The Current Level of MALDI-TOF MS Applications in the Detection of Microorganisms: A Short Review of Benefits and Limitations
Abstract
:1. Introduction
2. Approach to the Methodological Concept
3. Identification Reliability of MALDI-TOF
4. Detection of Infection Directly from Blood Culture by MALDI-TOF
5. Detection of Infection Directly from Urine by MALDI-TOF
6. Detection of Milk Microbial Contamination by MALDI-TOF
7. Utilization of MALDI-TOF in the Detection of Anaerobic Bacteria
8. Summary of Possible Advantages and Limits of Microbial Identification by MALDI-TOF
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rychert, J.A. Benefits, and Limitations of MALDI-TOF Mass Spectrometry for the Identification of Microorganisms. J. Infect. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Simke, F.; Fischer, P.; Marx, G.; Schweikhard, L. Simulations of a digital ion filter and a digital ion trap for heavy biomolecules. Int. J. Mass Spectrom. 2022, 473, 116779. [Google Scholar] [CrossRef]
- Beavis, R.C.; Chait, B.T. Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Commun. Mass Spectrom. 1989, 3, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Batoy SM, A.B.; Akhmetova, E.; Miladinovic, S.; Smeal, J.; Wilkins, C.L. Developments in MALDI mass spectrometry: The quest for the perfect matrix. Appl. Spectrosc. Rev. 2008, 43, 485–550. [Google Scholar] [CrossRef]
- Anhalt, J.P.; Fenselau, C. Identification of bacteria using mass spectrometry. Anal. Chem. 1975, 47, 219–225. [Google Scholar] [CrossRef]
- Keys, C.J.; Dare, D.J.; Sutton, H.; Wells, G.; Lunt, M.; McKenna, T.; McDowall, M.; Shah, H.N. Compilation of a MALDI-TOF mass spectral database for the rapid screening and characterisation of bacteria implicated in human infectious diseases. Infect Genet. Evol. 2004, 4, 221–242. [Google Scholar] [CrossRef]
- Jones, J.J.; Stump, M.J.; Fleming, R.C.; Lay, J.O.; Wilkins, C.L. Investigation of MALDI-TOF and FT-MS Techniques for Analysis of Escherichia c oli Whole Cells. Anal. Chem. 2003, 7, 1340–1347. [Google Scholar] [CrossRef]
- Giebel, R.; Worden, C.; Rust, S.M.; Kleinheinz, G.T.; Robbins, M.; Sandrin, T.R. Microbial fingerprinting using matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges. Adv. Appl. Microbiol. 2010, 71, 149–184. [Google Scholar]
- Faron, M.L.; Buchan, B.W.; Hyke, J.; Madisen, N.; Lillie, J.L.; Granato, P.A.; Wilson, D.A.; Procop, G.W.; Novak-Weekley, S.; Marlowe, E.; et al. Multicenter evaluation of the Bruker MALDI Biotyper CA system for the identification of clinical aerobic gram-negative bacterial isolates. PLoS ONE 2015, 10, e0141350. [Google Scholar] [CrossRef]
- Spanu, T.; De Carolis, E.; Fiori, B.; Sanguinetti, M.; D’Inzeo, T.; Fadda, G.; Posteraro, B. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to rpoB gene sequencing for species identification of bloodstream infection staphylococcal isolates. Clin. Microbiol. Infect. 2011, 17, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Handal, N.; Bakken, J.S.; Smith, T.H.; Johnsen, B.O.; Leegaard, T.M. Anaerobic blood culture isolates in a Norwegian university hospital: Identification by MALDI-TOF MS vs 16S rRNA sequencing and antimicrobial susceptibility profiles. Apmis 2015, 123, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Bizzini, A.; Greub, G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin. Microbiol. Infect. 2010, 16, 1614–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsohn, E.; Carol, L.; Nilsson, E.C. Chapter 12—Proteomic Techniques for Functional Identification of Bacterial Adhesins. In Lectins; Nilsson, C.L., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2007; pp. 299–325. [Google Scholar]
- Wieser, A.; Schneider, L.; Jung, J.; Schubert, S. MALDI-TOF MS in microbiological diagnostics—Identification of microorganisms and beyond (mini review). Appl. Microbiol. Biotechnol. 2012, 93, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Croxatto, A.; Prod’hom, G.; Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 2012, 36, 380–407. [Google Scholar] [CrossRef]
- Camara, J.E.; Hays, F.A. Discrimination between wild-type and ampicillin-resistant Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Bioanal. Chem. 2007, 389, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Edwards-Jones, V.; Claydon, M.A.; Evason, D.J.; Walker, J.; Fox, A.J.; Gordon, D.B. Rapid discrimination between methicillinsensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry. J. Med. Microbiol. 2000, 49, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Ryzhov, V.; Hathout, Y.; Fenselau, C. Rapid characterization of spores of Bacillus cereus group bacteria by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Appl. Environ. Microbiol. 2000, 66, 3828–3834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.E.; Rolain, J.M.; Raoult, D. Ongoing revolution in bacteriology: Routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef]
