Influence of Organic Matter from Native Fish on the Antimicrobial Efficacy of Sodium Hypochlorite (NaClO) in Reducing Salmonella spp. Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains of S. typhimurium
2.1.1. Preparation of Chlorinated Water and Monitoring of Total and Free Chlorine
2.1.2. Experimental Design
2.1.3. Susceptibility of S. typhimurium to 5 ppm and 2 ppm of Free Chlorine
2.1.4. Effect of Organic Matter on the Presence of Free Chlorine and Its Bactericidal Effect on S. typhimurium (Strain ATCC 10749 and Wild-Type P06)
2.2. Statistical Treatment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO (Ed.) Meeting the Sustainable Development Goals; The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2018. [Google Scholar]
- FAO (Ed.) Towards Blue Transformation; The State of World Fisheries and Aquaculture. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Cribb, A.Y.; Filho, J.T.S.; Miello, S.C.R.P. Manual Técnico de Manipulação e Conservação de Pescado; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- Conab-Companhia Nacional de Abastecimento; Boletim Hortigranjeiro: Brasília, Brazil, 2021.
- FAO (Ed.) Sustainability in Action; The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Li, N.; Wu, X.; Zhuang, W.; Xia, L.; Chen, Y.; Wu, C.; Rao, Z.; Du, L.; Zhao, R.; Yi, M.; et al. Fish Consumption and Multiple Health Outcomes: Umbrella Review. Trends Food Sci. Technol. 2020, 99, 273–283. [Google Scholar] [CrossRef]
- Vidal, F.F.; Ximenes, F.L. Produção de Pescados na Área de Atuação do bnb; Caderno Setorial ETENE: João Pessoa, Brazil, 2019. [Google Scholar]
- Sartori, O.G.A.; Amancio, D.R. Segurança Alimentar e Nutricional; Conselho Federal de Nutricionistas: Brasília, Brazil, 2012; Volume 19, pp. 83–89. [Google Scholar]
- Nunes, M.L.; Irineu, B.; Cardoso, C. Aplicação Do Índice de Qualidade (QIM) Na Avaliação da Frescura do Pescado; Publicações Avulses do IPIMAR; IPIMAR: Lisboa, Portugal, 2007; Volume 15, 51p. [Google Scholar]
- Mithun, B.D.; Hoque, M.S.; Van Brakel, M.L.; Hasan, M.M.; Akter, S.; Islam, M.R. Comparative Quality Assessment of Traditional vs. Improved Dried Bombay Duck (Harpodon nehereus) under Different Storage Conditions: Solar Chimney Dryer a Low-Cost Improved Approach for Nutritional Dried Fish. Food Sci. Nutr. 2021, 9, 6794–6805. [Google Scholar] [CrossRef]
- Porto, Y.D.; Fogaça, F.H.D.S.; Andrade, A.O.; da Silva, L.K.S.; Lima, J.P.; da Silva, J.L.; Vieira, B.S.; Cunha Neto, A.; Figueiredo, E.E.D.S.; Tassinari, W.D.S. Salmonella spp. in Aquaculture: An Exploratory Analysis (Integrative Review) of Microbiological Diagnoses between 2000 and 2020. Animals 2022, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ana, A.D.S. Salmonella in Foods: Evolution, Strategies and Challenges. Food Res. Int. 2012, 45, 451–1194. [Google Scholar]
- Mohamed Hatha, A.A.; Maqbool, T.K.; Suresh Kumar, S. Microbial Quality of Shrimp Products of Export Trade Produced from Aquacultured Shrimp. Int. J. Food Microbiol. 2003, 82, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Sharma, A.; Sehgal, R.; Kumar, S. Distribution trends of Salmonella serovars in India (2001–2005). Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 390–394. [Google Scholar] [CrossRef]
- Fernandes, D.V.G.S.; Carvalho, R.C.T.; Castro, V.S.; Cunha-Neto, A.; Muller, B.; Carvalho, F.T.; dos Prazeres Rodrigues, D.; Vieira, B.S.; de Souza Figueiredo, E.E. Salmonella in the processing line of farmed Tambatinga (Colossoma macropomum x Piaractus brachypomus) in Mato Grosso, Brazil: Serotypes of occurrence and antimicrobial profile. Trop. Anim. Health Prod. 2021, 53, 146. [Google Scholar] [CrossRef]
- Ferrari, R.G.; Rosario, D.K.A.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.S.; Conte-Junior, C.A. Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: A Meta-Analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. [Google Scholar] [CrossRef]
- Centers for Diase Control and Prevention. Salmonella Homepage|CDC. Available online: https://www.cdc.gov/salmonella/index.html (accessed on 10 April 2023).
