Isolation and Molecular Characterization of Corynebacterium pseudotuberculosis from Goats in Andaman and Nicobar Islands, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. History and Clinical Report
2.3. Collection of Samples, Isolation of Bacteria, and Biochemical Tests
2.4. Molecular Confirmation of Corynebacterium pseudotuberculosis
2.5. Bioinformatics Analysis
2.6. Antibiotic Sensitivity/Resistance Test
3. Results
3.1. Outbreak Details
3.2. Molecular Confirmation and Characterization
3.2.1. Species Identification Test Using Local BLAST Based on 16S rRNA Sequence
3.2.2. Phylogenetic Analysis: Biover Assignment Based on rpoB Gene Fragments
3.3. Antimicrobial Susceptibility Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, D.E.; Rings, D.M.; Kowalski, J. Infection with Corynebacterium pseudotuberculosis in five alpacas. J. Am. Vet. Med. Assoc. 2004, 225, 1743–1747. [Google Scholar] [CrossRef] [PubMed]
- Braga, W.U.; Chavera, A.; Gonzalez, A. Corynebacterium pseudotuberculosis infection in highland alpacas (Lama pacos) in Peru. Vet. Rec. 2006, 159, 23–24. [Google Scholar] [CrossRef]
- Baird, G.J.; Fontaine, M.C. Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J. Comp. Pathol. 2007, 37, 179–210. [Google Scholar] [CrossRef] [PubMed]
- Baird, G.J. Caseous lymphadenitis. In Diseases of Sheep, 4th ed.; Aitken, I.D., Ed.; Blackwell Publishing: Victoria, Australia, 2007; pp. 306–312. [Google Scholar]
- Merchant, I.A.; Packer, R.A. The Genus Corynebacterium. In Veterinary Bacteriology and Virology; Merchant, I.A., Packer, R.A., Eds.; The Iowa State University Press: Ames, IA, USA, 1967; pp. 425–440. [Google Scholar]
- Piontkowski, M.D.; Shivvers, D.W. Evaluation of a commercially available vaccine against Corynebacterium pseudotuberculosis for use in sheep. J. Am. Vet. Med. Assoc. 1998, 212, 1765–1768. [Google Scholar] [CrossRef] [PubMed]
- Zavoshti, F.R.; Khoojine, A.; Helan, J.; Hassanzadeh, B.; Heydari, A.A. Frequency of caseous lymphadenitis (CLA) in sheep slaughtered in an abattoir in Tabriz: Comparison of bacterial culture and pathological study. Comp. Clin. Pathol. 2012, 21, 667–671. [Google Scholar] [CrossRef]
- Mills, A.E.; Mitchell, R.D.; Lim, E.K. Corynebacterium pseudotuberculosis is a cause of human necrotising granulomatous lymphadenitis. Pathology 1997, 29, 231–233. [Google Scholar] [CrossRef]
- Peel, M.M.; Palmer, G.G.; Stacpoole, A.M.; Kerr, T.G. Human lymphadenitis due to Corynebacterium pseudotuberculosis: Report of ten cases from Australia and review. Clin. Infect. Dis. 1997, 24, 185–191. [Google Scholar] [CrossRef]
- Heggelund, L.; Gaustad, P.; Håvelsrud, O.E.; Blom, J.; Borgen, L.; Sundset, A.; Sørum, H.; Frøland, S.S. Corynebacterium pseudotuberculosis Pneumonia in a Veterinary Student Infected During Laboratory Work. Open Forum Infect. Dis. 2015, 2, ofv053. [Google Scholar] [CrossRef]
- Bradford Smith, B.P. Large Animal Internal Medicine, 5th ed.; Mosby: St. Louis, MO, USA, 2014; pp. 1–1712. [Google Scholar]
- Windsor, P.A. Control of caseous lymphadenitis. Vet. Clin. N. Am. Food Anim. Pract. 2011, 27, 193–202. [Google Scholar] [CrossRef]
- Oreiby, A.F. Diagnosis of caseous lymphadenitis in sheep and goat. Small Rumin. Res. 2015, 23, 160–166. [Google Scholar] [CrossRef]
- Guimaraes, A.S.; Carmo, F.B.; Pauletti, R.B.; Seyffert, N.; Ribeiro, D.; Lage, A.P.; Heinemann, M.B.; Miyoshi, A.; Azevedo, V.; Gouveia, A.M.G. Caseous lymphadenitis epidemiology diagnosis and control. Integr. Omics Appl. Biotechnol. J. 2011, 2, 33–43. [Google Scholar]
- Williamson, L.H. Caseous lymphadenitis in small ruminants. Vet. Clin. N. Am. Food Anim. Pract. 2002, 17, 359–371. [Google Scholar] [CrossRef] [PubMed]
- WOAH. World Organization for Animal Health. 2009. Available online: https://www.woah.org/en (accessed on 23 August 2024).
