Enteroviruses, Respiratory Syncytial Virus and Seasonal Coronaviruses in Influenza-like Illness Cases in Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample and Study Population
2.2. Nucleic Acid Extraction
2.3. Influenza Detection
2.4. xTAG RVP FAST v2 Test (Multiplex Realtime PCR)
2.5. Phylogenetic Tree Construction
2.6. Statistical Analysis
3. Results
3.1. Enterovirus Isolation and Next-Generation Sequencing (NGS)
3.2. Demographic Distribution of Sample Population
3.3. Distribution of Respiratory Pathogens
3.4. Clinical Characteristic of Study Population
3.5. Age Distribution of ARI, EV/RV, RSV and hCoV
3.6. Coinfection of Enterovirus, RSV and Coronavirus with Other Respiratory Viruses
3.7. Seasonality of Enterovirus, RSV and Coronavirus
3.8. NGS Data Analysis
3.9. Phylogenetic Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mäkelä, M.J.; Puhakka, T.; Ruuskanen, O.; Leinonen, M.; Saikku, P.; Kimpimäki, M.; Blomqvist, S.; Hyypiä, T.; Arstila, P. Viruses and bacteria in the etiology of the common cold. J. Clin. Microbiol. 1998, 36, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Hu, Z.; Liu, W.; Lu, Y.; Chen, D.; Chen, M.; Qiu, S.; Zeng, Z.; Tian, X.; Cui, H.; et al. New Epidemiological and Clinical Signatures of 18 Pathogens from Respiratory Tract Infections Based on a 5-Year Study. PLoS ONE 2015, 10, e0138684. [Google Scholar] [CrossRef] [PubMed]
- Arden, K.E.; McErlean, P.; Nissen, M.D.; Sloots, T.P.; Mackay, I.M. Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections. J. Med. Virol. 2006, 78, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Allander, T.; Tammi, M.T.; Eriksson, M.; Bjerkner, A.; Tiveljung-Lindell, A.; Andersson, B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc. Natl. Acad. Sci. USA 2005, 102, 12891–12896. [Google Scholar] [CrossRef]
- Tramuto, F.; Orsi, A.; Maida, C.M.; Costantino, C.; Trucchi, C.; Alicino, C.; Vitale, F.; Ansaldi, F. The Molecular Epidemiology and Evolutionary Dynamics of Influenza B Virus in Two Italian Regions during 2010–2015: The Experience of Sicily and Liguria. Int. J. Mol. Sci. 2016, 17, 549. [Google Scholar] [CrossRef]
- Hu, B.; Ge, X.; Wang, L.F.; Shi, Z. Bat origin of human coronaviruses. Virol. J. 2015, 12, 221. [Google Scholar] [CrossRef]
- Fine, J.; Bray-Aschenbrenner, A.; Williams, H.; Buchanan, P.; Werner, J. The Resource Burden of Infections With Rhinovirus/Enterovirus, Influenza, and Respiratory Syncytial Virus in Children. Clin. Pediatr. 2019, 58, 177–184. [Google Scholar] [CrossRef]
- Solomon, T.; Lewthwaite, P.; Perera, D.; Cardosa, M.J.; McMinn, P.; Ooi, M.H. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect. Dis. 2010, 10, 778–790. [Google Scholar] [CrossRef]
- Holm-Hansen, C.C.; Midgley, S.E.; Fischer, T.K. Global emergence of enterovirus D68: A systematic review. Lancet Infect. Dis. 2016, 16, e64–e75. [Google Scholar] [CrossRef]
- Nokso-Koivisto, J.; Hovi, T.; Pitkäranta, A. Viral upper respiratory tract infections in young children with emphasis on acute otitis media. Int. J. Pediatr. Otorhinolaryngol. 2006, 70, 1333–1342. [Google Scholar] [CrossRef]
- Messacar, K.; Asturias, E.J.; Hixon, A.M.; Van Leer-Buter, C.; Niesters, H.G.; Tyler, K.L.; Abzug, M.J.; Dominguez, S.R. Enterovirus D68 and acute flaccid myelitis—Evaluating the evidence for causality. Lancet Infect. Dis. 2018, 18, e239–e247. [Google Scholar] [CrossRef] [PubMed]