- The European Union One Health 2021 Zoonoses Report|EFSA. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/7666 (accessed on 10 April 2023).
- Almeida, F.; Seribelli, A.A.; Medeiros, M.I.C.; Rodrigues, D.d.P.; MelloVarani, A.d.; Luo, Y.; Allard, M.W.; Falcão, J.P. Phylogenetic and Antimicrobial Resistance Gene Analysis of Salmonella typhimurium Strains Isolated in Brazil by Whole Genome Sequencing. PLoS ONE 2018, 13, e0201882. [Google Scholar] [CrossRef]
- Guimarães, L.; Santos, A.C.D.; Ferreira, E.; Pereira, D.; Costa, F. Microbiological quality of trahira fish (Hoplias malabaricus) from Baixada Maranhense, municipality of São Bento, MA. Arq. Inst. Biol. 2017, 84. [Google Scholar] [CrossRef]
- Fernandes, D.V.G.S.; Castro, V.S.; Cunha Neto, A.D.; Figueiredo, E.E.D.S. Salmonella spp. in the Fish Production Chain: A Review. Cienc. Rural 2018, 48, e20180141. [Google Scholar] [CrossRef]
- INSTRUÇÃO NORMATIVA N° 60, DE 23 DE DEZEMBRO DE 2019-DOU-Imprensa Nacional. Available online: https://www.in.gov.br/web/dou (accessed on 11 April 2023).
- Comitê|CODEXALIMENTARIUS FAO-OMS. Available online: https://www.fao.org/fao-who-codexalimentarius/committees/committee/pt/?committee=CCFH (accessed on 11 April 2023).
- World Health Organization. Food and Agriculture Organization of the United Nations Benefits and Risks of the Use of Chlorine-Containing Disinfectants in Food Production and Food Processing. In Proceedings of the Joint FAO/WHO Expert Meeting, Ann Arbor, MI, USA, 27–30 May 2008. [Google Scholar]
- Manual de Procedimentos Para Implantação de Estabelecimento Industrial de Pescado: Produtos Frescos e Congelados. In Miistério da Agricultura Pecuária e Abastecimento; Secretaria Especial da Agricultura e Pesca–BRASIL; MAPA:SEAP/PR: Brasília, Brazil, 2007.
- Paul, N.C.; Sullivan, T.S.; Shah, D.H. Differences in Antimicrobial Activity of Chlorine against Twelve Most Prevalent Poultry-Associated Salmonella Serotypes. Food Microbiol. 2017, 64, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Thi, A.N.T.; Sampers, I.; Van Haute, S.; Samapundo, S.; Nguyen, B.L.; Heyndrickx, M.; Devlieghere, F. Decontamination of Pangasius fish (Pangasius hypophthalmus) with chlorine or peracetic acid in the laboratory and in a Vietnamese processing company. Int. J. Food Microbiol. 2015, 208, 93–101. [Google Scholar] [CrossRef]
- Gómes-Lopez, V.M.; Lannoo, A.N.; Gil, M.I.; Allende, A. Minimum free chlorine residual level required for the inactivation of Escherichia coli O157:H7 and trihalomethane generation during dynamic washing of fresh-cut spinach. Food Control 2014, 47, 132–138. [Google Scholar] [CrossRef]
- Jathar, S.; Shinde, D.; Dakhni, S.; Fernandes, A.; Jha, P.; Desai, N.; Jobby, R. Identification and characterization of chlorine-resistant bacteria from water distribution sites of Mumbai. Arch. Microbiol. 2021, 203, 5241–5248. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, R.R.; Xavier, R.G.C.; de Oliveira, T.F.; Leite, R.C.; Figueiredo, H.C.P.; Leal, C.A.G. Occurrence, Genetic Diversity, and Control of Salmonella enterica in Native Brazilian Farmed Fish. Aquaculture 2019, 501, 304–312. [Google Scholar] [CrossRef]
