Eumycetoma Medical Treatment: Past, Current Practice, Latest Advances and Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Eumycetoma Causative Agents
4. Currently Used Drug for Eumycetoma
5. In Vitro Activity
6. In Vivo Activity
7. Adverse Effects
8. New Target for New Hope
8.1. Non-Steroidal Anti-Inflammatory Drugs (NSAID)
8.2. Olorofim
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Siddig, E.E.; Mhmoud, N.A.; Bakhiet, S.M.; Abdallah, O.B.; Mekki, S.O.; El Dawi, N.I.; Van de Sande, W.; Fahal, A.H. The Accuracy of Histopathological and Cytopathological Techniques in the Identification of the Mycetoma Causative Agents. PLoS Negl. Trop. Dis. 2019, 13, e0007056. [Google Scholar] [CrossRef]
- Oladele, R.O.; Ly, F.; Sow, D.; Akinkugbe, A.O.; Ocansey, B.K.; Fahal, A.H.; van de Sande, W.W.J. Mycetoma in West Africa. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Fahal, A.H. The Khartoum call for action Khartoum, Sudan—2019. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 295–296. [Google Scholar] [CrossRef]
- Kébé, M.; Ba, O.; Mohamed Abderahmane, M.A.; Mohamed Baba, N.D.; Ball, M.; Fahal, A. A study of 87 mycetoma patients seen at three health facilities in Nouakchott, Mauritania. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Fahal, A.H. Mycetoma: The journey from neglect to recognition as a neglected tropical disease. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 292–294. [Google Scholar] [CrossRef]
- Fahal, A.H.; Suliman, S.H.; Hay, R. Mycetoma: The Spectrum of Clinical Presentation. Trop. Med. Infect. Dis. 2018, 3, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, P.; Jha, A. Mycetoma: Reviewing a neglected disease. Clin. Exp. Dermatol. 2019, 44, 123–129. [Google Scholar] [CrossRef]
- Traxler, R.M.; Beer, K.D.; Blaney, D.D.; van de Sande, W.W.J.; Fahal, A.H.; Asiedu, K.B.; Bower, W.A.; Chiller, T. Development of the Global Mycetoma Working Group. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Mahgoub, E. Mycetoma in Sudan: Experience of the Mycetoma Project from 1968 to 1991. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 287–291. [Google Scholar] [CrossRef]
- Van de Sande, W.W. Global burden of human mycetoma: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2013, 7, e2550. [Google Scholar] [CrossRef] [Green Version]
- Emery, D.; Denning, D.W. The global distribution of actinomycetoma and eumycetoma. PLoS Negl. Trop. Dis. 2020, 14, e0008397. [Google Scholar] [CrossRef] [PubMed]
- Mhmoud, N.A.; Siddig, E.E.; Nyuykonge, B.; Bakhiet, S.M.; van de Sande, W.; Fahal, A.H. Mycetoma caused by Microascus gracilis: A novel agent of human eumycetoma in Sudan. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Nasr, A.; Abushouk, A.; Hamza, A.; Siddig, E.; Fahal, A.H. Th-1, Th-2 Cytokines Profile among Madurella mycetomatis Eumycetoma Patients. PLoS Negl. Trop. Dis. 2016, 10, e0004862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abushouk, A.; Nasr, A.; Masuadi, E.; Allam, G.; Siddig, E.E.; Fahal, A.H. The Role of Interleukin-1 cytokine family (IL-1β, IL-37) and interleukin-12 cytokine family (IL-12, IL-35) in eumycetoma infection pathogenesis. PLoS Negl. Trop. Dis. 2019, 13, e0007098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddig, E.E.; Mohammed Edris, A.M.; Bakhiet, S.M.; van de Sande, W.W.J.; Fahal, A.H. Interleukin-17 and matrix metalloprotease-9 expression in the mycetoma granuloma. PLoS Negl. Trop. Dis. 2019, 13, e0007351. [Google Scholar] [CrossRef] [Green Version]
- Puerta-Arias, J.D.; Pino-Tamayo, P.A.; Arango, J.C.; Salazar-Peláez, L.M.; González, A. Itraconazole in combination with neutrophil depletion reduces the expression of genes related to pulmonary fibrosis in an experimental model of paracoccidioidomycosis. Med. Mycol. 2018, 56, 579–590. [Google Scholar] [CrossRef] [Green Version]
- US Food and Drug Administration. FDA Drug Safety Communication: FDA Warns that Prescribing of Nizoral (Ketoconazole) Oral Tablets for Unapproved Uses Including Skin and Nail Infractions Continues Linked to Patient Death; US Food and Drug Administration: Madison, WI, USA, 2013.