- Kuria, J.; Holstad, G. A Seroepidemiological Investigation of Corynebacterium Pseudotuberculosis Infection in Sheep Flocks in Southern Norway. Acta Vet. Scand. 1989, 30, 107–108. [Google Scholar] [CrossRef]
- Middleton, M.J.; Epstein, V.M.; Gregory, G.G. Caseous lymphadenitis on Flinders Island: Prevalence and management surveys. Aust. Vet. J. 1991, 69, 311–313. [Google Scholar] [CrossRef]
- Stanford, K.; Brogden, K.A.; McClelland, L.A.; Kozub, G.C.; Audibert, F. The incidence of caseous lymphadenitis in Alberta sheep and assessment of impact by vaccination with commercial and experimental vaccines. Can. J. Vet. Res. 1988, 62, 38–43. [Google Scholar]
- Muthukumar, S.; Samuel, B.; Ronald, M.; Hemalatha, S.; Sundram, S.M.; Sughanth, M. Outbreak of caseous lymphadenitis in an organized goat farm. J. Entomol. Zool. Stud. 2020, 8, 9–11. [Google Scholar]
- Kumar, J.; Singh, F.; Tripathi, B.N.; Kumar, R.; Dixit, S.K.; Sonawane, G.G. Epidemiological, bacteriological and molecular studies on caseous lymphadenitis in Sirohi goats of Rajasthan India. Trop. Anim. Health Prod. 2012, 44, 1319–1322. [Google Scholar] [CrossRef]
- Mohan, P.; Vathsala, M.; Jayaprakasan, V. Comparative characterization of Corynebacterium pseudotuberculosis from goats in Kerala, India and reference strain. Small Rumin. Res. 2008, 74, 226–230. [Google Scholar] [CrossRef]
- Tripathi, B.N.; Kumar, J.; Sonawane, G.G.; Kumar, R.; Dixit, S.K. Microbiological and molecular investigation of clinically suspected caseous lymphadenitis cases in goats. Agric. Res. 2016, 5, 413–419. [Google Scholar] [CrossRef]
- Khamis, A.; Raoult, D.; La Scola, B. Comparison between rpoB and 16S rRNA gene sequencing for molecular identification of 168 clinical isolates of Corynebacterium. J. Clin. Microbiol. 2005, 43, 1934–1936. [Google Scholar] [CrossRef]
- Cetinkaya, B.; Karahan, M.; Atil, E.; Kalin, R.; De Baere, T.; Vaneechoutte, M. Identification of Corynebacterium pseudotuberculosis isolates from sheep and goats by PCR. Vet. Microbiol. 2002, 88, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Sunder, J.; Kundu, A.; Kundu, M.S.; Sujatha, T.; De, A.K. Farming practices and morphometric characterization of Andaman Local Goat. Indian J. Anim. Res. 2019, 53, 1097–1103. [Google Scholar] [CrossRef]
- De, A.K.; Sawhney, S.; Sunder, J.; Muthiyan, R.; Ponraj, P.; Sujatha, T.; Malakar, D.; Mondal, S.; Bera, A.K.; Kumar, A.; et al. Peeping into mitochondrial diversity of Andaman goats: Unveils possibility of maritime transport with diversified geographic signaling. Genes 2023, 14, 784. [Google Scholar] [CrossRef] [PubMed]
- Sunder, J.; Rai, R.B.; Kundu, A.; Chatterjee, R.N.; Senani, S.; Jeyakumar, S. Incidence and prevalence of livestock diseases of A&N Islands. Indian J. Anim. Sci. 2005, 75, 1041–1043. [Google Scholar]
