The Molecular Epidemiology of Clostridioides difficile Infection in Central India: A Prospective Observational Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Patient Recruitment
2.2. Microbiological Analysis
2.3. Minimum Inhibitory Concentration (MIC) Determination
2.4. Genomic DNA Preparation
2.5. PCR Ribotyping Analysis of C. difficile Strains
2.6. Novel Ribotype Phylogenetic Analysis
2.7. Statistical Analyses
3. Results
3.1. Incidence of C. difficile in the Study Population and Seasonal Variation
3.2. Antimicrobial Susceptibility
3.3. PCR Ribotyping Analysis of C. difficile Strains
3.4. Novel Ribotype Phylogeny
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, J.S.; Monaghan, T.M.; Wilcox, M.H. Clostridium difficile infection: Epidemiology, diagnosis and understanding transmission. Nat. Rev. Gastroenterolo. Hepatol. 2016, 13, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Finn, E.; Andersson, F.L.; Madin-Warburton, M. Burden of Clostridioides difficile infection (CDI)—A systematic review of the epidemiology of primary and recurrent CDI. BMC Infect. Dis. 2021, 21, 456. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, T.M. New perspectives in Clostridium difficile disease pathogenesis. Infect. Dis. Clin. North Am. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Monaghan, T.M.; Seekatz, A.M.; Mullish, B.H.; Moore-Gillon, C.; Dawson, L.F.; Ahmed, A.; Kao, D.; Chan, W.C. Clostridioides difficile: Innovations in target discovery and potential for therapeutic success. Expert Opin. Ther. Targets 2021, 25, 949–963. [Google Scholar] [CrossRef] [PubMed]
- Eze, P.; Balsells, E.; Kyaw, M.H.; Nair, H. Risk factors for Clostridium difficile infections—An overview of the evidence base and challenges in data synthesis. J. Glob. Health 2017, 7, 010417. [Google Scholar] [CrossRef] [PubMed]
- Furuya-Kanamori, L.; Stone, J.C.; Clark, J.; McKenzie, S.J.; Yakob, L.; Paterson, D.L.; Riley, T.V.; Doi, S.A.R.; Clements, A.C. Comorbiditoes, Exposure to Medications, and the Risk of Community-Acquired Clostridium difficile Infection: A systematic review and meta-analysis. Infect. Control. Hosp. Epidemiol. 2015, 36, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Furuya-Kanamori, L.; Wangdi, K.; Yakob, L.; McKenzie, S.J.; Doi, S.A.R.; Clark, J.; Paterson, D.L.; Riley, T.V.; Clements, A.C.A. 25-Hydroxyvitamin D Concentrations and Clostridium difficile Infection: A Meta-Analysis. JPEN J. Parenter. Enteral Nutr. 2017, 41, 890–895. [Google Scholar] [CrossRef]
- Bignardi, G.E. Risk factors for Clostridium difficile infection. J. Hosp. Infect. 1998, 40, 1–15. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Konstantelias, A.A.; Loizidid, G.; Rafailidis, P.I.; Falagas, M.E. Risk factors for development of Clostridium difficile infection due to BI/NAP1/027 strain: A meta-analysis. Int. J. Infect. Dis. 2012, 16, e768–e773. [Google Scholar] [CrossRef]
- Monaghan, T.M.; Biswas, R.; Satav, A.; Ambalkar, S.; Kashyap, R.S. Clostridioides difficile epidemiology in India. Anaerobe 2022, 74, 102517. [Google Scholar] [CrossRef]
- Brajerova, M.; Kikova, J.; Krutova, M. Clostridium difficile epidemiology in the Middle and Far East. Anaerobe 2022, 74, 102542. [Google Scholar] [CrossRef] [PubMed]