- Lacroix, C.; Kerviler, E.; Morel, P.; Derouin, F.; Feuilhade de Chavin, M. Madurella Mycetomatis mycetoma treated successfully with oral voriconazole. Br. J. Dermatol. 2005, 152, 1067–1068. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.M.; Unis, G.; Hochhegger, B.; Severo, L.C. Scedosporium apiospermum eumycetoma successfully treated with oral voriconazole: A case report of a case and review of the Brazilian reports on scedosporiosis. Rev. Inst. Med. Trop. São Paulo 2013, 55, 121–123. [Google Scholar] [CrossRef]
- Crabol, Y.; Poiree, S.; Bougnoux, M.E.; Maunoury, C.; Barete, S.; Zeller, V.; Arvieux, C.; Pineau, S.; Amazzough, K.; Lecuit, M.; et al. Last generation triazoles for imported eumycetoma in eleven consecutive adults. PLoS Negl. Trop. Dis. 2014, 8, e3232. [Google Scholar] [CrossRef]
- Hay, R.J.; Mahgoub, E.S.; Leon, G.; al-Sogair, S.; Welsh, O. Mycetoma. J. Med. Vet. Mycol. 1992, 30, 41–49. [Google Scholar] [CrossRef]
- Agger, W.A.; Andes, D.; Burgess, J.W. Exophiala jeanselmei infection in a heart transplant recipient successfully treated with oral terbinafine. Clin. Infec. Dis. 2004, 38, e112–e115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rallis, E.; Frangoulis, E. Successful treatment of subcutaneous phaeohyphomycosis owing to Exophiala jeanselmei with oral terbinafine. Int. J. Dermatol. 2006, 45, 1369–1370. [Google Scholar] [CrossRef]
- N’Diaye, B.; Dieng, M.T.; Perez, A.; Stockmeyer, M.; Bakshi, R. Clinical efficacy and safety of oral terbinafine in fungal mycetoma. Int. J. Dermatol. 2006, 45, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Lackner, M.; De Man, F.H.; Eygendaal, D.; Wintermans, R.G.; Kluytmans, J.A.; Klaassen, C.H.; Meis, J.F. Severe prosthetic joint infection in an immunocompetent male patient due to a therapy refractory Pseudallescheria apiosperma. Mycoses 2011, 54, 22–27. [Google Scholar] [CrossRef]
- Morio, F.; Horeau-Langlard, D.; Gay-Andrieu, F.; Talarmin, J.P.; Haloun, A.; Treilhaud, M.; Despins, P.; Jossic, F.; Nourry, L.; Danner-Boucher, I.; et al. Disseminated Scedosporium/Pseudallescheria infection after double-lung transplantation in patients with cystic fibrosis. J. Clin. Microbiol. 2010, 48, 1978–1982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panackal, A.A.; Marr, K.A. Scedosporium/Pseudallescheria infections. Semin. Respir. Crit. Care Med. 2004, 25, 171–181. [Google Scholar] [CrossRef]
- Tóth, E.J.; Nagy, G.R.; Homa, M.; Ábrók, M.; Kiss, I.É.; Nagy, G.; Bata-Csörgő, Z.; Kemény, L.; Urbán, E.; Vágvölgyi, C.; et al. Recurrent Scedosporium apiospermum mycetoma successfully treated by surgical excision and terbinafine treatment, a case report and review of the literature. Ann. Clin. Microbiol. Antimicrob 2017, 16, 31. [Google Scholar] [CrossRef] [Green Version]
- Nesky, M.A.; McDougal, E.C.; Peacock, J.E., Jr. Pseudallescheria boydii brain abscess successfully treated with voriconazole and surgical drainage: Case report and literature review of central nervous system pseudallescheriasis. Clin. Infect. Dis. 2000, 31, 673–677. [Google Scholar] [CrossRef] [Green Version]
- Porte, L.; Khatibi, S.; Hajj, L.E.; Cassaing, S.; Berry, A.; Massip, P.; Linas, M.D.; Magnaval, J.F.; Sans, N.; Marchou, B. Scedosporium apiospermum mycetoma with bone involvement successfully treated with voriconazole. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 891–894. [Google Scholar] [CrossRef]
- Troke, P.; Aguirrebengoa, K.; Arteaga, C.; Ellis, D.; Heath, C.H.; Lutsar, I.; Rovira, M.; Nguyen, Q.; Slavin, M.; Chen, S.C.A. Treatment of scedosporiosis with voriconazole, clinical experience with 107 patients. Antimicrob. Agents Chemother. 2008, 52, 1743–1750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellinghoff, I.K.; Winston, D.J.; Mukwaya, G.; Schiller, G.J. Treatment of Scedosporium apiospermum brain abscesses with posaconazole. Clin. Infect. Dis. 2002, 34, 1648–1650. [Google Scholar] [CrossRef] [Green Version]
