ESBL/AmpC-Producing Enterobacteriaceae Fecal Colonization in Dogs after Elective Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Procedure and Collection of Data
2.2. Bacteria Isolation, Identification and DNA Extraction
2.3. Escherichia coli Phylogenetic Typing
2.4. Antimicrobial Susceptibility Testing
2.5. ß-Lactamase Resistance Genes
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M.; et al. Public health risk of antimicrobial resistance transfer from companion animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef]
- Timofte, D.; Maciuca, I.E.; Williams, N.J.; Wattret, A.; Schmidt, V. Veterinary Hospital Dissemination of CTX-M-15 Extended-Spectrum Beta-Lactamase–Producing Escherichia coli ST410 in the United Kingdom. MDR 2016, 22, 609–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuerena, I.; Williams, N.J.; Nuttall, T.; Pinchbeck, G. Antimicrobial-resistant Escherichia coli in hospitalised companion animals and their hospital environment. J. Small Anim. Pract. 2016, 57, 339–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO 7th Meeting Report of WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). Available online: https://apps.who.int/iris/bitstream/handle/10665/272714/WHO-NMH-FOS-FZD-18.1-eng.pdf (accessed on 21 August 2021).
- Prescott, J.F.; Boerlin, P. Antimicrobial use in companion animals and Good Stewardship Practice. Vet. Rec. 2016, 179, 486–488. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.L.; Bonomo, R.A. Extended-Spectrum β-Lactamases: A Clinical Update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knothe, H.; Shah, P.; Krcmery, V.; Antal, M.; Mitsuhashi, S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection 1983, 11, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, L.; Calvo, J. El problema creciente de la resistencia antibiótica en bacilos gram negativos: Situación actual. Enferm. Infecc. Microbiol. Clin. 2010, 28, 25–31. [Google Scholar] [CrossRef]
- Schmiedel, J.; Falgenhauer, L.; Domann, E.; Bauerfeind, R.; Prenger-Berninghoff, E.; Imirzalioglu, C.; Chakraborty, T. Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol. 2014, 14, 187. [Google Scholar] [CrossRef] [Green Version]
- Giguère, S.; Prescott, J.F.; Dowling, P.M. Textbook of Antimicrobial Therapy in Veterinary Medicine, 5th ed.; Ames, I., Ed.; Wiley Blackwell: Hoboken, NJ, USA, 2013; ISBN 978-0-470-96302-9. [Google Scholar]
- Johnson, J.R.; Stell, A.L.; Delavari, P. Canine Feces as a Reservoir of Extraintestinal Pathogenic Escherichia coli. Infect. Immun. 2001, 69, 1306–1314. [Google Scholar] [CrossRef] [Green Version]
- Barza, M.; Travers, K. Excess Infections Due to Antimicrobial Resistance: The “Attributable Fraction”. Clin. Infect. Dis. 2002, 34, S126–S130. [Google Scholar] [CrossRef] [PubMed]
- Guardabassi, L. Pet animals as reservoirs of antimicrobial-resistant bacteria: Review. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Miller, S.; Johnston, B.; Clabots, C.; DebRoy, C. Sharing of Escherichia coli Sequence Type ST131 and Other Multidrug-Resistant and Urovirulent E. coli Strains among Dogs and Cats within a Household. J. Clin. Microbiol. 2009, 47, 3721–3725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belas, A.; Salazar, A.S.; Gama, L.T.; Couto, N.; Pomba, C. Risk factors for faecal colonisation with Escherichia coli producing extended-spectrum and plasmid-mediated AmpC β-lactamases in dogs. Vet. Rec. 2014, 175, 202. [Google Scholar] [CrossRef]
