Nitrogen Fixation, Carbohydrate Contents, and Bacterial Microbiota in Unelongated Stem of Manure Compost-Applied Rice at Panicle Initiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Cultivation and Sampling
2.2. Measurement of Nitrogenase Activity
2.3. Measurements of Sucrose and Glucose Contents
2.4. Rarefaction Curve, Alpha Diversity, Beta Diversity, and Relative Taxonomic Abundance in Bacterial Microbiota
2.5. Quantification of nifH/Bacterial 16S rRNA Gene
2.6. Statistical Analyses
3. Results
3.1. Changes in Nitrogenase Activity and Non-Structural Carbohydrate Contents in the Rice Parts
3.2. Bacterial Microbiota in the Parts of MC- and CF-Applied Rice at Panicle Initiation
3.3. Relative Taxonomic Abundances in Bacterial Microbiota of Rice Parts at Panicle Initiation
3.4. Nitrogenase Activity, nifH Abundance, and Non-Structural Carbohydrate Contents in Rice Parts at Panicle Initiation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lodwig, E.M.; Hosie, A.H.; Bourdes, A.; Findlay, K.; Allaway, D.; Karunakaran, R.; Downie, J.; Poole, P.S. Amino-acid cycling drives nitrogen fixation in the legume–Rhizobium symbiosis. Nature 2003, 422, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current progress in nitrogen fixing plants and microbiome research. Plants 2020, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.B.; Pankievicz, V.C.; Ané, J.-M. A model for nitrogen fixation in cereal crops. Trends Plant Sci. 2020, 25, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Yang, J.; Yu, N.; Luo, L.; Wang, E. Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. Plant Commun. 2023, 4, 100499. [Google Scholar] [CrossRef]
- Soumare, A.; Diedhiou, A.G.; Thuita, M.; Hafidi, M.; Ouhdouch, Y.; Gopalakrishnan, S.; Kouisni, L. Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. Plants 2020, 9, 1011. [Google Scholar] [CrossRef]
- Yoneyama, T.; Terakado-Tonooka, J.; Bao, Z.; Minamisawa, K. Molecular analyses of the distribution and function of diazotrophic rhizobia and methanotrophs in the tissues and rhizosphere of non-leguminous plants. Plants 2019, 8, 408. [Google Scholar] [CrossRef]
- Pankievicz, V.C.S.; Delaux, P.-M.; Infante, V.; Hirsch, H.H.; Rajasekar, S.; Zamora, P.; Jayaraman, D.; Calderon, C.I.; Bennett, A.; Ané, J.-M. Nitrogen fixation and mucilage production on maize aerial roots is controlled by aerial root development and border cell functions. Front. Plant Sci. 2022, 13, 977056. [Google Scholar] [CrossRef]
- Van Deynze, A.; Zamora, P.; Delaux, P.-M.; Heitmann, C.; Jayaraman, D.; Rajasekar, S.; Graham, D.; Maeda, J.; Gibson, D.; Schwartz, K.D. Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota. PLoS Biol. 2018, 16, e2006352. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, T.; Terakado-Tonooka, J.; Minamisawa, K. Exploration of bacterial N2-fixation systems in association with soil-grown sugarcane, sweet potato, and paddy rice: A review and synthesis. Soil Sci. Plant Nutr. 2017, 63, 578–590. [Google Scholar] [CrossRef]
- Ikeda, S.; Sasaki, K.; Okubo, T.; Yamashita, A.; Terasawa, K.; Bao, Z.; Liu, D.; Watanabe, T.; Murase, J.; Asakawa, S. Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes Environ. 2014, 29, 50–59. [Google Scholar] [CrossRef]