- Kullin, B.; Abratt, V.R.; Reid, S.J.; Riley, T.V. Clostridioides difficile infection in Africa: A narrative review. Anaerobe 2022, 74, 102549. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Borah, P.; Sharma, R.K.; Rajkhowa, S.; Rupnik, M.; Saikia, D.P.; Hasin, D.; Hussain, I.; Deka, N.; Barkalita, L.; et al. Molecular characteristics of Clostridium difficile isolates from human and animals in the Northeastern region of India. Mol. Cell. Probes 2016, 30, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Vaishnavi, C.; Singh, M.; Mahmood, S.; Kochhar, R. Prevalence, and molecular types of Clostridium difficile isolates from faecal specimens of patients in a tertiary care centre. J. Med. Microbiol. 2015, 64, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Vaishnavi, C.; Mahmood, S.; Kochhar, R. Toxinotyping and Sequencing of Clostridium difficile Isolates from Patients in a Tertiary Care Hospital of Northern India. Front. Med. 2017, 4, 33. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, T.M.; Sloan, T.J.; Stockdale, S.R.; Blanchard, A.M.; Emes, R.D.; Wilcox, M.; Biswas, R.; Nashine, R.; Manke, S.; Gandhi, J.; et al. Metagenomics reveals impact of geography and acute diarrheal disease on the Central Indian human gut microbiome. Gut Microbes 2020, 12, 1752605. [Google Scholar] [CrossRef] [PubMed]
- Walk, S.T.; Micic, D.; Jain, R.; Lo, E.S.; Liu, E.W.; Almassalha, L.M.; Ewing, S.A.; Ring, C.; Galecki, A.T.; Rogers, M.A.M.; et al. Clostridium difficile ribotype does not predict severe infection. Clin. Infect. Dis. 2012, 55, 1661–1668. [Google Scholar] [CrossRef]
- Martinson, J.N.V.; Broadway, S.; Lohman, E.; Johnson, C.; Alam, M.J.; Khaleduzzaman, M.; Garey, K.W.; Schlackman, J.; Young, V.B.; Santhosh, K.; et al. Evaluation of portability and cost of a fluorescent PCR ribotyping protocol for Clostridium difficile epidemiology. J. Clin. Microbiol. 2015, 53, 1192–1197. [Google Scholar] [CrossRef]
- Persson, S.; Torpdahl, M.; Olsen, K.E.P. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin. Microbiol. Infect. 2008, 14, 1057–1064. [Google Scholar] [CrossRef]
- Schmidt, T.M.; Relman, D.A. Phylogenetic identification of uncultured pathogens using ribosomal RNA sequences. Methods Enzymol. 1994, 235, 205–222. [Google Scholar] [CrossRef]
- He, M.; Sebaihia, M.; Lawley, T.D.; Stabler, R.A.; Dawson, L.F.; Martin, M.J.; Holt, K.E.; Seth-Smith, H.M.; Quail, M.A.; Rance, R.; et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc. Natl. Acad. Sci. USA 2010, 107, 7527–7532. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Ekka, M.; Raghunandan, P.; Ranjan, S.; Sinha, S.; Sharma, S.K.; Chaudhry, R.; Sharma, N.; Ahmad, H.; Samantaray, J.C.; et al. Clostridium difficile infections in HIV-positive patients with diarrhoea. Natl. Med. J. India 2014, 27, 138–140. [Google Scholar] [PubMed]
- Abuderman, A.A.; Mateen, A.; Syed, R.; Aloahd, M.S. Molecular characterization of Clostridium difficile isolated from carriage and association of its pathogenicity to prevalent toxin genes. Microb. Pathog. 2018, 120, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Curcio, D.; Cane, A.; Fernandez, F.; Correa, J. Clostridium difficile-associated diarrhea in developing countries: A systematic review and meta-analysis. Infect. Dis. Ther. 2019, 8, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Borren, N.Z.; Ghadermarzi, S.; Hutfless, S.; Ananthakrishnan, A.N. The emergence of Clostridium difficile infection in Asia: A systematic review and meta-analysis of incidence and impact. PLoS ONE 2017, 12, e0176797. [Google Scholar] [CrossRef] [PubMed]
