a balanced GFD.
- During follow-up, a dietitian can help detect and correct nutritional imbalances.
- Hematological profiles, including iron and folate status, as well as calcium–vitamin D3 balance, should be assessed at diagnosis, monitored during a GFD, and corrected if symptomatic or persistent.
- Persistence of iron deficiency is common, often due to low iron intake, increased requirements, or ongoing mucosal damage. Oral iron therapy is recommended in such cases.
- For persistent anemia, a thorough exclusion of non-CD-related causes should be conducted.
- Bone density should be assessed in adults, particularly women, but also in younger patients with additional osteoporosis risk factors.
- In cases of persistent mucosal damage and unresolved nutritional imbalances after one to two years of a GFD, further investigation is necessary.
7. Future Clinical and Research Directions
- The mechanisms behind symptoms and nutritional deficiencies in CD patients without villous atrophy remain unclear and require further study.
- The usefulness of screening for CD in asymptomatic T1DM patients needs further prospective studies. The complexity of managing these patients goes beyond treating each condition independently and is affected by extra-biological factors.
- More evidence is needed to support bone densitometry at diagnosis for all CD patients. The development of alternative, low-cost methods for assessing bone mass and resistance could be beneficial.
- The clinical relevance of micronutrient deficiencies is not always well defined, and micronutrient supplementation policies for CD vary significantly between Europe and the United States.
- The mechanisms behind neurological, dermatological, psychological, hepatic, and reproductive health issues associated with CD are often not solely related to nutrition and remain unclear.
- The impact of the global trend toward overweight and obesity on patients following a GFD, whether for CD, non-celiac gluten sensitivity, or other conditions, should be monitored. This emerging patient profile introduces new challenges, such as the potential use of bariatric surgery for obesity in CD patients.
- The synergy between a GFD and regular physical activity PA is not well understood. Physical activity plays a critical role in managing CD, influencing overall health, symptom control, quality of life, social interactions, GFD adherence, and compliance with medical advice. Further research is needed.
- Epigenetic mechanisms underlying CD pathogenesis and their relationship to a GFD are key areas for future research.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Catassi, C.; Verdu, E.; Bai, J.C.; Lionetti, E. Coeliac disease. Lancet 2022, 399, 2413–2426. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, P.I.; Lenti, M.V.; Petrucci, C.; Gambini, G.; Aronico, N.; Varallo, M.; Rossi, C.M.; Pozzi, E.; Groppali, E.; Siccardo, F.; et al. Diagnostic Delay of Celiac Disease in Childhood. JAMA Netw. Open 2024, 7, e245671. [Google Scholar] [CrossRef] [PubMed]
- Ganji, R.; Moghbeli, M.; Sadeghi, R.; Bayat, G.; Ganji, A. Prevalence of osteoporosis and osteopenia in men and premenopausal women with celiac disease: A systematic review. Nutr. J. 2019, 18, 9. [Google Scholar] [CrossRef] [PubMed]
- Montoro-Huguet, M.A.; Belloc, B.; Domínguez-Cajal, M. Small and Large Intestine: Malabsorption of Nutrients. Nutrients 2021, 13, 1254. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, M.; Ferro, A.; Brascugli, I.; Mattivi, S.; Fagoonee, S.; Pellicano, R. Extra-Intestinal Manifestations of Celiac Disease: What Should We Know in 2022? J. Clin. Med. 2022, 11, 258. [Google Scholar] [CrossRef]
- Romano, L.; Pellegrino, R.; Sciorio, C.; Barone, B.; Gravina, A.G.; Santonastaso, A.; Mucherino, C.; Astretto, S.; Napolitano, L.; Aveta, A.; et al. Erectile and sexual dysfunction in male and female patients with celiac disease: A cross-sectional observational study. Andrology 2022, 10, 910–918. [Google Scholar] [CrossRef]