- Bao, Z.; Watanabe, A.; Sasaki, K.; Okubo, T.; Tokida, T.; Liu, D.; Ikeda, S.; Imaizumi-Anraku, H.; Asakawa, S.; Sato, T. A rice gene for microbial symbiosis, Oryza sativa CCaMK, reduces CH4 flux in a paddy field with low nitrogen input. Appl. Environ. Microbiol. 2014, 80, 1995–2003. [Google Scholar] [CrossRef] [PubMed]
- Bidyarani, N.; Prasanna, R.; Chawla, G.; Babu, S.; Singh, R. Deciphering the factors associated with the colonization of rice plants by cyanobacteria. J. Basic Microbiol. 2015, 55, 407–419. [Google Scholar] [CrossRef]
- Maeda, I. Potential of phototrophic purple nonsulfur bacteria to fix nitrogen in rice fields. Microorganisms 2021, 10, 28. [Google Scholar] [CrossRef]
- Yamaji, N.; Sasaki, A.; Xia, J.X.; Yokosho, K.; Ma, J.F. A node-based switch for preferential distribution of manganese in rice. Nat. Commun. 2013, 4, 2442. [Google Scholar] [CrossRef] [PubMed]
- Yamamuro, C.; Ihara, Y.; Wu, X.; Noguchi, T.; Fujioka, S.; Takatsuto, S.; Ashikari, M.; Kitano, H.; Matsuoka, M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 2000, 12, 1591–1605. [Google Scholar] [CrossRef] [PubMed]
- Gyaneshwar, P.; James, E.K.; Mathan, N.; Reddy, P.M.; Reinhold-Hurek, B.; Ladha, J.K. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J. Bacteriol. 2001, 183, 2634–2645. [Google Scholar] [CrossRef]
- James, E.K.; Gyaneshwar, P.; Mathan, N.; Barraquio, W.L.; Reddy, P.M.; Iannetta, P.P.; Olivares, F.L.; Ladha, J.K. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol. Plant-Microbe Interact. 2002, 15, 894–906. [Google Scholar] [CrossRef]
- Mano, H.; Morisaki, H. Endophytic bacteria in the rice plant. Microbes Environ. 2008, 23, 109–117. [Google Scholar] [CrossRef]
- Ao, Z.; Xia, J.; Seino, H.; Inaba, K.; Takahashi, Y.; Hayakawa, C.; Hirai, H.; Maeda, I. Adaptations of potential nitrogenase activity and microbiota with long-term application of manure compost to paddy soil. Environments 2023, 10, 103. [Google Scholar] [CrossRef]
- Liu, J.; Xu, X.-h.; Li, H.-t.; Xu, Y. Effect of microbiological inocula on chemical and physical properties and microbial community of cow manure compost. Biomass Bioenergy 2011, 35, 3433–3439. [Google Scholar] [CrossRef]
- Cordero-Lara, K.I. Temperate japonica rice (Oryza sativa L.) breeding: History, present and future challenges. Chil. J. Agric. Res. 2020, 80, 303–314. [Google Scholar] [CrossRef]
- Takahashi, T.; Nanzyo, M.; Shoji, S. Proposed revisions to the diagnostic critera for andic and vitric horizons and qualifiers of ardosols in the world reference base for soil resources. Soil Sci. Plant Nutr. 2004, 50, 431–437. [Google Scholar] [CrossRef]
- Stewart, W.; Fitzgerald, G.; Burris, R. In situ studies on N2 fixation using the acetylene reduction technique. Proc. Natl. Acad. Sci. USA 1967, 58, 2071–2078. [Google Scholar] [CrossRef]
- Chow, P.S.; Landhäusser, S.M. A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol. 2004, 24, 1129–1136. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Bray, J.R.; Curtis, J. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Poly, F.; Monrozier, L.J.; Bally, R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res. Microbiol. 2001, 152, 95–103. [Google Scholar] [CrossRef]
- Muyzer, G.; De Waal, E.C.; Uitterlinden, A. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef]
- Teske, A.; Wawer, C.; Muyzer, G.; Ramsing, N.B. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl. Environ. Microbiol. 1996, 62, 1405–1415. [Google Scholar] [CrossRef]