- Knoester, M.; Helfferich, J.; Poelman, R.; Van Leer-Buter, C.; Brouwer, O.F.; Niesters, H.G.M.; 2016 EV-D68 AFM Working Group. Twenty-nine Cases of Enterovirus-D68–associated Acute Flaccid Myelitis in Europe 2016: A Case Series and Epidemiologic Overview. Pediatr. Infect. Dis. J. 2019, 38, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Poelman, R.; Schuffenecker, I.; Van Leer-Buter, C.; Josset, L.; Niesters, H.G.; Lina, B. European surveillance for enterovirus D68 during the emerging North-American outbreak in 2014. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2015, 71, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Holm-Hansen, C.C.; Midgley, S.E.; Schjørring, S.; Fischer, T.K. The importance of enterovirus surveillance in a Post-polio world. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2017, 23, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Nair, H.; Nokes, D.J.; Gessner, B.D.; Dherani, M.; Madhi, S.A.; Singleton, R.J.; O’Brien, K.L.; Roca, A.; Wright, P.F.; Bruce, N.; et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: A systematic review and meta-analysis. Lancet 2010, 375, 1545–1555. [Google Scholar] [CrossRef]
- Shi, T.; McAllister, D.A.; O’Brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: A systematic review and modelling study. Lancet 2017, 390, 946–958. [Google Scholar] [CrossRef]
- Tin Tin Htar, M.; Yerramalla, M.S.; Moïsi, J.C.; Swerdlow, D.L. The burden of respiratory syncytial virus in adults: A systematic review and meta-analysis. Epidemiol. Infect. 2020, 148, e48. [Google Scholar] [CrossRef]
- Falsey, A.R.; Hennessey, P.A.; Formica, M.A.; Cox, C.; Walsh, E.E. Respiratory syncytial virus infection in elderly and high-risk adults. N. Engl. J. Med. 2005, 352, 1749–1759. [Google Scholar] [CrossRef]
- Fleming, D.M.; Taylor, R.J.; Lustig, R.L.; Schuck-Paim, C.; Haguinet, F.; Webb, D.J.; Logie, J.; Matias, G.; Taylor, S. Modelling estimates of the burden of Respiratory Syncytial virus infection in adults and the elderly in the United Kingdom. BMC Infect. Dis. 2015, 15, 443. [Google Scholar] [CrossRef]
- Adhikari, S.K.; Ranabhat, K.; Bhattarai, S.; Saud, B.; Paudel, K.; Bhandari, R.; Khanal, P.; Keene, C.M.; Khanal, V. Epidemiology of COVID-19 mortality in Nepal: An analysis of the National Health Emergency Operation Center data. Public Health Chall. 2023, 2, e127. [Google Scholar] [CrossRef]
- Hamre, D.; Procknow, J.J. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Medicine. Soc. Exp. Biol. Med. 1966, 121, 190–193. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, K.; Dees, J.H.; Becker, W.B.; Kapikian, A.Z.; Chanock, R.M. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc. Natl. Acad. Sci. USA 1967, 57, 933–940. [Google Scholar] [CrossRef] [PubMed]
- van der Hoek, L.; Pyrc, K.; Jebbink, M.F.; Vermeulen-Oost, W.; Berkhout, R.J.M.; Wolthers, K.C.; Wertheim-van Dillen, P.M.E.; Kaandorp, J.; Spaargaren, J.; Berkhout, B. Identification of a new human coronavirus. Nat. Med. 2004, 10, 368–373. [Google Scholar] [CrossRef]
- Woo, P.C.; Lau, S.K.; Chu, C.M.; Chan, K.H.; Tsoi, H.W.; Huang, Y.; Wong, B.H.; Poon, R.W.; Cai, J.J.; Luk, W.K.; et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 2005, 79, 884–895. [Google Scholar] [CrossRef]
- Gadsby, N.J.; Hardie, A.; Claas, E.C.; Templeton, K.E. Comparison of the Luminex Respiratory Virus Panel fast assay with in-house real-time PCR for respiratory viral infection diagnosis. J. Clin. Microbiol. 2010, 48, 2213–2216. [Google Scholar] [CrossRef]
- Choudhary, M.L.; Anand, S.P.; Tikhe, S.A.; Walimbe, A.M.; Potdar, V.A.; Chadha, M.S.; Mishra, A.C. Comparison of the conventional multiplex RT-PCR, real time RT-PCR and Luminex xTAG® RVP fast assay for the detection of respiratory viruses. J. Med. Virol. 2016, 88, 51–57. [Google Scholar] [CrossRef]
- CDC Realtime RT-PCR (rRTPCR) Protocol for Detection and Characterization of Influenza (Version 2007); CDC REF # I-007-05; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2007.
