Optimization of the Conditions for the Transformation of a Bacillus subtilis Strain L11 to Prepare Nano Selenium and Its Preliminary Application in Sheep Feed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Medium
2.2. Identification of Se-Tolerant Strains
2.3. Determination of L11 Reducing Na2SeO3 Activity and Culture Conditions
2.4. Preliminary Cell Localization of SeNPs
2.5. Preparation of SeNPs
2.6. Characterization and Analysis of L11 Produced SeNPs
2.7. Sheep Feeding Experiment
2.8. Determination of Physiological and Biochemical Indicators in Sheep Blood
2.9. Statistic Analysis
3. Results and Discussion
3.1. Isolation and Identification of Strain L11
3.2. Optimization of Growth Conditions for L11 Strain
3.3. Optimization of Synthesis Conditions for SeNPs by L11
3.4. L11 Subcellular Localization Analysis of SeNPs
3.5. Analysis of SEM and EDS Spectra of L11 Strain Producing SeNPs
3.6. XPS Analysis of SeNPs as a Reduction Product of L11
3.7. TEM Characterization and Particle Size Analysis of SeNPs Produced by L11
3.8. Preliminary Study on the Application of L11 to Produce SeNPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nikam, P.B.; Salunkhe, J.D.; Minkina, T.; Rajput, V.D.; Kim, B.S.; Patil, S.V. A review on green synthesis and recent applications of red nano selenium. Results Chem. 2022, 4, 100581. [Google Scholar] [CrossRef]
- Ullah, A.; Yin, X.; Wang, F.; Xu, B.; Mirani, Z.A.; Xu, B.; Chan, M.W.; Ali, A.; Usman, M.; Ali, N.; et al. Biosynthesis of selenium nanoparticles (via Bacillus subtilis BSN313), and their isolation, characterization, and bioactivities. Molecules 2021, 26, 5559. [Google Scholar] [CrossRef]
- Nayak, V.; Singh, K.R.B.; Singh, A.K.; Singh, R.P. Potentialities of selenium nanoparticles in biomedical science. New J. Chem. 2021, 45, 2849–2878. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Yang, K.; Liu, M.; Qi, Y.; Zhang, T.; Fan, M.; Wei, X. Antibacterial activity of selenium-enriched lactic acid bacteria against common food-borne pathogens in vitro. J. Dairy Sci. 2018, 101, 1930–1942. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.F.; El Mehdawi, A.F.; Pilon-Smits, E.A.H. Ecology of Selenium in Plants. In Selenium in Plants: Molecular, Physiological, Ecological and Evolutionary Aspects; Pilon-Smits, E.A.H., Winkel, L.H.E., Lin, Z.-Q., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 177–188. [Google Scholar]
- Gupta, M.; Gupta, S. An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, M.; Schmidt, S.; Winter, J. Formation of Se (0) nanoparticles by Duganella sp. and Agrobacterium sp. isolated from Se-laden soil of North-East Punjab, India. Microb. Cell Factories 2012, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Shoeibi, S.; Mozdziak, P.; Golkar-Narenji, A. Biogenesis of selenium nanoparticles using green chemistry. Top. Curr. Chem. 2017, 375, 88. [Google Scholar] [CrossRef] [PubMed]
- Khoei, N.S.; Lampis, S.; Zonaro, E.; Yrjälä, K.; Bernardi, P.; Vallini, G. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. New Biotechnol. 2017, 34, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.; Javed, B.; Raja, N.I.; Mashwani, Z.R. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. Int. J. Nanomed. 2021, 2021, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Saeed, K.; Fatemeh, H. Nano-bio selenium synthesized by Bacillus subtilis modulates broiler performance, intestinal morphology and microbiota, and expression of tight junction’s proteins. Biol. Trace Elem. Res. 2022, 200, 1811–1825. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Huang, S.; Cheng, S.; Zhang, X.; Chen, X.; Zhang, Y.; Wang, J.; Wu, L. Novel mechanisms of selenite reduction in Bacillus subtilis 168: Confirmation of multiple-pathway mediated remediation based on transcriptome analysis. J. Hazard. Mater. 2022, 433, 128834. [Google Scholar] [CrossRef] [PubMed]
- Bergey, D.H. Bergey’s Manual of Determinative Bacteriology, 9th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 1994. [Google Scholar]
- Janda, J.M.; Abbott, S.L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J. Clin. Microbiol. 2007, 45, 2761–2764. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613. [Google Scholar] [CrossRef] [PubMed]
