Unveiling the Potency and Harnessing the Antibacterial Activities of Plant Oils against Foodborne Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Oils
2.2. GC-MS Analysis
2.3. Bacterial Strains
2.4. Antimicrobial Activity Using Disc Diffusion Method
2.5. Preparation of Micelle (Working) Solution
2.6. Determination of the Minimum Inhibitory Concentrations (MIC)
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Holley, R.A.; Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 2005, 22, 273–292. [Google Scholar] [CrossRef]
- Hu, K.; Renly, S.; Edlund, S.; Davis, M.; Kaufman, J. A modeling framework to accelerate food-borne outbreak investigations. Food Control 2016, 59, 53–58. [Google Scholar] [CrossRef]
- Karpińska, M.; Borowski, J.; Danowska-Oziewicz, M. The use of natural antioxidants in ready-to-serve food. Food Chem. 2001, 72, 5–9. [Google Scholar] [CrossRef]
- Marino, M.; Bersani, C.; Comi, G. Impedance measurements to study the antimicrobial activity of essential oils from Lamiaceae and Compositae. Int. J. Food Microbiol. 2001, 67, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; De Martino, L.; Melone, A.; De Feo, V.; Coppola, R.; Nazzaro, F. Preservation of chicken breast meat treated with thyme and balm essential oils. J. Food Sci. 2010, 75, M528–M535. [Google Scholar] [CrossRef] [PubMed]
- Dima, C.; Dima, S. Essential oils in foods: Extraction, stabilization, and toxicity. Curr. Opin. Food Sci. 2015, 5, 29–35. [Google Scholar] [CrossRef]
- Dorman, H.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Carson, C.F.; Hammer, K.A.; Riley, T.V. Melaleuca alternifolia (tea tree) oil: A review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 2006, 19, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Karuppiah, P.; Rajaram, S. Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens. Asian Pac. J. Trop. Biomed. 2012, 2, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications; CRC Press: Boca Raton, FL, USA, 2015; ISBN 1466590475. [Google Scholar]
- Sienkiewicz, M.; Lysakowska, M.; Ciecwierz, J.; Denys, P.; Kowalczyk, E. Antibacterial activity of thyme and lavender essential oils. Med. Chem. 2011, 7, 674–689. [Google Scholar] [CrossRef]
- Burt, S.A.; Reinders, R.D. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett. Appl. Microbiol. 2003, 36, 162–167. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Vargas, M.; González-Martínez, C.; Chiralt, A.; Chafer, M. Use of essential oils in bioactive edible coatings: A review. Food Eng. Rev. 2011, 3, 1–16. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, F.; Li, Q.; Huang, J.; Ju, J. Antifungal mechanism of essential oil against foodborne fungi and its application in the preservation of baked food. Crit. Rev. Food Sci. Nutr. 2022, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Man, A.; Santacroce, L.; Iacob, R.; Mare, A.; Man, L. Antimicrobial activity of six essential oils against a group of human pathogens: A comparative study. Pathogens 2019, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Ambler, J.; Mitchell, S.L.; Castanheira, M.; Dingle, T.; Hindler, J.A.; Koeth, L.; Sei, K. CLSI methods development and standardization working group best practices for evaluation of antimicrobial susceptibility tests. J. Clin. Microbiol. 2018, 56, 10–1128. [Google Scholar] [CrossRef]