- Sunder, J. Status of livestock and poultry disease in A & N Islands: Strategies to make island disease free. Adv. Anim. Vet. Sci. 2014, 2, 42–47. [Google Scholar]
- Umer, M.; Abba, Y.; Abdullah, F.F.J.; Saleh, W.M.M.; Haron, A.W.; Saharee, A.A.; Ariff, A.B. Isolation and Identification of Corynebacterium pseudotuberculosis in Reproductive Organs and Pituitary Gland of Goats Vaccinated with Prototype Vaccine against Caseous Lymphadenitis. Saudi J. Pathol. Microbiol. 2017, 2, 70–77. [Google Scholar]
- Almeida, S.; Dorneles, E.M.S.; Diniz, C.; Vinicius, A.; Cassiana, S.; Jorianne, A.; Adriana, C.; Priscilla, B.; Sharon, S.; Debmalya, B.; et al. Quadruplex PCR assay for identification of Corynebacterium pseudotuberculosis differentiating biovar Ovis and Equi. BMC Vet. Res. 2017, 13, 290. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [PubMed]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummon, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [PubMed]
- Leigh, J.W.; Bryant, D. Popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar] [CrossRef]
- Quinn, P.J.; Carter, M.E.; Markey, B.; Carter, G.R. Pseudomonas species. In Clinical Veterinary Microbiology; Quinn, P.J., Carter, M.E., Markey, B., Carter, G.R., Eds.; Wolfe: London, UK, 1994; pp. 237–242. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 27th Informational Supplement. M100-S28; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Meng, W.; Chen, S.; Huang, L.; Yang, J.; Zhang, W.; Zhong, Z.; Zhou, Z.; Liu, H.; Fu, H.; He, T.; et al. Isolation, characterization, and pathogenicity assessment of Corynebacterium pseudotuberculosis biovar equi strains from alpacas (Vicugna pacos) in China. Front. Microbiol. 2023, 14, 1206187. [Google Scholar] [CrossRef]
- Al-Gaabary, M.H.; Osman, S.A.; Oreiby, A.F. Caseous lymphadenitis in sheep and goats: Clinical, epidemiological and preventive studies. Small Rumin. Res. 2009, 87, 116–121. [Google Scholar] [CrossRef]
- Mubarak, M.; Bastawrows, A.F.; Abdel-Hafeez, M.M.; Ali, M.M. Caseous lymphadenitis of sheep and goats in Assiut farms and abattoirs. Assiut Vet. Med. J. 1999, 42, 89–112. [Google Scholar]
- Paton, M.W.; Walker, S.B.; Rose, I.R.; Watt, G.F. Prevalence of caseous lymphadenitis and usage of caseous lymphadenitis vaccines in sheep flocks. Aust. Vet. J. 2003, 81, 91–95. [Google Scholar] [CrossRef]
- Abebe, D.; Sisay Tessema, T. Determination of Corynebacterium pseudotuberculosis prevalence and antimicrobial susceptibility pattern of isolates from lymph nodes of sheep and goats at an organic export abattoir, Modjo, Ethiopia. Lett. Appl. Microbiol. 2015, 61, 469–476. [Google Scholar] [CrossRef]
- Dorella, F.A.; Pacheco, L.G.C.; Oliveira, S.C. Corynebacterium pseudotuberculosis: Microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet. Res. 2006, 37, 201–218. [Google Scholar] [CrossRef]