- Avendaño, R.; Chaves, N.; Fuentes, P.; Sánchez, E.; Jiménez, J.I.; Chavarría, M. Production of selenium nanoparticles in Pseudomonas putida KT2440. Sci. Rep. 2016, 6, 37155. [Google Scholar] [CrossRef] [PubMed]
- Lampis, S.; Zonaro, E.; Bertolini, C.; Cecconi, D.; Monti, F.; Micaroni, M.; Turner, R.J.; Butler, C.S.; Vallini, G. Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: Novel clues on the route to bacterial biogenesis of selenium nanoparticles. J. Hazard. Mater. 2017, 324, 3–14. [Google Scholar] [CrossRef]
- Wang, Y.; Shu, X.; Zhou, Q.; Fan, T.; Wang, T.; Chen, X.; Li, M.; Ma, Y.; Ni, J.; Hou, J. Selenite reduction and the biogenesis of selenium nanoparticles by Alcaligenes faecalis Se03 isolated from the gut of Monochamus alternatus (Coleoptera: Cerambycidae). Int. J. Mol. Sci. 2018, 19, 2799. [Google Scholar] [CrossRef]
- Alagawany, M.; Madkour, M.; El-Saadony, M.T.; Reda, F.M. Paenibacillus polymyxa (LM31) as a new feed additive: Antioxidant and antimicrobial activity and its effects on growth, blood biochemistry, and intestinal bacterial populations of growing Japanese quail. Anim. Feed Sci. Technol. 2021, 276, 114920. [Google Scholar] [CrossRef]
- Xia, S.; Chen, L.; Liang, J. Enriched selenium and its effects on growth and biochemical composition in Lactobacillus bulgaricus. J. Agric. Food Chem. 2007, 55, 2413–2417. [Google Scholar] [CrossRef]
- Morales, G.; Llorente, I.; Montesinos, E.; Moragrega, C. A model for predicting Xanthomonas arboricola pv. pruni growth as a function of temperature. PLoS ONE 2017, 12, e0177583. [Google Scholar] [CrossRef]
- Fesharaki, P.J.; Nazari, P.; Shakibaie, M.; Rezaie, S.; Banoee, M.; Abdollahi, M.; Shahverdi, A.R. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz. J. Microbiol. 2010, 41, 461–466. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Jia, X.; Li, N.; Chen, J. A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats. Life Sci. 2005, 76, 1989–2003. [Google Scholar] [CrossRef]
- Kojouri, G.A.; Sadeghian, S.; Mohebbi, A.; Mokhber Dezfouli, M.R. The effects of oral consumption of selenium nanoparticles on chemotactic and respiratory burst activities of neutrophils in comparison with sodium selenite in sheep. Biol. Trace Elem. Res. 2012, 146, 160–166. [Google Scholar] [CrossRef]
- Baltić, M.Ž.; Dokmanović Starčević, M.; Bašić, M.; Zenunović, A.; Ivanović, J.; Marković, R.; Janjić, J.; Mahmutović, H. Effects of selenium yeast level in diet on carcass and meat quality, tissue selenium distribution and glutathione peroxidase activity in ducks. Anim. Feed Sci. Technol. 2015, 210, 225–233. [Google Scholar] [CrossRef]
- Han, D.S.; Batchelor, B.; Abdel-Wahab, A. XPS analysis of sorption of selenium(IV) and selenium(VI) to mackinawite (FeS). Environ. Prog. Sustain. Energy 2013, 32, 84–93. [Google Scholar] [CrossRef]
- Al-Hagar, O.E.A.; Abol-Fotouh, D.; Abdelkhalek, E.S.; Abo Elsoud, M.M.; Sidkey, N.M. Bacillus niabensis OAB2: Outstanding bio-factory of selenium nanoparticles. Mater. Chem. Phys. 2021, 273, 125147. [Google Scholar] [CrossRef]
- Tugarova, A.V.; Mamchenkova, P.V.; Khanadeev, V.A.; Kamnev, A.A. Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterization. N. Biotechnol. 2020, 58, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Piacenza, E.; Presentato, A.; Bardelli, M.; Lampis, S.; Vallini, G.; Turner, R.J. Influence of bacterial physiology on processing of selenite, biogenesis of nanomaterials and their thermodynamic stability. Molecules 2019, 24, 2532. [Google Scholar] [CrossRef]
- Schröder, I.; Rech, S.; Krafft, T.; Macy, J.M. Purification and characterization of the selenate reductase from Thauera selenatis. J. Biol. Chem. 1997, 272, 23765–23768. [Google Scholar] [CrossRef]
- Qiu, H.; Gao, S.; Hou, L.; Li, A.; Zhu, L.-q.; Dong, J.; Chen, F. Selenium-enriched Bacillus subtilis improves growth performance, antioxidant capacity, immune status, and gut health of broiler chickens. Biol. Trace Elem. Res. 2023, 201, 5756–5763. [Google Scholar] [CrossRef] [PubMed]