- Biswas, K.; Chattopadhyay, I.; Banerjee, R.K.; Bandyopadhyay, U. Biological activities and medicinal properties of neem (Azadirachta indica). Curr. Sci. 2002, 82, 1336–1345. [Google Scholar]
- Rinaldi, F.; Hanieh, P.N.; Maurizi, L.; Longhi, C.; Uccelletti, D.; Schifano, E.; Del Favero, E.; Cantù, L.; Ricci, C.; Ammendolia, M.G. Neem Oil or Almond Oil Nanoemulsions for Vitamin E Delivery: From Structural Evaluation to in vivo Assessment of Antioxidant and Anti-Inflammatory Activity. Int. J. Nanomed. 2022, 6447–6465. [Google Scholar] [CrossRef]
- Kappally, S.; Shirwaikar, A.; Shirwaikar, A. Coconut oil–a review of potential applications. Hygeia JD Med. 2015, 7, 34–41. [Google Scholar]
- Mohammad, H.; Prabhu, K.; Rao, M.R.K.; Sundram, L.; Dinakar, S.; Kumar, M.S. The gas chromatography-mass spectrometry study of one ayurvedic pain relieving oil “Karpooradi Thailam”. Drug Invent. Today 2019, 12, 1542–1546. [Google Scholar]
- Devi, K.P.; Suganthy, N.; Kesika, P.; Pandian, S.K. Bioprotective properties of seaweeds: In vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complement. Altern. Med. 2008, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.W.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Phenolic compounds and squalene in olive oils: The concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignansand squalene. Food Chem. Toxicol. 2000, 38, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Covas, M.-I.; de la Torre, K.; Farré-Albaladejo, M.; Kaikkonen, J.; Fitó, M.; López-Sabater, C.; Pujadas-Bastardes, M.A.; Joglar, J.; Weinbrenner, T.; Lamuela-Raventós, R.M. Postprandial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans. Free Radic. Biol. Med. 2006, 40, 608–616. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Carvalho, M.; Albano, H.; Teixeira, P. In vitro antimicrobial activities of various essential oils against pathogenic and spoilage microorganisms. J. Food Qual. Hazards Control 2018, 5, 41–48. [Google Scholar] [CrossRef]
- Wylie, M.R.; Merrell, D.S. The antimicrobial potential of the neem tree Azadirachta indica. Front. Pharmacol. 2022, 13, 891535. [Google Scholar] [CrossRef]
- Ogbolu, D.O.; Oni, A.A.; Daini, O.A.; Oloko, A.P. In vitro antimicrobial properties of coconut oil on Candida species in Ibadan, Nigeria. J. Med. Food 2007, 10, 384–387. [Google Scholar] [CrossRef]
- Shilling, M.; Matt, L.; Rubin, E.; Visitacion, M.P.; Haller, N.A.; Grey, S.F.; Woolverton, C.J. Antimicrobial effects of virgin coconut oil and its medium-chain fatty acids on Clostridium difficile. J. Med. Food 2013, 16, 1079–1085. [Google Scholar] [CrossRef]
- Rowsni, A.A.; Islam, K.; Khan, M.M.; Kabir, M.S. Antimicrobial activity of essential oils against food-borne pathogenic bacteria. Int. J. Pharm. Sci. Res. 2014, 5, 4876. [Google Scholar]
- Kalaivani, R.; Devi, V.J.; Umarani, R.; Periyanayagam, K.; Kumaraguru, A.K. Antimicrobial activity of some important medicinal plant oils against human pathogens. J. Biol. Act. Prod. Nat. 2012, 2, 30–37. [Google Scholar] [CrossRef]
- Naz, R.; Bano, A. Antimicrobial potential of Ricinus communis leaf extracts in different solvents against pathogenic bacterial and fungal strains. Asian Pac. J. Trop. Biomed. 2012, 2, 944–947. [Google Scholar] [CrossRef] [PubMed]