- D’Afonseca, V.; Moraes, P.M.; Dorella, F.A.; Pacheco, L.G.; Meyer, R.; Portela, R.W.; Miyoshi, A.; Azevedo, V. A description of genes of Corynebacterium pseudotuberculosis useful in diagnostics and vaccine applications. Genet. Mol. Res. 2008, 18, 252–260. [Google Scholar] [CrossRef]
- Pacheco, L.G.C.; Pena, R.R.; Castro, T.L.P.; Dorella, F.A.; Bahia, R.C.; Carminati, R.; Frota, M.N.L.; Oliveira, S.C.; Meyer, R.; Alves, F.S.F.; et al. Multiplex PCR assay for identification of Corynebacterium pseudotuberculosis from pure cultures and for rapid detection of this pathogen in clinical samples. J. Med. Microbiol. 2007, 56, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Pavan, M.E.; Robles, C.; Cairó, F.M.; Marcellino, R.; Pettinari, M.J. Identification of Corynebacterium pseudotuberculosis from sheep by PCR-restriction analysis using the RNA polymerase β-subunit gene (rpoB). Res. Vet. Sci. 2012, 92, 202–206. [Google Scholar] [CrossRef] [PubMed]
- El-Sebay, N.A.; Mohamed, M.M.; El-Sergany, E.F.; Abbas, A.M.; Osman, R.M.; El-Moaty, D.A.M.A. Genetic Characterization of Corynebacterium pseudotuberculosis Isolates in Egypt. J. Appl. Vet. Sci. 2021, 6, 15–21. [Google Scholar] [CrossRef]
- Roux, V.; Drancourt, M.; Stein, A.; Riegel, P.; Raoult, D.; La Scola, B. Corynebacterium species isolated from bone and joint infections identified by 16S rRNA gene sequence analysis. J. Clin. Microbiol. 2004, 42, 2231–2233. [Google Scholar] [CrossRef]
- Muckle, C.A.; Gyles, C.L. Relation of lipid content and exotoxin production to virulence of Corynebacterium pseudotuberculosis in mice. Am. J. Vet. Res. 1983, 44, 1149–1153. [Google Scholar]
- Skalka, B.; Literák, I.; Michalík, I.; Skrivánek, M. Corynebacterium pseudotuberculosis infection in goats in the Czech Republic. Zentralbl Vet. B. 1998, 45, 31–35. [Google Scholar] [CrossRef]
- El Damaty, H.M.; El-Demerdash, A.S.; Abd El-Aziz, N.K.; Yousef, S.G.; Hefny, A.A.; Abo Remela, E.M.; Shaker, A.; Elsohaby, I. Molecular Characterization and Antimicrobial Susceptibilities of Corynebacterium pseudotuberculosis Isolated from Caseous Lymphadenitis of Smallholder Sheep and Goats. Animals 2023, 13, 2337. [Google Scholar] [CrossRef]
- Connor, K.M.; Fontaine, M.C.; Rudge, K.; Baird, G.J.; Donachie, W. Molecular genotyping of multinational ovine and caprine Corynebacterium pseudotuberculosis isolates using pulsed-field gel electrophoresis. Vet. Res. 2007, 38, 613–623. [Google Scholar] [CrossRef]
- Gallardo, A.A.; Toledo, R.A.; González Pasayo, R.A.; Azevedo, V.; Robles, C.; Paolicchi, F.A.; Estevao Belchior, S.G. Corynebacterium pseudotuberculosis biovar ovis: Evaluación de la sensibilidad antibiótica in vitro [Corynebacterium pseudotuberculosis biovar ovis: Evaluation of antibiotics susceptibility in vitro]. Rev. Argent. Microbiol. 2019, 51, 334–338. [Google Scholar]