- Azimirad, M.; Krutova, M.; Nyc, O.; Hasani, Z.; Afrisham, L.; Alebouyeh, M.; Zali, M.R. Molecular typing of Clostridium difficile isolates cultured from patient stool samples and gastroenterological medical devices in a single Iranian hospital. Anaerobe 2017, 47, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Auchtung, J.M. Control of Clostridium difficile Infection by Defined Microbial Communities. Microbiol. Spectr. 2017, 5, 10. [Google Scholar] [CrossRef]
- Baghani, A.; Mesdaghinia, A.; Kuijper, E.J.; Aliramezani, A.; Talebi, M.; Douraghi, M. High prevalence of Clostridiodes diffiicle PCR ribotypes 001 and 126 in Iran. Sci. Rep. 2020, 10, 4658. [Google Scholar] [CrossRef]
- Kullin, B.; Brock, T.; Rajabally, N.; Anwar, F.; Vedantam, G.; Reid, S.; Abratt, V. Characterisation of Clostridium difficile strains isolated from Groote Schuur Hospital, Cape Town, South Africa. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 1709–1718. [Google Scholar] [CrossRef]
- Freeman, J.; Vernon, J.; Pilling, S.; Morris, K.; Nicolson, S.; Shearman, S.; Clark, E.; Palacios-Fabrega, J.A.; Wilcox, M.; The Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group. Five-year Pan-European, longitudinal surveillance of Clostridium difficile ribotype prevalence and antimicrobial resistance: The extended ClosER study. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Gonzales-Luna, A.J.; Carlson, T.J.; Dotson, K.M.; Poblete, K.; Costa, G.; Miranda, J.; Lancaster, C.; Walk, S.T.; Tupy, S.; Begum, K.; et al. PCR ribotypes of Clostridioides difficile across Texas from 2011 to 2018 including emergence of ribotype 255. Emerg. Microbes Infect. 2020, 9, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Alderman, K.; Turner, L.R.; Tong, S. Floods and human health: A systematic review. Environ. Int. 2012, 47, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.J.; Wade, T.J.; Hilborn, E.D. Flooding and Clostridium difficile Infection. A Case-Crossover Analysis. Int. J. Environ. Res. Public Health 2015, 12, 6948–6964. [Google Scholar] [CrossRef] [PubMed]
- Furuya-Kanamori, L.; McKenzie, S.J.; Yakob, L.; Clark, J.; Paterson, D.L.; Riley, T.V.; Clements, A.C. Clostridium difficile Infection Seasonality: Patterns across Hemispheres and Continents—A Systematic Review. PLoS ONE 2015, 10, e0120730. [Google Scholar] [CrossRef]
- Farooqui, H.H.; Selvaraj, S.; Mehta, A.; Heymann, D.L. Community level antibiotic utilization in India and its comparison vis-à-vis European countries: Evidence from pharmaceutical sales data. PLoS ONE 2014, 13, e0204805. [Google Scholar] [CrossRef] [PubMed]
- Keisam, S.; Tuikhar, N.; Ahmed, G.; Jeyaram, K. Toxigenic and pathogenic potential of enteric bacterial pathogens prevalent in the traditional fermented foods marketed in rhe Northeast regions of India. Int. J. Food Microbiol. 2019, 296, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Sharma, R.K.; Borah, P.; Rajkhowa, S.; Hussain, I.; Barkalita, L.M.; Hasin, D.; Choudhury, M.; Rupnik, M.; Deka, N.K.; et al. Isolation and characterization of Clostridium difficile from pet dogs in Assam, India. Anaerobe 2015, 36, 9–13. [Google Scholar] [CrossRef]
- Tenover, F.C.; Tickler, I.; Persing, D.H. Antimicrobial-resistant strains of Clostridium difficile from North America. Antimicrob. Agents Chemother. 2012, 56, 2929–2932. [Google Scholar] [CrossRef]
- Majhi, S.; Dash, M.; Mohapatra, D.; Mohapatra, A.; Chayani, N. Detection of inducible and constitutive isolates in a tertiary care hospital, Eastern India. Avicenna J. Med. 2016, 6, 75–80. [Google Scholar] [CrossRef]