- Eigner, U.; Holfelder, M.; Oberdorfer, K.; Betz-Wild, U.; Bertsch, D.; Fahr, A.M. Performance of a matrix-assisted laser desorption ionizationtime- of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory. Clin. Lab. 2009, 55, 289–296. [Google Scholar]
- Cherkaoui, A.; Hibbs, J.; Emonet, S.; Tangomo, M.; Girard, M.; Francois, P.; Schrenzel, J. Comparison of two matrixassisted laser desorption ionization–time of flight mass spectrometry methods with conventional phenotypic identification for routine bacterialnspeciation. J. Clin. Microbiol. 2010, 48, 1169–1175. [Google Scholar] [CrossRef] [Green Version]
- Kollef, M.H. Inadequate antimicrobial treatment: An important determinant of outcome for hospitalized patients. Clin. Infect. Dis. 2000, 4, 131–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leibovici, L.; Shraga, I.; Drucker, M.; Konigsberger, H.; Samra, Z.; Pitlik, S.D. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J. Intern. Med. 1998, 244, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Petricoin, E.F.; Longo, C. Mass Spectrometry-Based Biomarker Discovery. Methods Mol. Biol. 2017, 1606, 297–311. [Google Scholar]
- Florio, W.; Morici, P.; Ghelardi, E.; Barnini, S.; Lupetti, A. Recent advances in the microbiological diagnosis of bloodstream infections. Crit. Rev. Microbiol. 2018, 44, 351–370. [Google Scholar] [CrossRef] [PubMed]
- Dubourg, G.; Raoult, D.; Fenollar, F. Emerging methodologies for pathogen identification in bloodstream infections: An update. Expert Rev. Mol. Diagn. 2019, 19, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Faron, M.L.; Buchan, B.W.; Ledeboer, N.A. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for use with positive blood cultures: Methodology, performance, and optimization. J. Clin. Microbiol. 2017, 55, 3328–3338. [Google Scholar] [CrossRef] [Green Version]
- Prod’hom, G.; Bizzini, A.; Durussel, C.; Bille, J.; Greub, G. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification frompositive blood culture pellets. J. Clin. Microbiol. 2010, 48, 1481–1483. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.; Sánchez-Juanes, F.; Porras-Guerra, I.; García-García, M.I.; García-Sánchez, J.E.; González-Buitrago, J.M.; Muñoz-Bellido, J.L. Microorganisms direct identification from blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 2011, 17, 546–551. [Google Scholar] [CrossRef] [Green Version]
- Moussaoui, W.; Jaulhac, B.; Ho_mann, A.M.; Ludes, B.; Kostrzewa, M.; Riegel, P.; Prévost, G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin. Microbiol. Infect. 2010, 16, 1631–1638. [Google Scholar] [CrossRef] [Green Version]
- Yonetani, S.; Ohnishi, H.; Ohkusu, K.; Matsumoto, T.; Watanabe, T. Direct identification of microorganisms from positive blood cultures by MALDI-TOF MS using an in-house saponin method. Int. J. Infect. Dis 2016, 52, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Schubert, S.; Weinert, K.; Wagner, C.; Gunzl, B.; Wieser, A.; Maier, T.; Kostrzewa, M. Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. J. Mol. Diagn. 2011, 13, 701–706. [Google Scholar] [CrossRef]
- Fothergill, A.; Kasinathan, V.; Hyman, J.; Walsh, J.; Drake, T.; Wang, Y.F. Rapid identification of bacteria and yeasts from positive-blood-culture bottles by using a lysis-filtration method and matrix-assisted laser desorption ionization-time of flight mass spectrum analysis with the SARAMIS database. J. Clin. Microbiol. 2013, 51, 805–809. [Google Scholar] [CrossRef] [Green Version]
- Ashizawa, K.; Murata, S.; Terada, T.; Ito, D.; Bunya, M.; Watanabe, K.; Teruuchi, Y.; Tsuchida, S.; Satoh, M.; Nishimura, M.; et al. Applications of copolymer for rapid identification of bacteria in blood culture broths using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Microbiol. Methods 2017, 139, 54–60. [Google Scholar] [CrossRef]
- Yonezawa, T.; Watari, T.; Ashizawa, K.; Hanada, D.; Yanagiya, T.; Watanabe, N.; Terada, T.; Tomoda, Y.; Fujii, S. Dvelopment of an improved rapid BACpro® protocol and a method for direct identification from blood-culture-positive bottles using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Microbiol. Methods 2018, 148, 138–144. [Google Scholar] [CrossRef]