- Hammad, O.M.; Hifnawy, T.; Omran, D.E.l.; Tantawi, M.A.; Girgis, N.I. Ceftriaxone versus Chloramphenicol for Treatment of Acute Typhoid Fever. Life Sci. J. 2011, 8, 100–105. [Google Scholar]
- El Tawab, A.A.A.; Rizk, A.M.; Afifi, S.E.; Mohamed, S.R. Corynebacterium Pseudotuberculosis infection in small ruminant and molecular study of virulence and resistance genes in Beni-Suef governorate. Benha Vet. Med. J. 2019, 37, 122–127. [Google Scholar]
- Tatavarthy, A.; Sanderson, R.; Peak, K.; Scilabro, G.; Davenhill, P.; Cannons, A.; Amuso, P. Molecular typing and resistance analysis of travel-associated Salmonella enterica serotype Typhi. J. Clin. Microbiol. 2012, 50, 2631–2638. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.C.; Silva, A.; Trost, E.; Blom, J.; Ramos, R.; Carneiro, A.; Ali, A.; Santos, A.R.; Pinto, A.C.; Diniz, C.; et al. The pan-genome of the animal pathogen Corynebacterium pseudotuberculosis reveals differences in genome plasticity between the biovar ovis and equi strains. PLoS ONE 2013, 8, e53818. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Primer Sequence (5′–3′) | Reference |
---|---|---|
16S rRNA | Forward: CCGCACTTTAGTGTGTGTG Reverse: TCTCTACGCCGATCTTGTAT | [30] |
rpoB | Forward: CGTATGAACATCGGCCAGGT Reverse: TCCATTTCGCCGAAGCGCTG | [31] |
Accession Number | Host | Country |
---|---|---|
Corynebacterium pseudotuberculosis, Biovar ovis | ||
HQ401568 | Sheep | Chile |
GU971389 | Sheep | Germany |
AY492239 | Pasteur isolate | France |
CP003385 | Wildebeest | South Africa |
CP002924 | Sheep | Argentina |
MT974533 | Sheep | Iraq |
MT974537 | Sheep | Iraq |
MT974528 | Sheep | Iraq |
ON993360 | Sheep | Egypt |
CP034410 | Sheep | Brazil |
CP019769 | Sheep | Brazil |
CP026500 | Goat | Brazil |
CP035715 | Goat | Brazil |
CP035719 | Goat | Brazil |
HQ401569 | Goat | Chile |
CP014543 | Goat | Mexico |
CP014341 | Sheep | Egypt |
CP015309 | Goat | Brazil |
CP020356 | Goat | Brazil |
MG692442 | Sheep | Sudan |
CP013146 | Sheep | Equatorial Guinea |
CP017711 | Goat | Mexico |
CP003407 | Llama | USA |
CP003152 | Sheep | Scotland |
Corynebacterium pseudotuberculosis, Biovar equi | ||
OP946192 | Alpaca | China |
OP946191 | Alpaca | China |
OP946190 | Alpaca | China |
GU818740 | Equine | Germany |
CP003082 | Equine field isolate | USA |
CP003421 | Buffalo | Egypt |
CP003540 | Horse | Belgium |
HQ401570 | Horse | Chile |
CP026501 | Horse | USA |
CP024442 | Horse | USA |
CP023395 | Horse | USA |
CP017292 | Horse | Mexico |
CP017291 | Horse | Mexico |
CP012136 | Horse | Chile |
Outgroups | ||
AY492271 | Corynebacterium ulcerans | |
AY492230 | Corynebacterium diphtheriae | |
AY492279 | Corynebacterium propinquum | |
AY492275 | Corynebacterium urealyticum | |
AY492274 | Corynebacterium kroppenstedtii | |
AY492236 | Corynebacterium bovis |