- Laurikka, P.; Kivelä, L.; Kurppa, K.; Kaukinen, K. Review article: Systemic consequences of coeliac disease. Aliment. Pharmacol. Ther. 2022, 56 (Suppl. S1), 64–72. [Google Scholar] [CrossRef]
- Di Sabatino, A.; Santacroce, G.; Bianchi, P.I.; Aronico, N. Putative therapeutic targets in celiac disease. In Pediatric and Adult Celiac Disease. A Clinically Oriented Perspective, 1st ed.; Corazza, G.R., Troncone, R., Lenti, M.V., Eds.; Silano Elsevier: Amsterdam, The Netherlands, 2024; pp. 303–328. [Google Scholar]
- Mandile, R.; Maglio, M.; Mosca, C.; Marano, A.; Discepolo, V.; Troncone, R.; Auricchio, R. Mucosal Healing in Celiac Disease: Villous Architecture and Immunohistochemical Features in Children on a Long-Term Gluten Free Diet. Nutrients 2022, 14, 3696. [Google Scholar] [CrossRef]
- Al-Toma, A.; Volta, U.; Auricchio, R.; Castillejo, G.; Sanders, D.S.; Cellier, C.; Mulder, C.J.; Lundin, K.E. European Society for study of coeliac disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United Eur. Gastroenterol. J. 2019, 7, 583–613. [Google Scholar] [CrossRef]
- Biagi, F.; Schiepatti, A.; Malamut, G.; Marchese, A.; Cellier, C.; Bakker, S.F.; Mulder, C.J.; Volta, U.; Zingone, F.; Ciacci, C.; et al. PROgnosticating COeliac patieNts SUrvivaL: The PROCONSUL score. PLoS ONE 2014, 9, e84163. [Google Scholar] [CrossRef]
- Biagi, F.; Bianchi, P.I.; Campanella, J.; Zanellati, G.; Corazza, G.R. The impact of misdiagnosing celiac disease at a referral centre. Can. J. Gastroenterol. 2009, 23, 543–545. [Google Scholar] [CrossRef] [PubMed]
- Schiepatti, A.; Maimaris, S.; Raju, S.A.; Green, O.L.; Mantica, G.; Therrien, A.; Flores-Marin, D.; Linden, J.; Fernández-Bañares, F.; Esteve, M.; et al. Persistent villous atrophy predicts development of complications and mortality in adult patients with coeliac disease: A multicentre longitudinal cohort study and development of a score to identify high-risk patients. Gut 2023, 72, 2095–2102. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Rodríguez, A.; Loaiza-Martínez, D.A.; Sánchez-Sánchez, J.; Rubio-Arias, J.Á.; Alacid, F.; Prats-Moya, S.; Martínez-Olcina, M.; Yáñez-Sepúlveda, R.; Marcos-Pardo, P.J. Personalised Nutritional Plan and Resistance Exercise Program to Improve Health Parameters in Celiac Women. Foods 2022, 11, 3238. [Google Scholar] [CrossRef] [PubMed]
- Bouery, P.; Attieh, R.; Sacca, L.; Sacre, Y. Assessment of the social quality of life and the physical activity of adult celiac disease patients following a gluten-free diet in Lebanon. Nutr. Health 2024, 30, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.R. Review article: Dietary management of coeliac disease. APT 2022, 56 (Suppl. S1), 38–48. [Google Scholar] [CrossRef]
- Bledsoe, A.C.; King, K.S.; Larson, J.J.; Snyder, M.; Absah, I.; Choung, R.S.; Murray, J.A. Micronutrient Deficiencies Are Common in Contemporary Celiac Disease Despite Lack of Overt Malabsorption Symptoms. Mayo Clin. Proc. 2019, 94, 1253–1260. [Google Scholar] [CrossRef]
- Lenti, M.V.; Aronico, N.; Bianchi, P.I.; D’Agate, C.C.; Neri, M.; Volta, U.; Mumolo, M.G.; Astegiano, M.; Calabrò, A.S.; Zingone, F.; et al. Diagnostic delay in adult coeliac disease: An Italian multicentre study. Dig. Liver Dis. 2022, 55, 743–750. [Google Scholar] [CrossRef]
- Więch, P.; Chmiel, Z.; Bazaliński, D.; Sałacińska, I.; Bartosiewicz, A.; Mazur, A.; Korczowski, B.; Binkowska-Bury, M.; Dąbrowski, M. The Relationship between Body Composition and a Gluten Free Diet in Children with Celiac Disease. Nutrients 2018, 10, 1817. [Google Scholar] [CrossRef]
- Corazza, G.R.; Di Sario, A.; Sacco, G.; Zoli, G.; Treggiari, E.A.; Brusco, G.; Gasbarrini, G. Subclinical coeliac disease: An anthropometric assessment. J. Intern. Med. 1994, 236, 183–187. [Google Scholar] [CrossRef]
- Bardella, M.T.; Fredella, C.; Prampolini, L.; Molteni, N.; Giunta, A.M.; Bianchi, P.A. Body composition and dietary intakes in adult celiac disease patients consuming a strict gluten-free diet. Am. J. Clin. Nutr. 2000, 72, 937–939. [Google Scholar] [CrossRef]