- Oviaño, M.; Bou, G. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the Rapid Detection of Antimicrobial Resistance Mechanisms and Beyond. Clin. Microbiol. Rev. 2018, 32, e00037-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.B.; Atrzadeh, F.; Burnham, C.A.; Cavalieri, S.; Dunn, J.; Jones, S.; Mathews, C.; McNult, P.; Meduri, J.; Newhouse, C.; et al. ASM Clinical and Public Health Microbiology Committee and the ASM Corporate Council. Clinical Utility of Advanced Microbiology Testing Tools. J. Clin. Microbiol. 2019, 57, e00495-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croxatto, A.; Prod’hom, G.; Faverjon, F.; Rochais, Y.; Greub, G. Laboratory automation in clinical bacteriology: What system to choose? Clin. Microbiol. Infect. 2016, 22, 217–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, T.; Schwarz, G.; Kostrzewa, M.; Fahr, A.; HolfelderR, M.; Eigner, U.; Weller, U. Rapid identification of bacteria from blood cultures using MALDI-TOF MS. In Proceedings of the 48th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, DC, USA, 25–28 October 2008. [Google Scholar]
- Ferreira, L.; Sánchez-Juanes, F.; González-Ávila, M.; Cembrero-Fuciños, D.; Herrero-Hernández, A.; González-Buitrago, J.M.; Muñoz-Bellido, J.L. Direct identification of urinary tract pathogens from urine samples by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2010, 48, 2110–2115. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Liu, Y.; Li, S.; Yang, Z. Interaction of bacteria and ion-exchange particles and its potential in separation for matrix-assisted laser desorption/ionization mass spectrometric identification of bacteria in water. Rapid Commun. Mass Spectrom. 2009, 23, 3983–3993. [Google Scholar] [CrossRef] [PubMed]
- Íñigo, M.; Coello, A.; Fernández-Rivas, G.; Rivaya, B.; Hidalgo, J.; Quesada, M.D.; Ausina, V. Direct identification of urinary tract pathogens from urine samples, combining urine screening methods and matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2016, 54, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veron, L.; Mailler, S.; Girard, V.; Muller, B.H.; L’Hostis, G.; Ducruix, C.; Lesenne, A.; Richez, A.; Rostaing, H.; Lanet, V.; et al. Rapid urine preparation prior to identification of uropathogens by MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1787–1795. [Google Scholar] [CrossRef]
- Schwarz, G.; Maier, T.; Kostrzewa, M.; Boogen, C.; Weller, U. Rapid identification of bacteria causing urinary tract infections by MALDI-TOF. In Proceedings of the Abstract of the 48th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) and the 46th Infectious Diseases Society of America (IDSA), Washington, DC, USA, 25–28 October 2008. [Google Scholar]
- Wilson, D.J.; Middleton, J.R.; Adkins, P.R.F.; Goodell, G.M. Test agreement among biochemical methods, matrix-assisted laser desorption ionization–time of flight mass spectrometry, and 16S rRNA sequencing for identification of microorganisms isolated from bovine milk. J. Clin. Microbiol. 2019, 57, e01381-18. [Google Scholar] [CrossRef] [Green Version]
- Pukančíková, L.; Lipničanová, S.; Kačániová, M.; Chmelová, D.; Ondrejovič, M. Natural microflora of raw cow milk and their enzymatic spoilage potential. Nova Biotech Et Chim 2016, 15, 142–155. [Google Scholar] [CrossRef]
- Norin, E. How normal is a “normal” flora in animal or man? Anaerobe 2011, 17, 431–432. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Park, Y.; Kim, M.; Choi, J.Y.; Yong, D.; Jeong, S.H.; Lee, K. Anaerobic bacteremia: Impact of inappropriate therapy on mortality. Infect. Chemother. 2016, 48, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Lau, S.K.; Tang, B.S.; Teng, J.L.; Chan, T.M.; Curreem, S.O.; Fan, R.Y.; Ng, R.H.; Chan, J.F.; Yuen, K.Y.; Woo, P.C. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for identification of clinically significant bacteria that are difficult to identify in clinical laboratories. J. Clin. Pathol. 2014, 67, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Marinach-Patrice, C.; Lethuillier, A.; Marly, A.; Brossas, J.-Y.; Gené, J.; Symoens, F.; Datry, A.; Guarro, J.; Mazier, D.; Hennequin, C. Use of mass spectrometry to identify clinical Fusarium isolates. Clin. Microbiol. Infect. 2010, 15, 634–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavigne, J.P.; Espinal, P.; Dunyach-Remy, C.; Messad, N.; Pantel, A.; Sotto, A. Mass spectrometry: A revolution in clinical microbiology? Clin. Chem. Lab. Med. 2013, 51, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Rolain, J.M. Use of MALDI-TOF mass spectrometry for identification of bacteria that are difficult to culture. J. Microbiol. Methods 2013, 92, 14–24. [Google Scholar] [CrossRef]