- Van de Sande, W.W.; Luijendijk, A.; Ahmed, A.O.; Bakker-Woudenberg, I.A.; van Belkum, A. Testing of the in vitro susceptibilities of Madurella mycetomatis to six antifungal agents by using the Sensititre system in comparison with a viability-based 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5- [(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT) assay and a modified NCCLS method. Antimicrob. Agents Chemother. 2005, 49, 1364–1368. [Google Scholar] [PubMed] [Green Version]
- De Hoog, G.S.; van Diepeningen, A.D.; Mahgoub, e.l.-S.; van de Sande, W.W. New species of Madurella, causative agents of black-grain mycetoma. J. Clin. Microbiol. 2012, 50, 988–994. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.A.; Kloezen, W.; Duncanson, F.; Zijlstra, E.E.; de Hoog, G.S.; Fahal, A.H.; van de Sande, W.W. Madurella mycetomatis is highly susceptible to ravuconazole. PLoS Negl. Trop. Dis. 2014, 8, e2942. [Google Scholar] [CrossRef] [PubMed]
- Mhmoud, N.A.; Santona, A.; Fiamma, M.; Siddig, E.E.; Deligios, M.; Bakhiet, S.M.; Rubino, S.; Fahal, A.H. Chaetomium atrobrunneum causing human eumycetoma: The first report. PLoS Negl. Trop. Dis. 2019, 13, e0007276. [Google Scholar] [CrossRef] [Green Version]
- Van de Sande, W.W.; Fahal, A.H.; Bakker-Woudenberg, I.A.; van Belkum, A. Madurella mycetomatis is not susceptible to the echinocandin class of antifungal agents. Antimicrob. Agents Chemother. 2010, 54, 2738–2740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Belkum, A.; Fahal, A.H.; van de Sande, W.W. In vitro susceptibility of Madurella mycetomatis to posaconazole and terbinafine. Antimicrob. Agents Chemother. 2011, 55, 1771–1773. [Google Scholar] [CrossRef]
- Yan, J.; Deng, J.; Zhou, C.J.; Zhong, B.Y.; Hao, F. Phenotypic and molecular characterization of Madurella pseudomycetomatis sp. nov., a novel opportunistic fungus possibly causing black-grain mycetoma. J. Clin. Microbiol. 2010, 48, 251–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, J.D.; Sibley, G.E.M.; Beckmann, N.; Dobb, K.S.; Slater, M.J.; McEntee, L.; Pré, S.d.; Livermore, J.; Bromley, M.J.; Wiederhold, N.P.; et al. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc. Natl. Acad. Sci. USA 2016, 113, 12809–12814. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.E. Pyrimidine nucleotide biosynthesis in animals: Genes, enzymes, and regulation of UMP biosynthesis. Annu. Rev. Biochem. 1980, 49, 253–279. [Google Scholar] [CrossRef]
- Du Pré, S.; Beckmann, N.; Almeida, M.C.; Sibley, G.E.; Law, D.; Brand, A.C.; Birch, M.; Read, N.D.; Oliver, J.D. Effect of the novel antifungal drug F901318 (olorofim) on growth and viability of Aspergillus fumigatus. Antimicrob. Agents Chemother. 2018, 62, e00231-18. [Google Scholar] [CrossRef] [Green Version]
- Buil, J.B.; Rijs, A.; Meis, J.F.; Birch, M.; Law, D.; Melchers, W.J.G.; Verweij, P.E. In vitro activity of the novel antifungal compound F901318 against difficult-to-treat Aspergillus isolates. J. Antimicrob. Chemother. 2017, 72, 2548–2552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lackner, M.; Birch, M.; Naschberger, V.; Grässle, D.; Beckmann, N.; Warn, P.; Gould, J.; Law, D.; Lass-Flörl, C.; Binder, U. Dihydroorotate dehydrogenase inhibitor olorofim exhibits promising activity against all clinically relevant species within Aspergillus section Terrei. J. Antimicrob. Chemother. 2018, 73, 3068–3073. [Google Scholar] [CrossRef]