- Damborg, P.; Morsing, M.K.; Petersen, T.; Bortolaia, V.; Guardabassi, L. CTX-M-1 and CTX-M-15-producing Escherichia coli in dog faeces from public gardens. Acta Vet. Scand. 2015, 57, 83. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.R.; Davis, G.; Clabots, C.; Johnston, B.D.; Porter, S.; DebRoy, C.; Pomputius, W.; Ender, P.T.; Cooperstock, M.; Slater, B.S.; et al. Household Clustering of Escherichia coli Sequence Type 131 Clinical and Fecal Isolates According to Whole Genome Sequence Analysis. Open Forum. Infect. Dis. 2016, 3, 129. [Google Scholar] [CrossRef]
- Hordijk, J.; Schoormans, A.; Kwakernaak, M.; Duim, B.; Broens, E.; Dierikx, C.; Mevius, D.; Wagenaar, J.A. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing Enterobacteriaceae in cats and dogs. Front. Microbiol. 2013, 4, 242. [Google Scholar] [CrossRef] [Green Version]
- Haenni, M.; Saras, E.; Métayer, V.; Médaille, C.; Madec, J.-Y. High Prevalence of bla CTX-M-1 /IncI1/ST3 and bla CMY-2 /IncI1/ST2 Plasmids in Healthy Urban Dogs in France. Antimicrob. Agents Chemother. 2014, 58, 5358–5362. [Google Scholar] [CrossRef] [Green Version]
- McDaniels, A.E.; Rice, E.W.; Reyes, A.L.; Johnson, C.H.; Haugland, R.A.; Stelma, G.N. Confirmational Identification of Escherichia coli, a Comparison of Genotypic and Phenotypic Assays for Glutamate Decarboxylase and beta-d-Glucuronidase. Appl. Environ. Microbiol. 1998, 64, 4113. [Google Scholar] [CrossRef] [Green Version]
- Padmavathy, B.; Vinoth, K.R.; Patel, A.; Deepika Swarnam, S.; Vaidehi, T.; Jaffar, A.B.M. Rapid and Sensitive Detection of Major Uropathogens in a Single-Pot Multiplex PCR Assay. Curr. Microbiol. 2012, 65, 44–53. [Google Scholar] [CrossRef]
- Féria, C.; Ferreira, E.J.D.; Gonçalves, J.; Caniça, M. Patterns and mechanisms of resistance to beta-lactams and beta-lactamase inhibitors in uropathogenic Escherichia coli isolated from dogs in Portugal. J. Antimicrob. Chemother. 2002, 49, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doumith, M.; Day, M.J.; Hope, R.; Wain, J.; Woodford, N. Improved Multiplex PCR Strategy for Rapid Assignment of the Four Major Escherichia coli Phylogenetic Groups. J. Clin. Microbiol. 2012, 50, 3108–3110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 27th Informational Supplement; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Edelstein, M.; Pimkin, M.; Palagin, I.; Edelstein, I.; Stratchounski, L. Prevalence and Molecular Epidemiology of CTX-M Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae in Russian Hospitals. Antimicrob. Agents Chemother. 2003, 47, 3724–3732. [Google Scholar] [CrossRef] [Green Version]
- Pomba, C.; Mendonça, N.; Costa, M.; Louro, D.; Baptista, B.; Ferreira, M.; Correia, J.D.; Caniça, M. Improved multiplex PCR method for the rapid detection of β-lactamase genes in Escherichia coli of animal origin. Diagn. Microbiol. Infect. Dis. 2006, 56, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J. Antimicrob. Chemother. 2006, 57, 154–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Perez, F.J.; Hanson, N.D. Detection of Plasmid-Mediated AmpC -Lactamase Genes in Clinical Isolates by Using Multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, C.; Belas, A.; Franco, A.; Aboim, C.; Gama, L.T.; Pomba, C. Increase in antimicrobial resistance and emergence of major international high-risk clonal lineages in dogs and cats with urinary tract infection: 16 year retrospective study. J. Antimicrob. Chemother. 