- Clark, A.E.; Kaleta, E.J.; Arora, A.; Wolk, D.M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. [Google Scholar] [CrossRef] [Green Version]
- Chalupová, J.; Raus, M.; Sedlářová, M.; Šebela, M. Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol. Adv. 2014, 32, 230–241. [Google Scholar]
- Carlile, M.J.; Gooday, G.W.; Watkinson, S.C. The Fungi, 2nd ed.; Academic Press Ltd.: San Diego, CA, USA, 2001. [Google Scholar]
- Alcala, L.; Marín, M.; Ruiz, A.; Quiroga, L.; Zamora-Cintas, M.; Fernández-Chico, M.A.; Muñoz, P.; Muñoz, P.; Rodríguez-Sánchez, B. Identifying Anaerobic Bacteria Using MALDI-TOF Mass Spectrometry: A Four-Year Experience. Front. Cell. Infect. Microbiol. 2021, 11, 521014. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, S.; Umemura, H.; Nakayama, T. Current Status of Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) in Clinical Diagnostic Microbiology. Molecules 2020, 25, 4775. [Google Scholar] [CrossRef]
- Kim, Y.; Park, K.G.; Lee, K.; Park, Y.J. Direct identification of urinary tract pathogens from urine samples using the Vitek MS system based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. Ann. Lab. Med. 2015, 35, 416–422. [Google Scholar] [CrossRef]
- Barreiro, R.J.; Gonçalves, L.J.; Braga, C.A.P.; Dibbern, G.A.; Eberlin, N.M.; dos Santos, V.M. Non-culture-based identification of mastitis-causing bacteria by MALDI-TOF mass spectrometry. J. Dairy Sci. 2017, 100, 2928–2934. [Google Scholar] [CrossRef] [PubMed]
Diagnostic Sample | Advantages of MALDI- TOF | Limitation of MALDI-TOF | Directions for Use |
---|---|---|---|
Identification of pure cultures | |||
Gram+ bacteria | High-confidence identification [52] | Spore formation ability distorts the mass spectrum [53] | It is important to examine 24-h culture. |
Gram− bacteria | High-confidence identification [52] | - | Cultures that are older than 24 h can also be examined. |
Fungi | The species in the library can be reliably identified [54] | Difficult to extract the eukaryotic riboprotein [55] | An extra exploration procedure is required during sample preparation. |
Anaerobic culture | High-confidence identification (If it is not spore-forming species) [56] | - | Depends on the Gram type. |
Direct identification from biological samples | |||
Blood culture | Possible to detect bloodstream infection [38] | It is necessary for bacterial abundance above a certain threshold [57] | The separation of blood cells is required to recover the bacterial cells selectively. |
Urine | Possible to detect urinary tract infections directly [38] | Above 103 cell.ml [58] | A membrane filtration or magnetic separation-based collection or enrichment of the pathogen. |
Milk | Direct identification from samples is possible [45] | It is rare for only one microbe to be present above the detectable threshold [59] | Confirmation of the result is recommended by DNA sequencing or culturing. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, A.; Ringer, M.; Kotroczó, Z.; Mohácsi-Farkas, C.; Kocsis, T. The Current Level of MALDI-TOF MS Applications in the Detection of Microorganisms: A Short Review of Benefits and Limitations. Microbiol. Res. 2023, 14, 80-90. https://doi.org/10.3390/microbiolres14010008
Haider A, Ringer M, Kotroczó Z, Mohácsi-Farkas C, Kocsis T. The Current Level of MALDI-TOF MS Applications in the Detection of Microorganisms: A Short Review of Benefits and Limitations. Microbiology Research. 2023; 14(1):80-90. https://doi.org/10.3390/microbiolres14010008
Chicago/Turabian StyleHaider, Ali, Marianna Ringer, Zsolt Kotroczó, Csilla Mohácsi-Farkas, and Tamás Kocsis. 2023. "The Current Level of MALDI-TOF MS Applications in the Detection of Microorganisms: A Short Review of Benefits and Limitations" Microbiology Research 14, no. 1: 80-90. https://doi.org/10.3390/microbiolres14010008
APA StyleHaider, A., Ringer, M., Kotroczó, Z., Mohácsi-Farkas, C., & Kocsis, T. (2023). The Current Level of MALDI-TOF MS Applications in the Detection of Microorganisms: A Short Review of Benefits and Limitations. Microbiology Research, 14(1), 80-90. https://doi.org/10.3390/microbiolres14010008