- Cunha Neto, A.; Panzenhagen, P.; Carvalho, L.; Rodrigues, D.; Conte Junior, C.; Figueiredo, E. Occurrence and Antimicrobial Resistance profile of Salmonella Isolated from Native Fish Slaughtered and Commercialised in Brazil. Arch. Für Leb. 2019, 70, 94–98. [Google Scholar]
- Kim, H.; Yum, B.; Yoon, S.S.; Song, K.J.; Kim, J.R.; Myeong, D.; Chang, B.; Choe, N.H. Inactivation of Salmonella on Eggshells by Chlorine Dioxide Gas. Korean J. Food Sci. Anim. Resour. 2016, 36, 100. [Google Scholar] [CrossRef]
- Shen, C.; Luo, Y.; Nou, X.; Wang, Q.; Millner, P. Dynamic effects of free chlorine concentration, organic load, and exposure time on the inactivation of Salmonella, Escherichia coli O157:H7, and non-O157 Shiga toxin-producing E. coli. J. Food Prot. 2013, 76, 386–393. [Google Scholar] [CrossRef]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar]
- ISO 17604:2015(En); Microbiologia Da Cadeia Alimentar—Amostragem de Carcaça Para Análise Microbiológica. ISO: Geneva, Switzerland, 2015. Available online: https://www.iso.org/obp/ui/#iso:std:iso:17604:ed-2:v1:en (accessed on 10 September 2022).
- Obe, T.; Nannapaneni, R.; Sharma, C.S.; Kiess, A. Homologous stress adaptation, antibiotic resistance, and biofilm forming ability of Salmonella enterica serovar Heidelberg ATCC8326 on different food-contact surfaces following exposure to sublethal chlorine concentrations. Poult. Sci. 2018, 97, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Gomes F de, A.; Melo, A.C.; Corrêa, B.F.; Vitoriano M de, M.; Viana, L.C.T.M.C.; Ferreira, C.M.; Gurgel-Filho, E.D.; Pap-pen, F.G. Evaluation of the degree of loss of concentration of free chlorine in sodium Hypoclorite 2.5% according to different means of conservation. Braz. J. Health Rev. 2020, 3, 9314–9327. [Google Scholar] [CrossRef]
- Oscar, T.P.; Tasmin, R.; Parveen, S. Chlorine inactivation of nonresistant and antibiotic-resistant strains of Salmonella typhimurium isolated from chicken carcasses. J. Food Prot. 2013, 76, 1031–1034. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Nou, X.; Yang, Y.; Alegre, I.; Turner, E.; Feng, H.; Abadias, M.; Conway, W. Determination of Free Chlorine Concentrations Needed to Prevent Escherichia coli O157:H7 Cross-Contamination during Fresh-Cut Produce Wash†. J. Food Prot. 2011, 74, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, A.C.; Pinheiro, S.R.; de Moraes, Z.M.; Vasconcellos, S.A.; Ito, F.H.; Ferrero Neto, J.F. Influence of organic soil on the mycobactericidal activity of the commercial sodium hypochlorite with a 2.5 per cent of active chlorine. Braz. J. Vet. Res. Anim. Sci. 1993, 30, 211–216. [Google Scholar] [CrossRef]
- Venkitanarayanan, K.S.; Lin, C.M.; Bailey, H.; Doyle, M.P. Inactivation of Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes on apples, oranges, and tomatoes by lactic acid with hydrogen peroxide. J. Food Prot. 2002, 65, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Ogata, N. Denaturation of protein by chlorine dioxide: Oxidative modification of tryptophan and tyro-sine residues. Biochemistry 2007, 46, 4898–4911. [Google Scholar] [CrossRef]
- Kuhn, R.C.; Jermano, J.D. Proteases e inibidores no processamento de surimi. Rev. Bras. Agrociência 2002, 8, 5–11. Available online: https://periodicos.ufpel.edu.br/index.php/CAST/article/view/426 (accessed on 10 September 2022).