- Chen, T.; Li, G.; Islam, M.R.; Fu, W.; Feng, B.; Tao, L.; Fu, G. Abscisic acid synergizes with sucrose to enhance grain yield and quality of rice by improving the source-sink relationship. BMC Plant Biol. 2019, 19, 525. [Google Scholar] [CrossRef]
- Chen, H.-J.; Wang, S.-J. Molecular regulation of sink–source transition in rice leaf sheaths during the heading period. Acta Physiol. Plant. 2008, 30, 639–649. [Google Scholar] [CrossRef]
- Li, G.; Cui, K.; Hu, Q.; Wang, W.; Pan, J.; Zhang, G.; Shi, Y.; Nie, L.; Huang, J.; Peng, S. Phloem unloading in developing rice caryopses and its contribution to non-structural carbohydrate translocation from stems and grain yield formation. Plant Cell Physiol. 2022, 63, 1510–1525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Cui, K.; Li, G.; Pan, J.; Huang, J.; Peng, S. Stem small vascular bundles have greater accumulation and translocation of non-structural carbohydrates than large vascular bundles in rice. Physiol. Plant. 2022, 174, e13695. [Google Scholar] [CrossRef] [PubMed]
- Slewinski, T.L. Non-structural carbohydrate partitioning in grass stems: A target to increase yield stability, stress tolerance, and biofuel production. J. Exp. Bot. 2012, 63, 4647–4670. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Shinjo, R.; Nishihara, A.; Uesaka, K.; Tanaka, A.; Sugiura, D.; Kondo, M. Genotypic variation of endophytic nitrogen-fixing activity and bacterial flora in rice stem based on sugar content. Front. Plant Sci. 2021, 1610, 719259. [Google Scholar] [CrossRef]
- Che, J.; Yamaji, N.; Ma, J.F. Role of a vacuolar iron transporter OsVIT2 in the distribution of iron to rice grains. New Phytol. 2021, 230, 1049–1062. [Google Scholar] [CrossRef]
- Mu, S.; Yamaji, N.; Sasaki, A.; Luo, L.; Du, B.; Che, J.; Shi, H.; Zhao, H.; Huang, S.; Deng, F. A transporter for delivering zinc to the developing tiller bud and panicle in rice. Plant J. 2021, 105, 786–799. [Google Scholar] [CrossRef]
- Knelman, J.E.; Legg, T.M.; O’Neill, S.P.; Washenberger, C.L.; González, A.; Cleveland, C.C.; Nemergut, D.R. Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol. Biochem. 2012, 46, 172–180. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, M.; Chen, A.; Zhang, W.; Wei, W.; Sheng, R. Impact of fertilization regimes on diazotroph community compositions and N2-fixation activity in paddy soil. Agric. Ecosyst. Environ. 2017, 247, 1–8. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Li, Y.; Chen, D.; Ao, J.; Zhou, W.; Shen, D.; Li, Q.; Huang, Z.; Jiang, Y. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Sci. Total Environ. 2018, 619, 1530–1537. [Google Scholar] [CrossRef]
- Ramšak, A.; Peterka, M.; Tajima, K.; Martin, J.C.; Wood, J.; Johnston, M.E.; Aminov, R.I.; Flint, H.J.; Avguštin, G. Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. FEMS Microbiol. Ecol. 2000, 33, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Qiu, F.; Zhang, X.; Dai, X.; Dong, X.; Song, W. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb. Ecol. 2008, 55, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, M.; Dastogeer, K.M.; Sarkodee-Addo, E.; Tokiwa, C.; Isawa, T.; Shinozaki, S.; Okazaki, S. Impact of Azospirillum sp. B510 on the rhizosphere microbiome of rice under field conditions. Agronomy 2022, 12, 1367. [Google Scholar] [CrossRef]