- Marí-Bauset, S.; Llopis-González, A.; Zazpe, I.; Marí-Sanchis, A.; Suárez-Varela, M.M. Nutritional Impact of a Gluten-Free Casein-Free Diet in Children with Autism Spectrum Disorder. J. Autism. Dev. Disord. 2016, 46, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Kurppa, K.; Laitinen, A.; Agardh, D. Coeliac disease in children with type 1 diabetes. Lancet Child Adolesc. Health 2018, 2, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Mozzillo, E.; Franceschi, R.; Di Candia, F.; Rosanio, F.M.; Leonardi, L.; Fedi, L.; Rosà, V.; Cauvin, V.; Franzese, A.; Marcovecchio, M.L. The impact of gluten-free diet on growth, metabolic control and quality of life in youth with type 1 diabetes and celiac disease: A systematic review. Diabetes Res. Clin. Pract. 2022, 191, 110032. [Google Scholar] [CrossRef] [PubMed]
- Alhosain, A.I.; Alshammari, G.M.; Almoteri, B.L.; Mohammed, M.A.; Binobead, M.A.; Yahya, M.A. Long-Term Effect of Gluten-Free Diets on Nutritional Status, Body Composition, and Associated Factors in Adult Saudi Females with Celiac Disease. Nutrients 2022, 14, 2090. [Google Scholar] [CrossRef]
- Passananti, V.; Santonicola, A.; Bucci, C.; Andreozzi, P.; Ranaudo, A.; Di Giacomo, D.V.; Ciacci, C. Bone mass in women with celiac disease: Role of exercise and gluten-free diet. Dig. Liver Dis. 2018, 44, 379–383. [Google Scholar] [CrossRef]
- Bergamaschi, G.; Di Sabatino, A.; Corazza, G.R. Pathogenesis, diagnosis and treatment of anaemia in immune-mediated gastrointestinal disorders. Br. J. Haematol. 2018, 182, 319–329. [Google Scholar] [CrossRef]
- Mahadev, S.; Laszkowska, M.; Sundström, J.; Björkholm, M.; Lebwohl, B.; Green, P.H.; Ludvigsson, J.F. Prevalence of Celiac Disease in Patients with Iron Deficiency Anemia-A Systematic Review with Meta-analysis. Gastroenterology 2018, 155, 374–382. [Google Scholar] [CrossRef]
- Stefanelli, G.; Viscido, A.; Longo, S.; Magistroni, M.; Latella, G. Persistent Iron Deficiency Anemia in Patients with Celiac Disease Despite a Gluten-Free Diet. Nutrients 2020, 12, 2176. [Google Scholar] [CrossRef]
- Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 2020, 105, 260–272. [Google Scholar] [CrossRef]
- Rajalahti, T.; Repo, M.; Kivelä, L.; Huhtala, H.; Mäki, M.; Kaukinen, K.; Lindfors, K.; Kurppa, K. Anemia in Pediatric Celiac Disease: Association with Clinical and Histological Features and Response to Gluten-free Diet. J. Pediatr. Gastroenterol. Nutr. 2017, 64, e1–e6. [Google Scholar] [CrossRef]
- Repo, M.; Lindfors, K.; Mäki, M.; Huhtala, H.; Laurila, K.; Lähdeaho, M.L.; Saavalainen, P.; Kaukinen, K.; Kurppa, K. Anemia and Iron Deficiency in Children with Potential Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 56–62. [Google Scholar] [CrossRef] [PubMed]
- DiJoseph, K.; Weismiller, S.; Ssentongo, P.; Dalessio, S.; Clarke, K. Celiac Disease and the Risk of Micronutrient Deficiencies in Ethnic Minority Populations: A Retrospective Cohort Study. Dig. Dis. 2024, 5, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Schiepatti, A.; Maimaris, S.; de Queiros Mattoso, C.; Rusca, G.; Costa, S.; Biagi, F. Long-Term Adherence to a Gluten-Free Diet and Quality of Life of Celiac Patients after Transition to an Adult Referral Center. Dig. Dis. Sci. 2022, 67, 3955–3963. [Google Scholar] [CrossRef] [PubMed]
- Galli, G.; Amici, G.; Conti, L.; Lahner, E.; Annibale, B.; Carabotti, M. Sex-Gender Differences in Adult Coeliac Disease at Diagnosis and Gluten-Free-Diet Follow-Up. Nutrients 2022, 14, 3192. [Google Scholar] [CrossRef]
- Annibale, B.; Severi, C.; Chistolini, A.; Antonelli, G.; Lahner, E.; Marcheggiano, A.; Iannoni, C.; Monarca, B.; Delle Fave, G. Efficacy of gluten-free diet alone on recovery from iron deficiency anemia in adult celiac patients. Am. J. Gastroenterol. 2001, 96, 132–137. [Google Scholar] [CrossRef]
- Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef]
- Annibale, B.; Capurso, G.; Chistolini, A.; D’Ambra, G.; DiGiulio, E.; Monarca, B.; DelleFave, G. Gastrointestinal causes of refractory iron deficiency anemia in patients without gastrointestinal symptoms. Am. J. Med. 2001, 111, 439–445. [Google Scholar] [CrossRef]