- Centers for Disease Control and Prevention. CDC protocol of realtime RTPCR for influenza A (H1N1); Centers for Disease Control and Prevention: Atlanta, GA, USA, 2009.
- Rutvisuttinunt, W.; Klungthong, C.; Thaisomboonsuk, B.; Chinnawirotpisan, P.; Ajariyakhajorn, C.; Manasatienkij, W.; Phonpakobsin, T.; Lon, C.; Saunders, D.; Wangchuk, S.; et al. Retrospective use of next-generation sequencing reveals the presence of Enteroviruses in acute influenza-like illness respiratory samples collected in South/South-East Asia during 2010-2013. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2017, 94, 91–99. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Grubaugh, N.D.; Gangavarapu, K.; Quick, J.; Matteson, N.L.; De Jesus, J.G.; Main, B.J.; Tan, A.L.; Paul, L.M.; Brackney, D.E.; Grewal, S.; et al. An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biol. 2019, 20, 8. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.X.; Liang, J.Q.; Fung, T.S. Human Coronavirus-229E, -OC43, -NL63, and -HKU1 (Coronaviridae). Encycl. Virol. 2021, 2, 428–440. [Google Scholar] [CrossRef]
- Park, S.; Lee, Y.; Michelow, I.C.; Choe, Y.J. Global Seasonality of Human Coronaviruses: A Systematic Review. Open Forum Infect. Dis. 2020, 7, ofaa443. [Google Scholar] [CrossRef]
- Kusel, M.M.; de Klerk, N.H.; Holt, P.G.; Kebadze, T.; Johnston, S.L.; Sly, P.D. Role of respiratory viruses in acute upper and lower respiratory tract illness in the first year of life: A birth cohort study. Pediatr. Infect. Dis. J. 2006, 25, 680–686. [Google Scholar] [CrossRef]
- Uddin, S.M.I.; Englund, J.A.; Kuypers, J.Y.; Chu, H.Y.; Steinhoff, M.C.; Khatry, S.K.; LeClerq, S.C.; Tielsch, J.M.; Mullany, L.C.; Shrestha, L.; et al. Burden and Risk Factors for Coronavirus Infections in Infants in Rural Nepal. Clin. Infect. Dis. 2018, 67, 1507–1514. [Google Scholar] [CrossRef]
- van Elden, L.J.; van Loon, A.M.; van Alphen, F.; Hendriksen, K.A.; Hoepelman, A.I.; van Kraaij, M.G.; Oosterheert, J.J.; Schipper, P.; Schuurman, R.; Nijhuis, M. Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction. J. Infect. Dis. 2004, 189, 652–657. [Google Scholar] [CrossRef]
- Heimdal, I.; Moe, N.; Krokstad, S.; Christensen, A.; Skanke, L.H.; Nordbø, S.A.; Døllner, H. Human Coronavirus in Hospitalized Children With Respiratory Tract Infections: A 9-Year Population-Based Study From Norway. J. Infect. Dis. 2019, 219, 1198–1206. [Google Scholar] [CrossRef]
- Smuts, H.; Workman, L.; Zar, H.J. Role of human metapneumovirus, human coronavirus NL63 and human bocavirus in infants and young children with acute wheezing. J. Med. Virol. 2008, 80, 906–912. [Google Scholar] [CrossRef]
- Prill, M.M.; Iwane, M.K.; Edwards, K.M.; Williams, J.V.; Weinberg, G.A.; Staat, M.A.; Willby, M.J.; Talbot, H.K.; Hall, C.B.; Szilagyi, P.G.; et al. Human coronavirus in young children hospitalized for acute respiratory illness and asymptomatic controls. Pediatr. Infect. Dis. J. 2012, 31, 235–240. [Google Scholar] [CrossRef]
- Dare, R.K.; Fry, A.M.; Chittaganpitch, M.; Sawanpanyalert, P.; Olsen, S.J.; Erdman, D.D. Human coronavirus infections in rural Thailand: A comprehensive study using real-time reverse-transcription polymerase chain reaction assays. J. Infect. Dis. 2007, 196, 1321–1328. [Google Scholar] [CrossRef]
