Biological Strategies to Minimize Fertilizer Use in Maize: Efficacy of Trichoderma harzianum and Bacillus subtilis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Experimental Design of Greenhouse Experiment
2.3. Plant Height, Stem Diameter, Shoot Dry Weight (SDW) and Root Dry Weight (RDW)
2.4. Determination of Root Volume
2.5. Determination of Nitrogen and Phosphorus in Shoots and Roots
2.6. Determination of Chlorophyll Contents and Carotenoids
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramirez-Cabral, N.Y.Z.; Shabani, F.; Kumar, L. Global Alterations in Areas of Suitability for Maize Production from Climate Change and Using a Mechanistic Species Distribution Model (CLIMEX). Sci. Rep. 2017, 7, 5910. [Google Scholar] [CrossRef] [PubMed]
- Erenstein, O.; Mottaleb, K.; Sonder, K.; Prasanna, B.M.; Jaleta, M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Del-Val, E.; Philpott, S.M.; Lucatero, A.; Fowler, R.; Cowal, S.; Hsu, J. The Importance of Insect Pest Biocontrol for Maize Production: An Expert Survey. Agroecol. Sustain. Food Syst. 2023, 47, 1271–1292. [Google Scholar] [CrossRef]
- Piscitelli, L.; Aly, A.; Albrizio, R.; Todorovic, M.; Hamze, M.; Cantore, V.; Colovic, M. Adaptive Agricultural Strategies for Facing Water Deficit in Sweet Maize Production: A Case Study of a Semi-Arid Mediterranean Region. Water 2021, 13, 3285. [Google Scholar] [CrossRef]
- Pfister, S.; Bayer, P.; Koehler, A.; Hellweg, S. Environmental Impacts of Water Use in Global Crop Production: Hotspots and Trade-Offs with Land Use. Environ. Sci. Technol. 2011, 45, 5761–5768. [Google Scholar] [CrossRef]
- Aslam, Z.; Yahya, M.; Hussain, H.S.; Tabbasum, S.; Jalaluddin, S.; Khaliq, S.; Yasmin, S. Development of Bacteria-Based Bioorganic Phosphate Fertilizer Enriched with Rock Phosphate for Sustainable Wheat Production. Front. Microbiol. 2024, 15, 1361574. [Google Scholar] [CrossRef]
- Lukiwati, D.R. Effect of Rock Phosphate and Superphosphate Fertilizer on the Productivity of Maize Var. Bisma. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities; Springer: Berlin/Heidelberg, Germany, 2002; Volume 95, pp. 183–187. ISBN 9789048160136. [Google Scholar]
- Corrêa, R.M.; Nascimento, C.W.A.D.; Souza, S.K.D.S.; Freire, F.J.; Silva, G.B.D. Gafsa Rock Phosphate and Triple Superphosphate for Dry Matter Production and P Uptake by Corn. Sci. Agric. 2005, 62, 159–164. [Google Scholar] [CrossRef]
- Sachan, D.S.; Sulochna, S.; Singh, O.; Laxman, T.; Saini, Y.; Reddy, K.J.; Rai, A.K. Assessing Grain Yield and Achieving Enhanced Quality in Maize by Next Generation Fertilizer: A Review. Int. J. Environ. Clim. Change 2023, 13, 626–637. [Google Scholar] [CrossRef]
- Kong, F.; Feng, D.; Liu, Q.; Wu, Y.; Zhao, B.; Lan, T.; Yuan, J.; Wang, X.; Cui, S.; Wei, G.; et al. Effect of Chemical Fertilizer Application on Maize Production in China over the Past 15 Years: A Meta-Analysis. Agronomy 2022, 12, 3005. [Google Scholar] [CrossRef]
- Chandrajith, R.; Dissanayake, C.B. Phosphate Mineral Fertilizers, Trace Metals and Human Health. J. Natl. Sci. Found. Sri Lanka 2009, 37, 153. [Google Scholar] [CrossRef]
- Haque, S.E. How Effective Are Existing Phosphorus Management Strategies in Mitigating Surface Water Quality Problems in the U.S.? Sustainability 2021, 13, 6565. [Google Scholar] [CrossRef]
- Chaube, S.K.; Pandey, S. Trichoderma: A valuable multipurpose fungus for sustainable agriculture. Malays. J. Sustain. Agric. 2022, 6, 97–100. [Google Scholar] [CrossRef]
- Singh, S.P.; Rakshit, A.; Singh, H.B.; Singh, D.K. Trichoderma-Mediated Enhancement of Nutrient Uptake and Reduction in Incidence of Rhizoctonia solani in Tomato. Egypt. J. Biol. 2014, 16, 29. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; López-Carmona, D.A.; González-Esquivel, C.E.; Alarcón, A.; Larsen, J.; Del-Val, E.; Viveros-Bremauntz, F. Alterations of Foliar Arthropod Communities in a Maize Agroecosystem Induced by the Root-Associated Fungus Trichoderma harzianum. J. Pest Sci. 2020, 94, 363–374. [Google Scholar] [CrossRef]