- Choudhury, A.; Kennedy, I. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol. Fertil. Soils 2004, 39, 219–227. [Google Scholar] [CrossRef]
- Wei, G.; Lianfeng, W.; Zhongjun, J. Heterotrophy-coordinated diazotrophy is associated with significant changes of rare taxa in soil microbiome. Pedosphere 2022, 32, 402–413. [Google Scholar]
Rice Part | Material | Day after Transplanting of Seedlings | p | ||||
---|---|---|---|---|---|---|---|
21 | 49 | 77 | 133 | ||||
Nitrogenase (nmol/g fresh wt/h) | EC | CF | 0.39 ± 0.03 a | 0.54 ± 0.14 a | 1.90 ± 1.40 ab | 3.89 ± 0.63 b | 0.0018 |
MC | 0.40 ± 0.07 a | 0.54 ± 0.06 a | 2.75 ± 0.86 a | 4.42 ± 3.63 a | 0.084 | ||
US | CF | 0.39 ± 0.15 a | 2.68 ± 0.48 ab | 7.89 ± 1.51 bc | 9.24 ± 2.41 c | 0.00020 | |
MC | 0.65 ± 0.05 a | 4.52 ± 0.60 ab | 15.29 ± 2.95 b | 11.65 ± 5.03 ab | 0.0011 | ||
CR | CF | 0.16 ± 0.05 a | 2.72 ± 0.85 b | 1.14 ± 0.47 ab | 0.20 ± 0.04 a | 0.00062 | |
MC | 0.17 ± 0.03 a | 2.09 ± 0.35 a | 1.98 ± 1.02 a | 0.37 ± 0.20 a | 0.0038 | ||
Sucrose (mg/g fresh wt) | EC | CF | 2.69 ± 1.77 a | 9.58 ± 3.49 ab | 12.66 ± 3.23 ab | 14.27 ± 1.34 b | 0.0029 |
MC | 2.11 ± 1.56 a | 6.65 ± 0.66 ab | 10.36 ± 2.42 ab | 16.82 ± 4.01 b | 0.00088 | ||
US | CF | 0.93 ± 0.87 a | 1.65 ± 0.98 a | ND | 0.40 ± 0.56 a | 0.25 | |
MC | 1.47± 0.43 a | 1.57 ± 0.62 a | 0.28 ± 0.81 a | ND | 0.087 | ||
CR | CF | 0.79 ± 0.27 | ND | ND | ND | ND | |
MC | 1.18 ± 0.66 | ND | ND | ND | ND | ||
Glucose (mg/g fresh wt) | EC | CF | 2.78 ± 1.85 a | 4.43 ± 1.26 a | 4.52 ± 1.30 a | 5.06 ± 1.23 a | 0.31 |
MC | 4.89 ± 1.94 a | 3.62 ± 1.38 a | 1.90 ± 0.97 a | 3.55 ± 2.04 a | 0.23 | ||
US | CF | 0.11 ± 0.10 a | 4.08 ± 1.16 b | 5.15 ± 1.01 b | 8.96 ± 0.48 c | 0.0000075 | |
MC | 0.91 ± 0.23 a | 3.18 ± 0.82 a | 3.52 ± 2.28 a | 3.67 ± 2.20 a | 0.21 | ||
CR | CF | 0.19 ± 0.17 a | 0.68 ± 0.17 bc | 0.45 ± 0.05 ab | 0.96 ± 0.04 c | 0.00038 | |
MC | 0.14 ± 0.16 a | 0.67 ± 0.10 a | 0.66 ± 0.35 a | 1.14 ± 0.85 a | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ao, Z.; Tsuchiya, M.; Xia, J.; Hayakawa, C.; Takahashi, Y.; Hirai, H.; Maeda, I. Nitrogen Fixation, Carbohydrate Contents, and Bacterial Microbiota in Unelongated Stem of Manure Compost-Applied Rice at Panicle Initiation. Microbiol. Res. 2024, 15, 1900-1912. https://doi.org/10.3390/microbiolres15030127
Ao Z, Tsuchiya M, Xia J, Hayakawa C, Takahashi Y, Hirai H, Maeda I. Nitrogen Fixation, Carbohydrate Contents, and Bacterial Microbiota in Unelongated Stem of Manure Compost-Applied Rice at Panicle Initiation. Microbiology Research. 2024; 15(3):1900-1912. https://doi.org/10.3390/microbiolres15030127
Chicago/Turabian StyleAo, Zhalaga, Miu Tsuchiya, Juan Xia, Chie Hayakawa, Yukitsugu Takahashi, Hideaki Hirai, and Isamu Maeda. 2024. "Nitrogen Fixation, Carbohydrate Contents, and Bacterial Microbiota in Unelongated Stem of Manure Compost-Applied Rice at Panicle Initiation" Microbiology Research 15, no. 3: 1900-1912. https://doi.org/10.3390/microbiolres15030127
APA StyleAo, Z., Tsuchiya, M., Xia, J., Hayakawa, C., Takahashi, Y., Hirai, H., & Maeda, I. (2024). Nitrogen Fixation, Carbohydrate Contents, and Bacterial Microbiota in Unelongated Stem of Manure Compost-Applied Rice at Panicle Initiation. Microbiology Research, 15(3), 1900-1912. https://doi.org/10.3390/microbiolres15030127