- Rattan, P.; Yang, N. Inhibiting Hospital Associated Infection of Toxigenic Clostridium difficile Using Natural Spice—Tumeric (Curcumin). Am. J. Gastroenterol. 2020, 105, pS122. [Google Scholar]
- Mody, D.; Athamneh, A.I.M.; Seleem, M.N. Curcumin: A natural derivative with antibacterial activity against Clostridium difficile. J. Glob. Antimicrob. Resist. 2020, 21, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Mefferd, C.C.; Bhute, S.S.; Phan, J.R.; Villarama, J.V.; Do, D.M.; Alarcia, S.; Abel-Santos, E.; Hedlund, B.P. A High-Fat/High-Protein, Atkins-Type Diet Exacerbates Clostridioides (Clostridium) difficile Infection in Mice, whereas a High-Carbohydrate Diet Protects. mSystems 2020, 5, e00765-19. [Google Scholar] [CrossRef] [PubMed]
- Hryckowian, A.J.; Van Treuren, W.; Smits, S.A.; Davis, N.M.; Gardner, J.O.; Bouley, D.M.; Sonnenburg, J.L. Microbiota-accessible carbohydrates suppress Clostridium difficile infection in a murine model. Nat. Microbiol. 2018, 3, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, T.M.; Biswas, R.N.; Nashine, R.R.; Joshi, S.S.; Mullish, B.H.; Seekatz, A.M.; Blanco, J.M.; McDonald, J.A.K.; Marchesi, J.R.; Yau, T.O.; et al. Multiomics profiling reveals signatures of dysmetabolism in urban populations in India. Microorganisms 2021, 9, 1485. [Google Scholar] [CrossRef] [PubMed]
- Gaulke, C.A.; Sharpton, T.J. The influence of ethnicity and geography on human gut microbiome composition. Nat. Med. 2018, 24, 1495–1496. [Google Scholar] [CrossRef] [PubMed]
- Senghor, B.; Sokhna, C.; Ruimy, R.; Lagier, J.C. Gut microbiota diversity according to dietary habits and geographical provenance. Hum. Microbiome J. 2018, 7–8, 1–9. [Google Scholar] [CrossRef]
- Green, R.; Milner, J.; Joy, E.J.M.; Agrwal, S.; Dangour, A.D. Dietary patterns in India: A systematic review. Br. J. Nutr. 2016, 116, 142–148. [Google Scholar] [CrossRef]
- Tak, M.; Shankar, B.; Kadiyala, S. Dietary Transition in India: Temporal and Regional Trends, 1993 to 2012. Food Nutr. Bull. 2019, 40, 254–270. [Google Scholar] [CrossRef]
- Galaydick, J.; Xu, Y.; Sun, L.; Landon, E.; Weber, S.G.; Sun, D.; Zhou, J.; Sherer, R. Seek and you shall find: Prevalence of Clostridium difficile in Wuhan, China. Am. J. Infect. Control. 2015, 43, 301–302. [Google Scholar] [CrossRef]
- Roldan, G.A.; Cui, A.X.; Pollock, N.R. Assessing the Burden of Clostridium difficile Infection in Low-and Middle-Income Countries. J. Clin. Microbiol. 2018, 56, e01747-17. [Google Scholar] [CrossRef]
Characteristic | Overall (n = 1683) | In-Patients (n = 642) | Out-Patients (n = 1041) | p-Value |
---|---|---|---|---|
Age, years (n (%)) | ||||
18–40 | 857 (51) | 349 (54) | 508 (49) | 0.082 * |
41–60 | 601 (36) | 215 (34) | 386 (37) | |
>60 | 225 (13) | 78 (12) | 147 (14) | |
Gender (n (%)) | ||||
Male | 894 (53) | 345 (54) | 549 (53) | 0.689 * |
Female | 789 (47) | 297 (46) | 492 (47) | |
Location (n (%)) | ||||
Rural | 496 (30) | 160 (25) | 336 (32) | 0.001 * |
Urban | 1187 (70) | 482 (75) | 705(68) | |
Presence of co-morbidity (n (%)) | ||||
Yes | 799 (48) | 385 (60) | 414 (40) | <0.0001 * |
No | 884 (52) | 257 (40) | 627 (60) | |
Antibiotic usage (n (%)) | ||||
Yes | 588 (35) | 450 (70) | 138 (13) | <0.0001 * |
No | 1095 (65) | 192 (30) | 903 (87) | |
Immunosuppression (n (%)) | ||||
Yes | 499 (30) | 251 (40) | 248 (24) | <0.0001 * |
No | 1184 (70) | 391 (60) | 793 (76) | |
BMI kg/m2 (mean ± SD) | 19.75 ± 5.05 | 19.47 ± 5.03 | 19.91 ± 5.06 | 0.083 † |
Seasons (n (%)) | ||||
Summer | 314 (19) | 168 (26) | 146 (14) | <0.0001 * |
Winter | 347 (21) | 141 (22) | 206 (20) | |