- Conti, L.; Galli, G.; Ligato, C.; Carabotti, M.; Annibale, B.; Lahner, E. Autoimmune atrophic gastritis and coeliac disease: A case-control study. Dig. Liver Dis. 2023, 55, 69–74. [Google Scholar] [CrossRef]
- Montoro-Huguet, M.A.; Santolaria-Piedrafita, S.; Cañamares-Orbis, P.; García-Erce, J.A. Iron Deficiency in Celiac Disease: Prevalence, Health Impact, and Clinical Management. Nutrients 2021, 13, 3437. [Google Scholar] [CrossRef]
- Wierdsma, N.J.; van Bokhorst, M.A.; Berkenpas, M.; Mulder, C.J.; van Bodegraven, A.A. Vitamin and mineral deficiencies are highly prevalent in newly diagnosed celiac disease patients. Nutrients 2013, 5, 3975–3992. [Google Scholar] [CrossRef]
- Martín-Masot, R.; Nestares, M.T.; Diaz-Castro, J.; López-Aliaga, I.; Alférez, M.J.M.; Moreno-Fernandez, J.; Maldonado, J. Multifactorial Etiology of Anemia in Celiac Disease and Effect of Gluten-Free Diet: A Comprehensive Review. Nutrients 2019, 11, 2557. [Google Scholar] [CrossRef] [PubMed]
- Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten free diet and nutrient deficiencies: A review. Clin. Nutr. 2016, 35, 1236–1241. [Google Scholar] [CrossRef]
- Rondanelli, M.; Faliva, M.A.; Gasparri, C.; Peroni, G.; Naso, M.; Picciotto, G.; Riva, A.; Nichetti, M.; Infantino, V.; Alalwan, T.A.; et al. Micronutrients Dietary Supplementation Advices for Celiac Patients on Long-Term Gluten-Free Diet with Good Compliance: A Review. Medicina 2019, 55, 337. [Google Scholar] [CrossRef] [PubMed]
- Cardo, A.; Churruca, I.; Lasa, A.; Navarro, V.; Vázquez-Polo, M.; Perez-Junkera, G.; Larretxi, I. Nutritional Imbalances in Adult Celiac Patients Following a Gluten-Free Diet. Nutrients 2021, 13, 2877. [Google Scholar] [CrossRef] [PubMed]
- Repo, M.; Kurppa, K.; Huhtala, H.; Luostarinen, L.; Kaukinen, K.; Kivelä, L. Significance of low ferritin without anaemia in screen-detected, adult coeliac disease patients. J. Intern. Med. 2022, 292, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Kemppainen, T.A.; Kosma, V.M.; Janatuinen, E.K.; Julkunen, R.J.; Pikkarainen, P.H.; Uusitupa, M.I. Nutritional status of newly diagnosed celiac disease patients before and after the institution of a celiac disease diet--association with the grade of mucosal villous atrophy. Am. J. Clin. Nutr. 1998, 67, 482–487. [Google Scholar] [CrossRef]
- Hallert, C.; Svensson, M.; Tholstrup, J.; Hultberg, B. Clinical trial: B vitamins improve health in patients with coeliac disease living on a gluten-free diet. Aliment. Pharmacol. Ther. 2009, 29, 811–816. [Google Scholar] [CrossRef]
- Dima, A.; Jurcut, C.; Manolache, A.; Balaban, D.V.; Popp, A.; Jinga, M. Hemorrhagic events in adult celiac disease. Case report and review of the literature. J. Gastrointestinal. Liver Dis. 2018, 27, 93–99. [Google Scholar] [CrossRef]
- Duerksen, D.; Pinto-Sanchez, M.I.; Anca, A.; Schnetzler, J.; Case, S.; Zelin, J.; Smallwood, A.; Turner, J.; Verdú, E.; Butzner, J.D.; et al. Management of bone health in patients with celiac disease Practical guide for clinicians. Can. Fam. Physician 2018, 64, 433–438. [Google Scholar]
- Heikkilä, K.; Pearce, K.; Mäki, M.; Kaukinen, K. Celiac disease and bone fractures: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2015, 100, 25–34. [Google Scholar] [CrossRef]
- Kurppa, K.; Collin, P.; Sievänen, H.; Huhtala, H.; Mäki, M.; Kaukinen, K. Gastrointestinal symptoms, quality of life and bone mineral density in mild enteropathic coeliac disease: A prospective clinical trial. Scand J. Gastroenterol. 2010, 45, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Mager, D.R.; Qiao, J.; Turner, J. Vitamin D and K status influences bone mineral density and bone accrual in children and adolescents with celiac disease. Eur. J. Clin. Nutr. 2012, 66, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Downey, L.; Houten, R.; Murch, S.; Longson, D.; Guideline Development Group. Recognition, assessment, and management of coeliac disease: Summary of updated NICE guidance. Br. J. Nutr. 2015, 351, h4513. [Google Scholar] [CrossRef]