2018, 73, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davin-Regli, A.; Pagès, J.-M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front. Microbiol. 2015, 6, 392. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Dortet, L.; Poirel, L. Rapid Detection of Extended-Spectrum-Lactamase-Producing Enterobacteriaceae. J. Clin. Microbiol. 2012, 50, 3016–3022. [Google Scholar] [CrossRef] [Green Version]
- Potron, A.; Poirel, L.; Rondinaud, E.; Nordmann, P. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro. Surveill. 2013, 18, 20549. [Google Scholar] [CrossRef]
- Costa, D.; Poeta, P.; Sáenz, Y.; Coelho, A.C.; Matos, M.; Vinué, L.; Rodrigues, J.; Torres, C. Prevalence of antimicrobial resistance and resistance genes in faecal Escherichia coli isolates recovered from healthy pets. Vet. Microbiol. 2008, 127, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Procter, T.D.; Pearl, D.L.; Finley, R.L.; Leonard, E.K.; Janecko, N.; Reid-Smith, R.J.; Weese, J.S.; Peregrine, A.S.; Sargeant, J.M. A Cross-Sectional Study Examining the Prevalence and Risk Factors for Anti-Microbial-Resistant Generic Escherichia coli in Domestic Dogs that Frequent Dog Parks in Three Cities in South-Western Ontario, Canada. Zoonoses Public Health 2014, 61, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Aslantaş, Ö.; Yilmaz, E.Ş. Prevalence and molecular characterization of extended-spectrum β-lactamase (ESBL) and plasmidic AmpC β-lactamase (pAmpC) producing Escherichia coli in dogs. J. Vet. Sci. 2017, 79, 1024–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubos, R.J.; Schaedler, R.W. The effect of diet on the fecal bacterial flora of mice and on their resistance to infection. J. Exp. Med. 1962, 1, 1161–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, R.H.; Lawes, J.R.; Wales, A.D. Raw diets for dogs and cats: A review, with particular reference to microbiological hazards. J. Small Anim. Pract. 2019, 60, 329–339. [Google Scholar] [CrossRef]
- Vich, V.A.; Collij, V.; Sanna, S.; Sinha, T.; Imhann, F.; Bourgonje, A.R.; Mujagic, Z.; Jonkers, D.; Masclee, A.A.M.; Fu, J.; et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 2020, 11, 362. [Google Scholar] [CrossRef]
- van den Bunt, G.; Fluit, A.C.; Spaninks, M.P.; Timmerman, A.J.; Geurts, Y.; Kant, A.; Scharringa, J.; Mevius, D.; Wagenaar, J.A.; Bonten, M.J.M.; et al. Faecal carriage, risk factors, acquisition and persistence of ESBL-producing Enterobacteriaceae in dogs and cats and co-carriage with humans belonging to the same household. J. Antimicrob. Chemother. 2020, 75, 342–350. [Google Scholar] [CrossRef]
- Rantala, M.; Lahti, E.; Kuhalampi, J.; Pesonen, S.; Järvinen, A.-K.; Saijonmaa-Koulumies, L.; Honkanen-Buzalski, T. Antimicrobial resistance in Staphylococcus spp., Escherichia coli and Enterococcus spp. in dogs given antibiotics for chronic dermatological disorders, compared with non-treated control dogs. Acta Vet. Scand. 2004, 45, 37. [Google Scholar] [CrossRef]
Dogs Sampled | % (n) | |
---|---|---|
Gender | Female | 36.0 (9) |
Male | 64.0 (16) | |
Origin | Private owner | 100.0 (25) |
Antimicrobial treatment in last year | Yes | 50.0 (12) |
No | 46.0 (11) | |
No data | 4.0 (1) | |
Hospitalization in last year | Yes | 60.0 (15) |