Monsoon | 1022 (60) | 333 (52) | 689 (66) | |
History of intestinal infection (n (%)) | ||||
Yes | 48 (3) | 32 (5) | 16 (2) | <0.0001 * |
No | 1635 (97) | 610 (95) | 1025 (98) |
Characteristic | GDH+/Toxin+ | GDH+/Toxin- | GDH-/Toxin+ | GDH-/Toxin- |
---|---|---|---|---|
(n = 54) | (n = 67) | (n = 15) | (n = 1547) | |
Age, years (n (%)) | ||||
18 to 40 | 28 (52) | 31 (46) | 13 (87) | 785 (51) |
41 to 60 | 16 (30) | 27 (40) | 2 (13) | 556 (36) |
>60 | 10 (18) | 9 (14) | 0 | 206 (13) |
Gender (n (%)) | ||||
Male | 31 (57) | 37 (55) | 10 (67) | 816 (53) |
Female | 23 (43) | 30 (45) | 5 (33) | 731 (47) |
Location (n (%)) | ||||
Rural | 4 (7) | 0 | 1 (7) | 491 (32) |
Urban | 50 (93) | 67 (100) | 14 (93) | 1056 (68) |
Presence of co-morbidity (n (%)) | ||||
Yes | 52 (96) | 36 (54) | 12 (80) | 699 (45) |
No | 2 (4) | 31 (46) | 3 (20) | 848 (55) |
Antibiotic usage (n (%)) | ||||
Yes | 51 (94) | 39 (58) | 12 (80) | 228 (15) |
No | 3 (6) | 28 (42) | 3 (20) | 1319 (85) |
Immunosuppression (n (%)) | ||||
Yes | 34 (63) | 34 (51) | 8 (53) | 423 (27) |
No | 20 (37) | 33 (49) | 7 (47) | 1124 (73) |
BMI kg/m2 (Mean ± SD) | 21.21 ± 4.64 | 21.02 ±5.13 | 18.96 ± 5.29 | 19.65 ± 5.05 |
Seasons (n (%)) | ||||
Summer | 10 (16) | 25 (38) | 4 (27) | 275 (18) |
Winter | 3 (5) | 5 (7) | 2 (13) | 337 (22) |
Monsoon | 41 (79) | 37 (55) | 9 (60) | 935 (60) |
History of intestinal infection (n (%)) | ||||
Yes | 8 (15) | 16 (24) | 0 | 24 (2) |
No | 46 (85) | 51 (76) | 15 (100) | 1523 (98) |
Antibiotic | Sensitive to Antibiotics | Resistant to Antibiotics | Range on E-test (in µg/mL) | Susceptible (in µg/mL) | Intermediate (in µg/mL) | Resistant (in µg/mL) | MIC 50 (µg/mL) | MIC90 (µg/mL) |
---|---|---|---|---|---|---|---|---|
Metronidazole | 42 (100%) | ˗ | 0.016–256 | ≤8 | 16 | ≥32 | 0.25 | 5 |
Clindamycin | 26 (46.6%) | 16 (53.3%) | 0.016–256 | ≤2 | 4 | ≥8 | 256 | 256 |
Vancomycin | 42 (100%) | ˗ | 0.016–256 | ≤4 | - | ≥4 | 1.5 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, R.; Pinkham, N.; Walk, S.T.; Wang, Q.; Ambalkar, S.; Satav, A.R.; Wilcox, M.H.; Reghunath, R.; Chawla, K.; Shenoy, P.A.; et al. The Molecular Epidemiology of Clostridioides difficile Infection in Central India: A Prospective Observational Cohort Study. Microbiol. Res. 2023, 14, 1279-1290. https://doi.org/10.3390/microbiolres14030086
Biswas R, Pinkham N, Walk ST, Wang Q, Ambalkar S, Satav AR, Wilcox MH, Reghunath R, Chawla K, Shenoy PA, et al. The Molecular Epidemiology of Clostridioides difficile Infection in Central India: A Prospective Observational Cohort Study. Microbiology Research. 2023; 14(3):1279-1290. https://doi.org/10.3390/microbiolres14030086
Chicago/Turabian StyleBiswas, Rima, Nick Pinkham, Seth T. Walk, Qian Wang, Shrikant Ambalkar, Ashish R. Satav, Mark H. Wilcox, Rahul Reghunath, Kiran Chawla, Padmaja A. Shenoy, and et al. 2023. "The Molecular Epidemiology of Clostridioides difficile Infection in Central India: A Prospective Observational Cohort Study" Microbiology Research 14, no. 3: 1279-1290. https://doi.org/10.3390/microbiolres14030086
APA StyleBiswas, R., Pinkham, N., Walk, S. T., Wang, Q., Ambalkar, S., Satav, A. R., Wilcox, M. H., Reghunath, R., Chawla, K., Shenoy, P. A., Nayak, A. R., Husain, A. A., Raje, D. V., Kashyap, R. S., & Monaghan, T. M. (2023). The Molecular Epidemiology of Clostridioides difficile Infection in Central India: A Prospective Observational Cohort Study. Microbiology Research, 14(3), 1279-1290. https://doi.org/10.3390/microbiolres14030086