- Zanchetta, M.B.; Longobardi, V.; Costa, F.; Longarini, G.; Mazure, R.M.; Moreno, M.L.; Vázquez, H.; Silveira, F.; Niveloni, S.; Smecuol, E.; et al. Impaired bone microarchitecture improves after one year on gluten-free diet: A prospective longitudinal HRpQCT study in women with celiac disease. J. Bone Miner Res. 2017, 32, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Heyman, R.; Guggenbuhl, P.; Corbel, A.; Bridoux-Henno, L.; Tourtelier, Y.; Balencon-Morival, M.; de Kerdanet, M.; Dabadie, A. Effect of a gluten-free diet on bone mineral density in children with celiac disease. Gastroenterol. Clin. Biol. 2009, 33, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Lebwohl, B.; Michaëlsson, K.; Green, P.; Ludvigsson, J. Persistent mucosal damage and risk of fracture in celiac disease. J. Clin. Endocrinol. Metab. 2014, 99, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Nestares, T.; Martín-Masot, R.; de Teresa, C.; Bonillo, R.; Maldonado, J.; Flor-Alemany, M.; Aparicio, V.A. Influence of Mediterranean Diet Adherence and Physical Activity on Bone Health in Celiac Children on a Gluten-Free Diet. Nutrients 2021, 13, 1636. [Google Scholar] [CrossRef]
- Francavilla, A.; Ferrero, G.; Pardini, B.; Tarallo, S.; Zanatto, L.; Caviglia, G.P.; Sieri, S.; Grioni, S.; Francescato, G.; Stalla, F.; et al. Gluten-free diet affects fecal small non-coding RNA profiles and microbiome composition in celiac disease supporting a host-gut microbiota crosstalk. Gut Microbes 2023, 15, 217295. [Google Scholar] [CrossRef]
- Guarino, M.; Gambuti, E.; Alfano, F.; Strada, A.; Ciccocioppo, R.; Lungaro, L.; Zoli, G.; Volta, U.; De Giorgio, R.; Caio, G. Life-threatening onset of coeliac disease: A case report and literature review. BMJ Open Gastroenterol. 2020, 7, e000406. [Google Scholar] [CrossRef]
- Mearns, E.S.; Taylor, A.; Thomas Craig, K.J.; Puglielli, S.; Cichewicz, A.B.; Leffler, D.A.; Sanders, D.S.; Lebwohl, B.; Hadjivassiliou, M. Neurological manifestation of neuropathy and ataxia in celiac disease: A systematic review. Nutrients 2019, 11, 380. [Google Scholar] [CrossRef]
- Leffler, D.A.; Green, P.H.R.; Fasano, A. Extraintestinal manifestations of coeliac disease. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Fousekis, F.S.; Katsanos, A.; Katsanos, K.H.; Christodoulou, D.K. Ocular manifestations in celiac disease: An overview. Int. Ophtalmol. 2020, 40, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Starchl, C.; Scherkl, M.; Amrein, K. Celiac Disease and the Thyroid: Highlighting the Roles of Vitamin D and Iron. Nutrients 2021, 13, 1755. [Google Scholar] [CrossRef] [PubMed]
- O’Kane, M.; Mulhern, M.S.; Pourshahidi, L.K.; Strain, J.J.; Yeates, A.J. Micronutrients, iodine status and concentrations of thyroid hormones: A systematic review. Nutr. Rev. 2018, 76, 418–431. [Google Scholar] [CrossRef]
- Abenavoli, L.; Dastoli, S.; Bennardo, L.; Boccuto, L.; Passante, M.; Silvestri, M.; Proietti, I.; Potenza, C.; Luzza, F.; Nisticò, S.P. The Skin in Celiac Disease Patients: The Other Side of the Coin. Medicina 2019, 55, 578. [Google Scholar] [CrossRef]
- Rodrigo, L.; Beteta-Gorriti, V.; Alvarez, N.; Gómez de Castro, C.; de Dios, A.; Palcios, L.; Santos-Juanes, J. Cutaneous and mucosal manifestations associated with celiac disease. Nutrients 2018, 10, 800. [Google Scholar] [CrossRef]
- McGrogan, L.; Mackinder, M.; Stefanowicz, F.; Aroutiounova, M.; Catchpole, A.; Wadsworth, J.; Buchanan, E.; Cardigan, T.; Duncan, H.; Hansen, R.; et al. Micronutrient deficiencies in children with coeliac disease; a double-edged sword of both untreated disease and treatment with gluten-free diet. Clin. Nutr. 2021, 40, 2784–2790. [Google Scholar] [CrossRef]
- Bramanti, E.; Cicciù, M.; Matacena, G.; Costa, S.; Magazzù, G. Clinical evaluation of specific oral manifestations in pediatric patient with ascertained versus potential coeliac disease: A cross-sectional study. Gastroenterol. Res. Pract. 2014, 2014, 934159. [Google Scholar] [CrossRef]