No | 40.0 (10) | |
Cohabitation with other animals | Yes | 12.0 (3) |
No | 88.0 (22) | |
Street access | Yes | 68.0 (17) |
No | 32.0 (8) | |
Shelter/hotel access | Yes | 12.0 (3) |
No | 88.0 (22) | |
Surgery reason | Soft tissues | 76.0 (19) |
Orthopaedic | 24.0 (6) | |
Antimicrobial prophylactic treatment | Yes | 92.0 (23) |
No | 8.0 (2) |
Animal Group | ESBLs (%) | p Value | Isolates ID | Bacteria | Antimicrobial Resistance Phenotype | β-Lactamases | E. coli Phylogroup |
---|---|---|---|---|---|---|---|
Before surgery (n = 25) | 20.0 | 0.0033 | FMVS1 | E. coli | AMP KF CTX | blaCTX-M-1group | B1 |
FMVS2 | E. coli | AMP AMC KF CTX FOX CAZ | blaTEM | D | |||
FMVS14 | E. coli | AMP AMC KF CTX FOX CAZ | blaSHV | B1 | |||
FMVS18 | E. coli | AMP AMC KF CTX FOX CAZ | blaTEM | B1 | |||
FMVS20 | K. pneumoniae * | AMP AMC KF CTX FOX | blaSHV | - | |||
After surgery (AS) (n = 22) | 63.6 | FMVS1 | K. pneumoniae * | AMP AMC KF CTX CAZ | blaOXA-1, blaTEM, blaCTX-M-1group | - | |
FMVS2 | E. coli | AMP AMC KF CTX FOX CAZ | blaTEM | D | |||
FMVS3a | E. coli | AMP AMC KF CTX FOX CAZ | blaTEM | B2 | |||
FMVS3b | K. pneumoniae * | AMP AMC KF CTX CAZ | blaOXA-1, blaTEM, blaCTX-M-1group | - | |||
FMVS3c | K. pneumoniae * | AMP AMC KF CTX FOX CAZ | blaTEM,blaCTX-M-1group | - | |||
FMVS3d | K. pneumoniae * | AMP AMC KF CTX | blaOXA-1, blaCTX-M-1group | - | |||
FMVS4 | E. cloacae ** | AMP KF CTX FOX CAZ | nd | - | |||
FMVS6 | E. cloacae ** | AMP KF CTX FOX CAZ | nd | - | |||
FMVS7 | E. coli | AMP AMC KF CTX FOX CAZ | blaTEM | B1 | |||
FMVS9 | E. coli | AMP KF CTX | blaCTX-M-1group | B2 | |||
FMVS11 | E. coli | AMP AMC KF CTX FOX CAZ | blaOXA-1, blaTEM | A | |||
FMVS12 | E. cloacae ** | AMP KF CTX FOX CAZ | nd | - | |||
FMVS13 | E. coli | AMP KF CTX CAZ | blaSHV | B1 | |||
FMVS16 | E. coli | AMP AMC KF CTX FOX CAZ | blaTEM | A | |||
FMVS17 | E. coli | AMP AMC KF CTX FOX CAZ | blaTEM | A | |||
FMVS21 | E. coli | AMP AMC KF CTX FOX CAZ | blaTEM | B1 | |||
FMVS25 | E. coli | AMP AMC KF CTX FOX CAZ | blaTEM | A |
Animal Group | Mean (CFU/g) | SD | SE | Min (UFC/g) | Max (UFC/g) | p Value |
---|---|---|---|---|---|---|
Before surgery (n = 25) | 1.10 × 102 a | 4.51 × 102 | 5.24 × 105 | 0.0 | 2.25 × 103 | 0.025 |
After surgery (n = 22) | 1.74 × 106 b | 5.33 × 106 | 4.00 × 105 | 0.0 | 1.84 × 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belas, A.; Correia, J.; Marques, C.; da Gama, L.T.; Pomba, C. ESBL/AmpC-Producing Enterobacteriaceae Fecal Colonization in Dogs after Elective Surgery. Microbiol. Res. 2021, 12, 907-915. https://doi.org/10.3390/microbiolres12040067
Belas A, Correia J, Marques C, da Gama LT, Pomba C. ESBL/AmpC-Producing Enterobacteriaceae Fecal Colonization in Dogs after Elective Surgery. Microbiology Research. 2021; 12(4):907-915. https://doi.org/10.3390/microbiolres12040067
Chicago/Turabian StyleBelas, Adriana, Joana Correia, Cátia Marques, Luís Telo da Gama, and Constança Pomba. 2021. "ESBL/AmpC-Producing Enterobacteriaceae Fecal Colonization in Dogs after Elective Surgery" Microbiology Research 12, no. 4: 907-915. https://doi.org/10.3390/microbiolres12040067
APA StyleBelas, A., Correia, J., Marques, C., da Gama, L. T., & Pomba, C. (2021). ESBL/AmpC-Producing Enterobacteriaceae Fecal Colonization in Dogs after Elective Surgery. Microbiology Research, 12(4), 907-915. https://doi.org/10.3390/microbiolres12040067