Species | Total Score | E-Value | Query Coverage (%) | Percent Identity |
---|---|---|---|---|
Corynebacterium pseudotuberculosis (NR_117210.1) | 1434 | 0.0 | 100% | 100.00% |
Corynebacterium pseudotuberculosis (NR_119175.1) | 1434 | 0.0 | 100% | 100.00% |
Corynebacterium pseudotuberculosis (NR_115562.1) | 1434 | 0.0 | 100% | 100.00% |
Corynebacterium ulcerans (NR_117211.1) | 1426 | 0.0 | 100% | 99.87% |
Corynebacterium pseudotuberculosis (NR_037070.1) | 1426 | 0.0 | 100% | 99.74% |
Class | Antibiotics | Number of Isolates | ||
---|---|---|---|---|
S | I | R | ||
Aminoglycoside | Amikacin (AK) | 1 | 0 | 3 (75%) |
Penicillin | Amoxicillin/clavulanic acid (AMC) | 1 | 1 | 2 (50%) |
Penicillin | Ampicillin/cloxacillin (AX) | 1 | 3 | 0 |
Phenicol | Chloramphenicol (C) | 4 | 0 | 0 |
Quinolone | Ciprofloxacin (CIP) | 0 | 2 | 2 (50%) |
Sulfonamides | Cotrimoxazole (COT) | 4 | 0 | 0 |
Macrolide | Erythromycin (E) | 0 | 0 | 4 (100%) |
Aminoglycoside | Gentamicin (GEN) | 2 | 1 | 1 (25%) |
Tetracycline | Oxytetracycline (O) | 4 | 0 | 0 |
Penicillin | Penicillin (P) | 2 | 0 | 2 (50%) |
Rifamycin | Rifampicin (Rf) | 0 | 0 | 4 (100%) |
Sulfonamides | Sulphafurazole (SF) | 4 | 0 | 0 |
Tetracycline | Tetracycline (TE) | 3 | 1 | 0 |
Sulfonamides | Trimethoprim (Tri) | 3 | 2 | 1 (25%) |
Glycopeptide antibiotics | Vancomycin (V) | 2 | 0 | 2 (50%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sunder, J.; De, A.K.; Sujatha, T.; Chakraborty, G.; Mayuri, S.C.; Bhattacharya, D.; Alyethodi, R.R.; Chakurkar, E.B. Isolation and Molecular Characterization of Corynebacterium pseudotuberculosis from Goats in Andaman and Nicobar Islands, India. Microbiol. Res. 2024, 15, 2274-2285. https://doi.org/10.3390/microbiolres15040152
Sunder J, De AK, Sujatha T, Chakraborty G, Mayuri SC, Bhattacharya D, Alyethodi RR, Chakurkar EB. Isolation and Molecular Characterization of Corynebacterium pseudotuberculosis from Goats in Andaman and Nicobar Islands, India. Microbiology Research. 2024; 15(4):2274-2285. https://doi.org/10.3390/microbiolres15040152
Chicago/Turabian StyleSunder, Jai, Arun Kumar De, Tamilvanan Sujatha, Gayatri Chakraborty, Srikoti Chandershekhar Mayuri, Debasis Bhattacharya, Rafeeque Rahman Alyethodi, and Eaknath Bhanudasrao Chakurkar. 2024. "Isolation and Molecular Characterization of Corynebacterium pseudotuberculosis from Goats in Andaman and Nicobar Islands, India" Microbiology Research 15, no. 4: 2274-2285. https://doi.org/10.3390/microbiolres15040152
APA StyleSunder, J., De, A. K., Sujatha, T., Chakraborty, G., Mayuri, S. C., Bhattacharya, D., Alyethodi, R. R., & Chakurkar, E. B. (2024). Isolation and Molecular Characterization of Corynebacterium pseudotuberculosis from Goats in Andaman and Nicobar Islands, India. Microbiology Research, 15(4), 2274-2285. https://doi.org/10.3390/microbiolres15040152