- Trotta, L.; Biagi, F.; Bianchi, P.I.; Marchese, A.; Vattiato, C.; Balduzzi, D.; Collesano, V.; Corazza, G.R. Dental enamel defects in adult coeliac disease: Prevalence and correlation with symptoms and age at diagnosis. Eur. J. Intern. Med. 2013, 24, 832–834. [Google Scholar] [CrossRef]
- Sheetal, A.; Hiremath, V.K.; Patil, A.G.; Sajjansetty, S.; Kumar, S.R. Malnutrition and its oral outcome—A review. J. Clin. Diagn. Res. 2013, 7, 178–180. [Google Scholar] [CrossRef]
- Rybicka, I. The handbook of minerals on gluten-free diet. Nutrients 2018, 10, 1683. [Google Scholar] [CrossRef] [PubMed]
- Ventura, A.; Magazzù, G.; Greco, L. Duration of exposure to gluten and risk for autoimmune disorders in patients with celiac disease. Gastroenterology 1999, 117, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Passali, M.; Josefsen, K.; Frederiksen, J.L.; Antvorskov, J.C. Current Evidence on the Efficacy of Gluten-Free Diets in Multiple Sclerosis, Psoriasis, Type 1 Diabetes and Autoimmune Thyroid Diseases. Nutrients 2020, 12, 2316. [Google Scholar] [CrossRef] [PubMed]
- Pastore, M.R.; Bazzigaluppi, E.; Belloni, C.; Arcovio, C.; Bonifacio, E.; Bosi, E. Six Months of Gluten-Free Diet Do Not Influence Autoantibody Titers, but Improve Insulin Secretion in Subjects at High Risk for Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2003, 88, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Söderström, H.; Cervin, M.; Dereke, J.; Hillman, M.; Tiberg, I.; Norström, F.; Carlsson, A. Does a gluten-free diet lead to better glycemic control in children with type 1 diabetes? Results from a feasibility study and recommendations for future trials. Contemp. Clin. Trials Commun. 2022, 26, 100893. [Google Scholar] [CrossRef]
- Nagl, K.; Bollow, E.; Liptay, S.; Rosenbauer, J.; Koletzko, S.; Pappa, A.; Näke, A.; Fröhlich-Reiterer, E.; Döring, C.; Wolf, J.; et al. Lower HbA1c in patients with type 1 diabetes and celiac disease who reached celiac-specific antibody-negativity—A multicenter DPV analysis. Pediatr. Diabetes 2019, 20, 1100–1109. [Google Scholar] [CrossRef]
- Fuschillo, G.; Celentano, V.; Rottoli, M.; Sciaudone, G.; Gravina, A.G.; Pellegrino, R.; Marfella, R.; Romano, M.; Selvaggi, F.; Pellino, G. Influence of diabetes mellitus on inflammatory bowel disease course and treatment outcomes. A systematic review with meta-analysis. Dig. Liver Dis. 2023, 55, 580–586. [Google Scholar] [CrossRef]
- Mahmud, F.H.; Clarke, A.B.; Joachim, K.C.; Assor, E.; McDonald, C.; Saibil, F.; Lochnan, H.A.; Punthakee, Z.; Parikh, A.; Advani, A.; et al. Screening and Treatment Outcomes in Adults and Children with Type 1 Diabetes and Asymptomatic Celiac Disease: The CD-DIET Study. Diabetes Care 2020, 43, 1553–1556. [Google Scholar] [CrossRef]
- Creanza, A.; Lupoli, R.; Lembo, E.; Tecce, N.; Della Pepa, G.; Lombardi, G.; Riccardi, G.; Di Bonito, P.; Capaldo, B. Glycemic control and microvascular complications in adults with type 1 diabetes and long-lasting treated celiac disease: A case-control study. Diabetes Res. Clin. Pract. 2018, 143, 282–287. [Google Scholar] [CrossRef]
- Wiess, B.; Pinhas-Hamiel, O. Celiac disease and diabetes: When to test and treat. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 175–179. [Google Scholar] [CrossRef]
- Balaban, B.V.; Enache, I.; Chiochina, M.; Popp, A.; Jinga, M. Pancreatic involvement in celiac disease. World J. Gastroenterol. 2022, 28, 2680–2688. [Google Scholar] [CrossRef] [PubMed]
- Carroccio, A.; Iacono, G.; Lerro, P.; Cavataio, F.; Malorgio, E.; Soresi, M.; Baldassarre, M.; Notarbartolo, A.; Ansaldi, N.; Montalto, G. Role of pancreatic impairment in growth recovery during gluten-free diet in childhood celiac disease. Gastroenterology 1997, 112, 1839–1844. [Google Scholar] [CrossRef] [PubMed]
- Yoosuf, S.; Barrett, C.G.; Papamichael, K.; Madoff, S.E.; Kurada, S.; Hansen, J.; Silvester, J.A.; Therrien, A.; Singh, P.; Dennis, M.; et al. Pancreatic enzyme supplementation versus placebo for improvement of gastrointestinal symptoms in non-responsive celiac disease: A cross-over randomized controlled trial. Front. Med. 2023, 9, 1001879. [Google Scholar] [CrossRef]