- Hawkins, C.L.; Davies, M.J. Inactivation of Protease Inhibitors and Lysozyme by Hypochlorous Acid: Role of Side-Chain Oxidation and Protein Unfolding in Loss of Biological Function. Chem. Res. Toxicol. 2005, 18, 1600–1610. [Google Scholar] [CrossRef]
- Pattison, D.I.; Davies, M.J. Absolute Rate Constants for the Reaction of Hypochlorous Acid with Protein Side Chains and Peptide Bonds. Chem. Res. Toxicol. 2001, 14, 1453–1464. [Google Scholar] [CrossRef]
- Tondo, E.C.; Machado, T.R.M.; Malheiros, P.D.S.; Padrão, D.K.; Carvalho, A.L.D.; Brandelli, A. Adhesion and Biocides Inactivation of Salmonella on stainless stell and polyethylene. Food Microbiol. 2010, 41, 1027–1037. [Google Scholar] [CrossRef]
- Asakura, H.; Kawamoto, K.; Shirahata, T.; Makino, S. Changes in Salmonella enterica Serovar Oranienburg Viability Caused by NaCl-Induced Osmotic Stress Is Related to DNA Relaxation by the H-NS Protein during Host Infection. Microb. Pathog. 2004, 36, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Schellhorn, H.E. Role of RpoS in virulence of pathogens. Infect. Immun. 2010, 78, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, C.A.; Curtiss, R. Role of Sigma Factor RpoS in Initial Stages of Salmonella typhimurium Infection. Infect. Immun. 1997, 65, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.M.; Dong, T.; Edge, T.A.; Schellhorn, H.E. Phenotypic Diversity Caused by Differential RpoS Activity among Environmental Escherichia coli Isolates. Appl. Environ. Microbiol. 2011, 77, 7915–7923. [Google Scholar] [CrossRef]
- Zhi, S.; Banting, G.; Li, Q.; Edge, T.A.; Topp, E.; Sokurenko, M.; Scott, C.; Braithwaite, S.; Ruecker, N.J.; Yasui, Y.; et al. Evidence of Naturalized Stress-Tolerant Strains of Escherichia coli in Municipal Wastewater Treatment Plants. Appl. Environ. Microbiol. 2016, 82, 5505–5518. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, J.O.; Cavalcante, C.B.; Nunes, N.B.; Neto, A.C.; Machado, M.A.M.; Porto, Y.D.; Castro, V.S.; Figueiredo, E.E.d.S. Influence of Organic Matter from Native Fish on the Antimicrobial Efficacy of Sodium Hypochlorite (NaClO) in Reducing Salmonella spp. Population. Microbiol. Res. 2024, 15, 342-353. https://doi.org/10.3390/microbiolres15010023
Reis JO, Cavalcante CB, Nunes NB, Neto AC, Machado MAM, Porto YD, Castro VS, Figueiredo EEdS. Influence of Organic Matter from Native Fish on the Antimicrobial Efficacy of Sodium Hypochlorite (NaClO) in Reducing Salmonella spp. Population. Microbiology Research. 2024; 15(1):342-353. https://doi.org/10.3390/microbiolres15010023
Chicago/Turabian StyleReis, Jaqueline Oliveira, Carine Baggio Cavalcante, Nathaly Barros Nunes, Adelino Cunha Neto, Maxsueli Aparecida Moura Machado, Yuri Duarte Porto, Vinicius Silva Castro, and Eduardo Eustáquio de Souza Figueiredo. 2024. "Influence of Organic Matter from Native Fish on the Antimicrobial Efficacy of Sodium Hypochlorite (NaClO) in Reducing Salmonella spp. Population" Microbiology Research 15, no. 1: 342-353. https://doi.org/10.3390/microbiolres15010023
APA StyleReis, J. O., Cavalcante, C. B., Nunes, N. B., Neto, A. C., Machado, M. A. M., Porto, Y. D., Castro, V. S., & Figueiredo, E. E. d. S. (2024). Influence of Organic Matter from Native Fish on the Antimicrobial Efficacy of Sodium Hypochlorite (NaClO) in Reducing Salmonella spp. Population. Microbiology Research, 15(1), 342-353. https://doi.org/10.3390/microbiolres15010023