- Rivero-Menendez, O.; Cuenca-Estrella, M.; Alastruey-Izquierdo, A. In vitro activity of olorofim (F901318) against clinical isolates of cryptic species of Aspergillus by EUCAST and CLSI methodologies. J. Antimicrob. Chemother. 2019, 74, 1586–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiederhold, N.P.; Law, D.; Birch, M. Dihydroorotate dehydrogenase inhibitor F901318 has potent in vitro activity against Scedosporium species and Lomentospora prolificans. J. Antimicrob. Chemother. 2017, 72, 1977–1980. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, K.M.; Astvad, K.M.T.; Hare, R.K.; Arendrup, M.C. EUCAST determination of olorofim (F901318) susceptibility of mold species, method validation, and MICs. Antimicrob. Agents Chemother. 2018, 62, e00487-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, W.; Eadie, K.; Konings, M.; Rijnders, B.; Fahal, A.H.; Oliver, J.D.; Birch, M.; Verbon, A.; van de Sande, W. Madurella mycetomatis, the main causative agent of eumycetoma, is highly susceptible to olorofim. J. Antimicrob. Chemother. 2020, 75, 936–941. [Google Scholar] [CrossRef] [Green Version]
- Biswas, C.; Law, D.; Birch, M.; Halliday, C.; Sorrell, T.C.; Rex, J.; Slavin, M.; Chen, S.C. In vitro activity of the novel antifungal compound F901318 against Australian Scedosporium and Lomentospora fungi. Med. Mycol. 2018, 56, 1050–1054. [Google Scholar] [CrossRef]
- Wang, D.L.; Xu, C.; Wang, G.C. A case of mycetoma caused by Scopulariopsis maduromycosis. Chin. Med. J. 1986, 99, 376–378. [Google Scholar]
- Marques, D.P.; Carvalho, J.; Rocha, S.; Domingos, R. A Case of Pulmonary Mycetoma Caused by Paecilomyces variotii. Eur. J. Case Rep. Intern Med. 2019, 6, 001040. [Google Scholar]
- Kyriakou, G.; Gialeli, E.; Lekkou, A.; Vryzaki, E.; Ravazoula, P.; Georgiou, S. Acremonium nail bed mycetoma masquerading as subungual squamous cell carcinoma. Dermatol. Online J. 2020, 26, 13030. [Google Scholar] [CrossRef]
- Deray, G. Amphotericin B nephrotoxicity. J. Antimicrob. Chemother. 2002, 49, 37–41. [Google Scholar] [CrossRef]
- Ahmed, A.O.; van Vianen, W.; ten Kate, M.T.; van de Sande, W.W.; van Belkum, A.; Fahal, A.H.; Verbrugh, H.A.; Bakker-Woudenberg, I.A. A murine model of Madurella mycetomatis eumycetoma. FEMS Immunol. Med. Microbiol. 2003, 37, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Kloezen, W.; van Helvert-van Poppel, M.; Fahal, A.H.; van de Sande, W.W. A Madurella mycetomatis Grain Model in Galleria mellonella Larvae. PLoS Negl. Trop. Dis. 2015, 9, e0003926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eadie, K.; Parel, F.; Helvert-van Poppel, M.; Fahal, A.; van de Sande, W. Combining two antifungal agents does not enhance survival of Galleria mellonella larvae infected with Madurella mycetomatis. Trop. Med. Int. Health 2017, 22, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, G.M.; Tijerina, R.; Najvar, L.; Rinaldi, M.; Yeh, I.T.; Graybill, J.R. Experimental murine model of disseminated Pseudallescheria infection. Med. Mycol. 2002, 40, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, G.M.; Tijerina, R.; Najvar, L.K.; Bocanegra, R.; Rinaldi, M.G.; Loebenberg, D.; Graybill, J.R. Activity of posaconazole against Pseudallescheria boydii: In vitro and in vivo assays. Antimicrob. Agents Chemother. 2003, 47, 1436–1438. [Google Scholar] [CrossRef] [Green Version]
- Lelievre, B.; Legras, P.; Godon, C.; Franconi, F.; Saint-Andre, J.P.; Bouchara, J.-P.; Diquet, B. Experimental models of disseminated scedosporiosis with cerebral involvement. J. Pharmacol. Exp. Ther. 2013, 345, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Calvo, E.; Pastor, F.J.; Guarro, J. Antifungal therapies in murine disseminated phaeohyphomycoses caused by Exophiala species. J. Antimicrob. Chemother. 2010, 65, 1455–1459. [Google Scholar] [CrossRef] [Green Version]
- Bellmann, R.; Smuszkiewicz, P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017, 45, 737–779. [Google Scholar] [CrossRef]