- Dudonné, S.; Varin, T.V.; Anhê, F.F.; Dubé, P.; Roy, D.; Pilon, G.; Marette, A.; Levy, É.; Jacquot, C.; Urdaci, M. Modulatory effects of a cranberry extract co-supplementation with Bacillus subtilis CU1 probiotic on phenolic compounds bioavailability and gut microbiota composition in high-fat diet-fed mice. Pharma Nutr. 2015, 3, 89–100. [Google Scholar] [CrossRef]
- Gan, F.; Hu, Z.; Huang, Y.; Xue, H.; Huang, D.; Qian, G.; Hu, J.; Chen, X.; Wang, T.; Huang, K. Overexpression of pig selenoprotein S blocks OTA-induced promotion of PCV2 replication by inhibiting oxidative stress and p38 phosphorylation in PK15 cells. Oncotarget 2016, 7, 20469. [Google Scholar] [CrossRef]
- Pereira, F.C.; Wasmund, K.; Cobankovic, I.; Jehmlich, N.; Herbold, C.W.; Lee, K.S.; Sziranyi, B.; Vesely, C.; Decker, T.; Stocker, R. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridioes difficile colonization. Nat. Commun. 2020, 11, 5104. [Google Scholar] [CrossRef]
- Kasaikina, M.V.; Kravtsova, M.A.; Lee, B.C.; Seravalli, J.; Peterson, D.A.; Walter, J.; Legge, R.; Benson, A.K.; Hatfield, D.L.; Gladyshev, V.N. Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. FASEB J. 2011, 25, 2492. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, J.; Huang, K.; Liu, Q.; Liu, G.; Xu, X.; Zhang, H.; Zhu, M. Selenium-enriched Bacillus subtilis yb-114246 improved growth and immunity of broiler chickens through modified ileal bacterial composition. Sci. Rep. 2021, 11, 21690. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z. Transformation of Enriched Organic Selenium Lactic Acid Bacteria and Its Effects on Physiological and Rumen Flora of Tibetan Sheep. Master’s Thesis, Xizang University, Linzhi, China, 2019. [Google Scholar] [CrossRef]
Element | Control | Experimental Group | ||
---|---|---|---|---|
Element Mass Fraction | Atomic Fraction | Element Mass Fraction | Atomic Fraction | |
C | 79.55 | 83.15 | 83.26 | 86.70 |
N | 7.95 | 7.13 | 5.71 | 5.10 |
O | 12.29 | 9.64 | 10.23 | 8.00 |
Al | 0.14 | 0.06 | 0.24 | 0.11 |
Cu | 0.04 | 0.01 | 0.03 | 0.01 |
Zn | 0.03 | 0.01 | 0.06 | 0.01 |
Se | 0.00 | 0.00 | 0.47 | 0.07 |
Au | 0.00 | 0.00 | 0.00 | 0.00 |
Test Items | Control | Experimental Group |
---|---|---|
RBC (1012/L) | 5.53 ± 0.12 | 5.61 ± 0.12 |
WBC (109/L) | 152.34 ± 39.46 | 9.56 ± 4.11 ** |
Lymphocyte count (109/L) | 137.51 ± 32.73 | 7.38 ± 0.89 ** |
IgG (μg/mL) | 896.46 ± 79.66 | 1637.13 ± 39.75 ** |
SOD (U/mL) | 268.97 ± 24.24 | 392.28 ± 10.19 ** |
MDA (nmol/mL) | 172.54 ± 11.08 | 149.59 ± 12.33 ** |
T-AOC (U/mL) | 47.46 ± 1.98 | 56.22 ± 1.91 ** |
GSH-Px (U/mL) | 784.25 ± 28.37 | 1163.74 ± 18.68 ** |
Test Items | Control | Experimental Group |
---|---|---|
Neck muscles (mg/kg) | 0.07 ± 0.02 | 0.13 ± 0.001 * |
Liver (mg/kg) | 0.36 ± 0.05 | 0.96 ± 0.13 * |
Lungs (mg/kg) | 0.29 ± 0.04 | 0.41 ± 0.05 |
Spleen (mg/kg) | 0.31 ± 0.03 | 0.62 ± 0.07 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Shi, X.; Wang, L.; Cong, X.; Cheng, S.; Li, L.; Cheng, H. Optimization of the Conditions for the Transformation of a Bacillus subtilis Strain L11 to Prepare Nano Selenium and Its Preliminary Application in Sheep Feed. Microbiol. Res. 2024, 15, 326-341. https://doi.org/10.3390/microbiolres15010022
Guo W, Shi X, Wang L, Cong X, Cheng S, Li L, Cheng H. Optimization of the Conditions for the Transformation of a Bacillus subtilis Strain L11 to Prepare Nano Selenium and Its Preliminary Application in Sheep Feed. Microbiology Research. 2024; 15(1):326-341. https://doi.org/10.3390/microbiolres15010022
Chicago/Turabian StyleGuo, Wenxin, Xinyu Shi, Lu Wang, Xin Cong, Shuiyuan Cheng, Linling Li, and Hua Cheng. 2024. "Optimization of the Conditions for the Transformation of a Bacillus subtilis Strain L11 to Prepare Nano Selenium and Its Preliminary Application in Sheep Feed" Microbiology Research 15, no. 1: 326-341. https://doi.org/10.3390/microbiolres15010022
APA StyleGuo, W., Shi, X., Wang, L., Cong, X., Cheng, S., Li, L., & Cheng, H. (2024). Optimization of the Conditions for the Transformation of a Bacillus subtilis Strain L11 to Prepare Nano Selenium and Its Preliminary Application in Sheep Feed. Microbiology Research, 15(1), 326-341. https://doi.org/10.3390/microbiolres15010022