- Medema, G.J.; Payment, P.; Dufour, A.; Robertson, W.; Waite, M.; Hunter, P.; Kirby, R.; Andersson, Y. Safe Drinking Water: An Ongoing Challenge. In Assessing Microbial Safety of Drinking Water; IWA Publishing: London, UK, 2003; pp. 11–45. [Google Scholar]
- Upadhyay, R.K.; Dwivedi, P.; Ahmad, S. Screening of antibacterial activity of six plant essential oils against pathogenic bacterial strains. Asian J. Med. Sci. 2010, 2, 152–158. [Google Scholar]
- Nazzaro, F.; Fratianni, F.; Cozzolino, R.; Martignetti, A.; Malorni, L.; De Feo, V.; Cruz, A.G.; d’Acierno, A. Antibacterial activity of three extra virgin olive oils of the Campania region, Southern Italy, related to their polyphenol content and composition. Microorganisms 2019, 7, 321. [Google Scholar] [CrossRef] [PubMed]
Plant Species | Family | Local Name | Common Name | Plant Parts Used |
---|---|---|---|---|
Azadirachta indica | Meliaceae | Vembu, Sengumaru, Veppa | Neem | Seed |
Ricinus communis | Euphorbiaceae | Amanakku, Kottamuthu | Castor | Seed |
Cocos nucifera | Arecaceae | Tennai, Tengku | Coconut | Fruit |
Elaeocarpus floribundus | Elaeocarpaceae | Veralikkai | Indian Olive | Whole fruit |
Test Organisms | Zone of Inhibition (ZOI) | ||||
---|---|---|---|---|---|
Control | Neem Oil | Coconut Oil | Castor Oil | Olive Oil | |
Staphylococcus aureus | 20 ± 0.44 a | 13 ± 0.84 b | 14 ± 0.55 b | 8 ± 0.75 c | ND |
Bacillus cereus | 20 ± 0.28 a | 15 ± 0.51 b | 13 ± 2.6 c | 11 c | 11 ± 1.2 c |
Escherichia coli | 20 ± 0.31 a | 15 ± 0.96 b | 10 ± 0.95 c | 8 ± 0.15 d | 11 ± 0.12 c |
Salmonella sp. | 19 ± 0.25 a | 13 ± 0.29 b | ND | ND | ND |
Campylobacter sp. | 19 ± 0.12 a | 14 ± 1.12 b | ND | ND | ND |
Listeria monoctogenes | 20 ± 0.29 a | 16 + 0.61 b | 13 ± 1.2 c | 12 ± 1.8 c | 10 ± 0.2 d |
Test Organisms | Neem Oil | Coconut Oil | Castor Oil | Olive Oil | Control |
---|---|---|---|---|---|
Staphylococcus aureus | 1.05 b | 8.43 d | 3.15 c | ND | 0.2 a |
Bacillus cereus | 3.15 c | 6.32 b | 6.32 b | 3.15 c | 0.2 a |
Escherichia coli | 3.15 b | 3.15 b | 1.05 a | 3.15 b | 0.2 a |
Salmonella sp. | 6.32 a | ND | ND | ND | 0.25 a |
Campylobacter sp. | 12.65 a | ND | ND | ND | 0.25 a |
Listeria monoctogenes | 1.05 a | 3.15 c | 6.32 d | 3.15 c | 0.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvarajan, V.S.; Selvarajan, R.; Pandiyan, J.; Abia, A.L.K. Unveiling the Potency and Harnessing the Antibacterial Activities of Plant Oils against Foodborne Pathogens. Microbiol. Res. 2023, 14, 1291-1300. https://doi.org/10.3390/microbiolres14030087
Selvarajan VS, Selvarajan R, Pandiyan J, Abia ALK. Unveiling the Potency and Harnessing the Antibacterial Activities of Plant Oils against Foodborne Pathogens. Microbiology Research. 2023; 14(3):1291-1300. https://doi.org/10.3390/microbiolres14030087
Chicago/Turabian StyleSelvarajan, Vijaya Samoondeeswari, Ramganesh Selvarajan, Jeevan Pandiyan, and Akebe Luther King Abia. 2023. "Unveiling the Potency and Harnessing the Antibacterial Activities of Plant Oils against Foodborne Pathogens" Microbiology Research 14, no. 3: 1291-1300. https://doi.org/10.3390/microbiolres14030087
APA StyleSelvarajan, V. S., Selvarajan, R., Pandiyan, J., & Abia, A. L. K. (2023). Unveiling the Potency and Harnessing the Antibacterial Activities of Plant Oils against Foodborne Pathogens. Microbiology Research, 14(3), 1291-1300. https://doi.org/10.3390/microbiolres14030087