- DeFelice, R.; Johnson, D.G.; Galgiani, J.N. Gynecomastia with ketoconazole. Antimicrob. Agents Chemother. 1981, 19, 1073–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, A.V.; Liles, W.C. Posaconazole: A new agent for the prevention and management of severe, refractory or invasive fungal infections. Can. J. Infect. Dis. Med. Microbiol. 2008, 19, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Lo Re, V., III; Carbonari, D.M.; Lewis, J.D.; Forde, K.A.; Goldberg, D.S.; Reddy, K.R.; Haynes, K.; Roy, J.A.; Sha, D.; Marks, A.R.; et al. Oral Azole Antifungal Medications and Risk of Acute Liver Injury, Overall and by Chronic Liver Disease Status. Am. J. Med. 2016, 129, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Maxfield, L.; Preuss, C.V.; Bermudez, R. Terbinafine; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Alem, M.A.; Douglas, L.J. Effects of Aspirin and other nonsteroidal anti-inflammatory drugs on biofilms and blanktonic cells of Candida albicans. Antimicrob. Agents Chemother. 2004, 48, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Abdul Hussein, A.; Al-Janabi, S. Investigation of anti-dermatophytic effects of non-steroidal anti-inflammatory drugs on trichophyton mentagrophytes and epidermophyton floccosum. Iran. J. Pharm Res. 2011, 10, 547–552. [Google Scholar]
- Zhou, Y.; Wang, G.; Li, Y.; Liu, Y.; Song, Y.; Zheng, W.; Zhang, N.; Hu, X.; Yan, S.; Jia, J. In vitro interactions between aspirin and amphotericin B against planktonic cells and biofilm cells of Candida albicans and C. parapsilosis. Antimicrob. Agents Chemother. 2012, 56, 3250–3260. [Google Scholar] [CrossRef] [Green Version]
- Dupont, B. A non-steroidal anti-inflammatory drug to treat eumycetoma. Lancet Infect. Dis. 2016, 16, 779. [Google Scholar] [CrossRef]
- Dupont, B.; Datry, A.; Poirée, S.; Canestri, A.; Boucheneb, S.; Fourniols, E. Role of a NSAID in the apparent cure of a fungal mycetoma. J. Mycol. Med. 2016, 26, 86–93. [Google Scholar] [CrossRef]
- Wiederhold, N.P. Review of the Novel Investigational Antifungal Olorofim. J. Fungi 2020, 6, 122. [Google Scholar] [CrossRef] [PubMed]
Antifungal | Invitro | Human Infection | Route | Dose |
---|---|---|---|---|
Azole Antifungal | ||||
Ketoconazole | Active | Variable efficacy | Oral | 400–800 mg |
Itraconazole | Active | Variable efficacy | Oral | 200–400 mg |
Voriconazole | Active | Effective in few cases | Oral | 200 mg |
Posaconazole | Active | Effective in few cases | Oral | 400 mg |
Isavuconazole | Active | No data | NA | NA |
Fosravuconazole | Active | Clinical Trial (NCT03086226) | Oral | 300–400 mg |
Fluconazole | Not effective | Not effective | ||
Echinocandins | ||||
Caspofungin | Not active | No data | ||
Anidulafungin | Not active | No data | ||
Micafungin | Not active | No data | ||
Orotomides | ||||
Olorofim | Active | Clinical Trial (NCT03583164) | Oral | 30–300 mg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddig, E.E.; Ahmed, A.; Ali, Y.; Bakhiet, S.M.; Mohamed, N.S.; Ahmed, E.S.; Fahal, A.H. Eumycetoma Medical Treatment: Past, Current Practice, Latest Advances and Perspectives. Microbiol. Res. 2021, 12, 899-906. https://doi.org/10.3390/microbiolres12040066
Siddig EE, Ahmed A, Ali Y, Bakhiet SM, Mohamed NS, Ahmed ES, Fahal AH. Eumycetoma Medical Treatment: Past, Current Practice, Latest Advances and Perspectives. Microbiology Research. 2021; 12(4):899-906. https://doi.org/10.3390/microbiolres12040066
Chicago/Turabian StyleSiddig, Emmanuel Edwar, Ayman Ahmed, Yousif Ali, Sahar Mubarak Bakhiet, Nouh Saad Mohamed, Eiman Siddig Ahmed, and Ahmed Hassan Fahal. 2021. "Eumycetoma Medical Treatment: Past, Current Practice, Latest Advances and Perspectives" Microbiology Research 12, no. 4: 899-906. https://doi.org/10.3390/microbiolres12040066
APA StyleSiddig, E. E., Ahmed, A., Ali, Y., Bakhiet, S. M., Mohamed, N. S., Ahmed, E. S., & Fahal, A. H. (2021). Eumycetoma Medical Treatment: Past, Current Practice, Latest Advances and Perspectives. Microbiology Research, 12(4), 899-906. https://doi.org/10.3390/microbiolres12040066