- Caporale, A.G.; Vitaglione, P.; Troise, A.D.; Pigna, M.; Ruocco, M. Influence of Three Different Soil Types on the Interaction of Two Strains of Trichoderma harzianum with Brassica rapa subsp. sylvestris Cv. Esculenta, under Soil Mineral Fertilization. Geoderma 2019, 350, 11–18. [Google Scholar] [CrossRef]
- Wang, T.; Zhou, J.; Huo, X.; Cai, Z.; Meng, P.; Cheng, K.; Wang, Z. Bioorganic Fertilizer Promotes Pakchoi Growth and Shapes the Soil Microbial Structure. Front. Plant Sci. 2022, 13, 1040437. [Google Scholar] [CrossRef]
- Ocwa, A.; Harsányi, E.; Ssemugenze, B. Seed Treatment with Bacillus Bacteria Improves Maize Production: A Narrative Review. Acta Agrar. Debreceniensis 2024, 1, 105–111. [Google Scholar] [CrossRef]
- Silvestrini, G.R.; Corrêa, H.C.; Da Rosa, E.J.; Dal Magro, T.; Pauletti, G.F.; Silvestre, W.P.; Conte, E.D. Potential Use of Phosphate-Solubilizing Bacteria in Soybean Culture. AgriEngineering 2023, 5, 1544–1554. [Google Scholar] [CrossRef]
- Moraes, C.; Rigobelo, E.C.; Santos, R.M.D. Rock Phosphate Fertilization Harms Azospirillum brasilense Selection by Maize. Aust. J. Crop Sci. 2019, 13, 1967–1974. [Google Scholar] [CrossRef]
- Mahapatra, S.; Ramakrishna, W.; Yadav, R. Bacillus subtilis Impact on Plant Growth, Soil Health and Environment: Dr. Jekyll and Mr. Hyde. J. Appl. Microbiol. 2022, 132, 3543–3562. [Google Scholar] [CrossRef]
- Bekele, M.; Gebremedhin, W. Phosphate Solubilizing Bacteria in Optimizing Phosphorous Acquisition and Crop Production. Am. J. BioScience 2022, 10, 61. [Google Scholar] [CrossRef]
- Herencia, J.F.; Garcia-Galavis, P.A.; Melero, S.; Maqueda, C.; Ruiz-Porras, J.C.; Morillo, E. Comparison between Organic and Mineral Fertilization for Soil Fertility Levels, Crop Macronutrient Concentrations, and Yield. Agron. J. 2007, 99, 973–983. [Google Scholar] [CrossRef]
- Black, C.K.; Masters, M.D.; Lebauer, D.S.; Delucia, E.H.; Anderson-Teixeira, K.J. Root Volume Distribution of Maturing Perennial Grasses Revealed by Correcting for Minirhizotron Surface Effects. Plant Soil 2017, 419, 391–404. [Google Scholar] [CrossRef]
- Wan, W.; Wang, Y.; Qin, Y.; Tan, J.; He, H.; Zuo, W.; Wu, H.; He, D. Isolation and Characterization of Phosphorus Solubilizing Bacteria with Multiple Phosphorus Sources Utilizing Capability and Their Potential for Lead Immobilization in Soil. Front. Microbiol. 2020, 11, 752. [Google Scholar] [CrossRef] [PubMed]
- Guanghan, L.; Shenglai, Y.; Yu, W.; Chuanfang, Z. Polarographic Determination of Inorganic Phosphorus in Phytic Acid. Anal. Lett. 1989, 22, 2531–2540. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- McAuliffe, R.E. T-Statistic; Wiley: Hoboken, NJ, USA, 2015; Volume 8, p. 1. [Google Scholar] [CrossRef]
- Efthimiadou, A.; Djordjevic, N.; Giannoglou, M.; Chanioti, S.; Katsaros, G.; Katsenios, N. Effect of Foliar and Soil Application of Plant Growth Promoting Bacteria on Growth, Physiology, Yield and Seed Quality of Maize under Mediterranean Conditions. Sci. Rep. 2020, 10, 21060. [Google Scholar] [CrossRef]
- Gokila, B.; Amirtham, D.; Jayanthi, D.; Manimaran, G.; Janaki, P. Long Term Impact of Fertilization and Intensive Cropping on Maize Yield and Soil Nutrient Availability under Sandy Clay Loam Soil (Inceptisol). Int. J. Plant Soil Sci. 2022, 34, 795–801. [Google Scholar] [CrossRef]
- Zhang, F.; Dou, K.; Liu, C.; Chen, F.; Wu, W.; Yang, T.; Li, L.; Liu, T.; Yu, L. The Application Potential of Trichoderma T-Soybean Containing 1-Aminocyclopropane-1-Carboxylate for Maize Production. Physiol. Mol. Plant Pathol. 2020, 110, 101475. [Google Scholar] [CrossRef]
- Gofar, N.; Utami, H.A.; Nur, T.P.; Muslimah, S.; Pujiati, P.; Permatasari, S.D.I.; Fikri, H.; Haryono, A. Application of Organic Fertilizer Enriched with Trichoderma harzianum on Shallot (Allium cepa) Cultivation in Ultisols. Biodiversitas J. Biol. Divers. 2023, 24, 2426. [Google Scholar] [CrossRef]