- Singh, V.K.; Haupt, M.E.; Geller, D.E.; Hall, J.A.; Quintana Diez, P.M. Less common aetiologies of exocrine pancreatic insufficiency. World J. Gastroenterol. 2017, 13, 7059–7076. [Google Scholar] [CrossRef] [PubMed]
- Kaukinen, K.; Halme, L.; Collin, P.; Färkkilä, M.; Mäki, M.; Vehmanen, P.; Partanen, J.; Höckerstedt, K. Celiac disease in patients with severe liver disease: Gluten-free diet may reverse hepatic failure. Gastroenterology 2002, 122, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Nardecchia, S.; Auricchio, R.; Discepolo, V.; Troncone, R. Extra-intestinal manifestations of coeliac disease in children: Clinical features and mechanisms. Front. Pediatr. 2019, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Barone, M.; Iannone, A.; Cristofori, F.; Dargenio, V.N.; Indrio, F.; Verduci, E.; Di Leo, A.; Francavilla, R. Risk of obesity during a gluten-free diet in pediatric and adult patients with celiac disease: A systematic review with meta-analysis. Nutr. Rev. 2022, 10, nuac052. [Google Scholar] [CrossRef]
- Di Nardo, G.; Villa, M.P.; Conti, L.; Ranucci, G.; Pacchiarotti, C.; Principessa, L.; Raucci, U.; Parisi, P. Nutritional Deficiencies in Children with Celiac Disease Resulting from a Gluten-Free Diet: A Systematic Review. Nutrients 2019, 11, 1588. [Google Scholar] [CrossRef]
- Taetzsch, A.; Das, S.K.; Brown, C.; Krauss, A.; Silver, R.E.; Roberts, S.B. Are Gluten-Free Diets More Nutritious? An Evaluation of Self-Selected and Recommended Gluten-Free and Gluten-Containing Dietary Patterns. Nutrients 2018, 10, 1881. [Google Scholar] [CrossRef]
- Potter, M.D.E.; Brienesse, S.C.; Walker, M.M.; Boyle, A.; Talley, N.J. Effect of the gluten-free diet on cardiovascular risk factors in patients with coeliac disease: A systematic review. J. Gastroenterol. Hepatol. 2018, 33, 781–791. [Google Scholar] [CrossRef]
- Schmucker, C.; Eisele-Metzger, A.; Meerpohl, J.J.; Lehane, C.; de Gaudry, D.K.; Lohner, S.; Schwingshackl, L. Effects of a gluten-reduced or gluten-free diet for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2022, 2, CD013556. [Google Scholar] [CrossRef] [PubMed]
- Larussa, T.; Abenavoli, L.; Procopio, A.C.; Iannelli, C.; Polimeni, N.; Spagnuolo, R.; Doldo, P.; Luzza, F. The role of gluten-free diet in nonalcoholic fatty liver disease development. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 6613–6618. [Google Scholar] [PubMed]
- Ehteshami, M.; Shakerhosseini, R.; Sedaghat, F.; Hedayati, M.; Eini-Zinab, H.; Hekmatdoost, A. The Effect of Gluten Free Diet on Components of Metabolic Syndrome: A Randomized Clinical Trial. Asian Pac. J. Cancer Prev. 2018, 19, 2979–2984. [Google Scholar] [PubMed]
- Wild, D.; Robins, G.G.; Burley, V.J.; Howdle, P.D. Evidence of high sugar intake, and low fibre and mineral intake, in the gluten-free diet. Aliment. Pharmacol. Ther. 2010, 32, 573–581. [Google Scholar] [CrossRef]
- Churruca, I.; Miranda, J.; Lasa, A.; Bustamante, M.Á.; Larretxi, I.; Simon, E. Analysis of Body Composition and Food Habits of Spanish Celiac Women. Nutrients 2015, 7, 5515–5531. [Google Scholar] [CrossRef]
- Andrewski, E.; Cheng, K.; Vanderpool, C. Nutritional Deficiencies in Vegetarian, Gluten-Free, and Ketogenic Diets. Pediatr. Rev. 2022, 43, 61–70. [Google Scholar] [CrossRef]
- Lerner, A.; O’Bryan, T.; Matthias, T. Navigating the Gluten-Free Boom: The Dark Side of Gluten Free Diet. Front. Pediatr. 2019, 7, 414. [Google Scholar] [CrossRef]
- Sategna-Guidetti, C.; Grosso, S.B.; Grosso, S.; Mengozzi, G.; Aimo, G.; Zaccaria, T.; Di Stefano, M.; Isaia. The effects of 1-year gluten withdrawal on bone mass, bone metabolism and nutritional status in newly-diagnosed adult coeliac disease patients. Aliment. Pharmacol. Ther. 2000, 14, 35–43. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Drabińska, N. Calcium in Gluten-Free Life: Health-Related and Nutritional Implications. Foods 2016, 5, 51. [Google Scholar] [CrossRef]