- Mashayekhi, P.; Abbasi, Z.; Tatari, M.; Mahmoodi-Eshkaftaki, M. Determination of Soil Feature Effects on Plant-Available Phosphorus Extraction Using Response Surface and Cate–Nelson Methodology. Commun. Soil Sci. Plant Anal. 2014, 45, 2046–2057. [Google Scholar] [CrossRef]
- Bueno, C.B.; De Andrade Da Silva, M.S.R.; De Souza Buzo, F.; Dos Santos, R.M.; Rigobelo, E.C. Effects of Chemical Fertilization and Microbial Inoculum on Bacillus subtilis Colonization in Soybean and Maize Plants. Front. Microbiol. 2022, 13, 901157. [Google Scholar] [CrossRef] [PubMed]
- Alovisi, A.M.T.; Cassol, C.J.; Nascimento, J.S.; Soares, N.B.; Da Silva Junior, I.R.; Da Silva, R.S.; Da Silva, J.A.M. Soil Factors Affecting Phosphorus Adsorption in Soils of the Cerrado, Brazil. Geoderma Reg. 2020, 22, e00298. [Google Scholar] [CrossRef]
- Silva, P.H.V.; Rigobelo, E.C.; Souza, A.G.V.; Frezarin, E.T.; De Souza, G.V.L.; De Araujo, L.D.; Da Silveira, C.M. Trichoderma harzianum and Bacillus subtilis in Association with Rock Powder for the Initial Development of Maize Plants. Agronomy 2023, 13, 872. [Google Scholar] [CrossRef]
- Arici, S.E.; Tuncel, Z.N. Antifungal Activity of Useful Microorganisms against a Phytopathogenic Fungus on Maize. Emerg. Mater. Res. 2020, 9, 743–749. [Google Scholar] [CrossRef]
- Nascimento, F.C.; Rigobelo, E.C.; Lazarovits, G.; Kandasamy, S. Effect of Chemical Fertilization on the Impacts of Plant Growth-Promoting Rhizobacteria in Maize Crops. Curr. Microbiol. 2020, 77, 3878–3887. [Google Scholar] [CrossRef]
- Eljiati, A.; Ouchaou, H.; Elmaati, Y. Plant Growth Promoting Rhizobacteria (PGPR) Isolated from an Arid Soil in Saudi Arabia Improve Maize Growth. Atlas J. Biol. 2024, 830–838. [Google Scholar] [CrossRef]
- Myresiotis, C.K.; Vryzas, Z.; Papadopoulou-Mourkidou, E. Effect of Specific Plant-Growth-Promoting Rhizobacteria (PGPR) on Growth and Uptake of Neonicotinoid Insecticide Thiamethoxam in Corn (Zea mays L.) Seedlings. Pest Manag. Sci. 2014, 71, 1258–1266. [Google Scholar] [CrossRef]
- Yedidia, I.; Chet, I.; Srivastva, A.K.; Kapulnik, Y. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 2001, 235, 235–242. [Google Scholar] [CrossRef]
- Bader, A.N.; Salerno, G.L.; Covacevich, F.; Consolo, V.F. Native Trichoderma harzianum Strains from Argentina Produce Indole-3 Acetic Acid and Phosphorus Solubilization, Promote Growth and Control Wilt Disease on Tomato (Solanum lycopersicum L.). J. King Saud Univ.—Sci. 2019, 32, 867–873. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima Gonilha, D.B.; Santos, C.H.B.; Frezarin, E.T.; Siqueira, J.S.; Rigobelo, E.C. Biological Strategies to Minimize Fertilizer Use in Maize: Efficacy of Trichoderma harzianum and Bacillus subtilis. Microbiol. Res. 2024, 15, 2261-2273. https://doi.org/10.3390/microbiolres15040151
de Lima Gonilha DB, Santos CHB, Frezarin ET, Siqueira JS, Rigobelo EC. Biological Strategies to Minimize Fertilizer Use in Maize: Efficacy of Trichoderma harzianum and Bacillus subtilis. Microbiology Research. 2024; 15(4):2261-2273. https://doi.org/10.3390/microbiolres15040151
Chicago/Turabian Stylede Lima Gonilha, Dalilla Berlanda, Carlos Henrique Barbosa Santos, Edvan Teciano Frezarin, Josiane Soares Siqueira, and Everlon Cid Rigobelo. 2024. "Biological Strategies to Minimize Fertilizer Use in Maize: Efficacy of Trichoderma harzianum and Bacillus subtilis" Microbiology Research 15, no. 4: 2261-2273. https://doi.org/10.3390/microbiolres15040151
APA Stylede Lima Gonilha, D. B., Santos, C. H. B., Frezarin, E. T., Siqueira, J. S., & Rigobelo, E. C. (2024). Biological Strategies to Minimize Fertilizer Use in Maize: Efficacy of Trichoderma harzianum and Bacillus subtilis. Microbiology Research, 15(4), 2261-2273. https://doi.org/10.3390/microbiolres15040151