- Paolini, A.; Sarshar, M.; Felli, C.; Bruno, S.P.; Rostami-Nejad, M.; Ferretti, F.; Masotti, A.; Baldassarre, A. Biomarkers to Monitor Adherence to Gluten-Free Diet by Celiac Disease Patients: Gluten Immunogenic Peptides and Urinary miRNAs. Foods 2022, 11, 1380. [Google Scholar] [CrossRef]
- Felli, C.; Baldassarre, A.; Uva, P.; Alisi, A.; Cangelosi, D.; Ancinelli, M.; Caruso, M.; Paolini, A.; Montano, A.; Silano, M.; et al. Circulating microRNAs as novel non-invasive biomarkers of paediatric celiac disease and adherence to gluten-free diet. EBioMedicine 2022, 76, 10385. [Google Scholar] [CrossRef] [PubMed]
- Bascuñán-Gamboa, K.A.; Araya-Quezada, M.; Pérez-Bravo, F. MicroRNAs: An epigenetic tool to study celiac disease. Rev. Esp. Enferm. Dig. 2014, 106, 325–333. [Google Scholar] [PubMed]
- Deepak, C.; Berry, N.; Vaiphei, K.; Dhaka, N.; Sinha, S.K.; Kochhar, R. Quality of life in celiac disease and the effect of gluten-free diet. JGH Open 2018, 2, 124–128. [Google Scholar]
- Gładyś, K.; Dardzińska, J.; Guzek, M.; Adrych, K.; Kochan, Z.; Małgorzewicz, S. Expanded Role of a Dietitian in Monitoring a Gluten-Free Diet in Patients with Celiac Disease: Implications for Clinical Practice. Nutrients 2021, 13, 1859. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Physical Activity. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 9 September 2024).
- Gravina, A.G.; Pellegrino, R.; Durante, T.; Palladino, G.; D’Onofrio, R.; Mammone, S.; Arboretto, G.; Auletta, S.; Imperio, G.; Ventura, A.; et al. Inflammatory bowel diseases patients suffer from significant low levels and barriers to physical activity: The “BE-FIT-IBD” study. World J. Gastroenterol. 2023, 29, 5668–5682. [Google Scholar] [CrossRef]
- Gravina, A.G.; Pellegrino, R.; Palladino, G.; Imperio, G.; Ventura, A.; Cipullo, M.; Coppola, A.; Federico, A. Profiling the patient with inflammatory bowel disease in the relationship between physical activity and partner/social network status: A post hoc patient-tailored analysis of the “BE-FIT-IBD” study. Gastroenterol. Hepatol. 2024; in press. [Google Scholar]
- Dowd, A.J.; Kronlund, L.; Parmar, C.; Daun, J.T.; Wytsma-Fisher, K.; Reimer, R.A.; Millet, G.Y.; Culos-Reed, S.N. A 12-Week Pilot Exercise Program for Inactive Adults with Celiac Disease: Study Protocol. Glob. Adv. Health Med. 2019, 8, 2164956119853777. [Google Scholar] [CrossRef]
Thoroughly Rule Out Other Causes of Anemia: Conduct a thorough evaluation to exclude other causes of severe or persistent anemia. |
Oral Iron Therapy: Recommend oral iron therapy if deficiency persists after initiating a GFD. |
Vitamin B12 Supplementation: Supplement vitamin B12 if serum levels are below 350 pg/mL, paying particular attention to pregnant women. |
Investigate Hemorrhagic Events: Consider vitamin K deficiency if hemorrhagic events occur in CD patients. |
Monitor Vitamin D Levels: Monitor vitamin D levels at diagnosis, especially if there is evidence of a diagnostic delay. |
Assess Electrolytes: Check electrolyte levels if acute diarrhea is present at the presentation of the disease. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchi, P.I.; Aronico, N.; Santacroce, G.; Broglio, G.; Lenti, M.V.; Di Sabatino, A. Nutritional Consequences of Celiac Disease and Gluten-Free Diet. Gastroenterol. Insights 2024, 15, 878-894. https://doi.org/10.3390/gastroent15040061
Bianchi PI, Aronico N, Santacroce G, Broglio G, Lenti MV, Di Sabatino A. Nutritional Consequences of Celiac Disease and Gluten-Free Diet. Gastroenterology Insights. 2024; 15(4):878-894. https://doi.org/10.3390/gastroent15040061
Chicago/Turabian StyleBianchi, Paola Ilaria, Nicola Aronico, Giovanni Santacroce, Giacomo Broglio, Marco Vincenzo Lenti, and Antonio Di Sabatino. 2024. "Nutritional Consequences of Celiac Disease and Gluten-Free Diet" Gastroenterology Insights 15, no. 4: 878-894. https://doi.org/10.3390/gastroent15040061
APA StyleBianchi, P. I., Aronico, N., Santacroce, G., Broglio, G., Lenti, M. V., & Di Sabatino, A. (2024). Nutritional Consequences of Celiac Disease and Gluten-Free Diet. Gastroenterology Insights, 15(4), 878-894. https://doi.org/10.3390/gastroent15040061