- Cui, L.-j.; Zhang, C.; Zhang, T.; Lu, R.-j.; Xie, Z.; Zhang, L.-l.; Liu, C.-Y.; Zhou, W.-m.; Ruan, L.; Ma, X.-j.; et al. Human Coronaviruses HCoV-NL63 and HCoV-HKU1 in Hospitalized Children with Acute Respiratory Infections in Beijing, China. Adv. Virol. 2011, 2011, 129134. [Google Scholar] [CrossRef] [PubMed]
- Dijkman, R.; Jebbink, M.F.; Gaunt, E.; Rossen, J.W.; Templeton, K.E.; Kuijpers, T.W.; van der Hoek, L. The dominance of human coronavirus OC43 and NL63 infections in infants. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2012, 53, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Wunderli, W.; Meerbach, A.; Guengoer, T.; Berger, C.; Greiner, O.; Caduff, R.; Trkola, A.; Bossart, W.; Gerlach, D.; Schibler, M.; et al. Astrovirus Infection in Hospitalized Infants with Severe Combined Immunodeficiency after Allogeneic Hematopoietic Stem Cell Transplantation. PLoS ONE 2011, 6, e27483. [Google Scholar] [CrossRef] [PubMed]
- Friedman, N.; Alter, H.; Hindiyeh, M.; Mendelson, E.; Shemer Avni, Y.; Mandelboim, M. Human Coronavirus Infections in Israel: Epidemiology, Clinical Symptoms and Summer Seasonality of HCoV-HKU1. Viruses 2018, 10, 515. [Google Scholar] [CrossRef]
- Al-Khannaq, M.N.; Ng, K.T.; Oong, X.Y.; Pang, Y.K.; Takebe, Y.; Chook, J.B.; Hanafi, N.S.; Kamarulzaman, A.; Tee, K.K. Diversity and Evolutionary Histories of Human Coronaviruses NL63 and 229E Associated with Acute Upper Respiratory Tract Symptoms in Kuala Lumpur, Malaysia. Am. J. Trop. Med. Hyg. 2016, 94, 1058–1064. [Google Scholar] [CrossRef]
- Chatzis, O.; Darbre, S.; Pasquier, J.; Meylan, P.; Manuel, O.; Aubert, J.D.; Beck-Popovic, M.; Masouridi-Levrat, S.; Ansari, M.; Kaiser, L.; et al. Burden of severe RSV disease among immunocompromised children and adults: A 10 year retrospective study. BMC Infect. Dis. 2018, 18, 111. [Google Scholar] [CrossRef]
- Sáez-López, E.; Pechirra, P.; Costa, I.; Cristóvão, P.; Conde, P.; Machado, A.; Rodrigues, A.P.; Guiomar, R. Performance of surveillance case definitions for respiratory syncytial virus infections through the sentinel influenza surveillance system, Portugal, 2010 to 2018. Euro Surveill. 2019, 24, 1900140. [Google Scholar] [CrossRef]
- Obando-Pacheco, P.; Justicia-Grande, A.J.; Rivero-Calle, I.; Rodríguez-Tenreiro, C.; Sly, P.; Ramilo, O.; Mejías, A.; Baraldi, E.; Papadopoulos, N.G.; Nair, H.; et al. Respiratory Syncytial Virus Seasonality: A Global Overview. J. Infect. Dis. 2018, 217, 1356–1364. [Google Scholar] [CrossRef]
- Staadegaard, L.; Caini, S.; Wangchuk, S.; Thapa, B.; de Almeida, W.A.F.; de Carvalho, F.C.; Fasce, R.A.; Bustos, P.; Kyncl, J.; Novakova, L.; et al. Defining the seasonality of respiratory syncytial virus around the world: National and subnational surveillance data from 12 countries. Influenza Other Respir. Viruses 2021, 15, 732–741. [Google Scholar] [CrossRef]
- Chu, H.Y.; Katz, J.; Tielsch, J.; Khatry, S.K.; Shrestha, L.; LeClerq, S.C.; Magaret, A.; Kuypers, J.; Steinhoff, M.; Englund, J.A. Respiratory syncytial virus infection in infants in rural Nepal. J. Infect. 2016, 73, 145–154. [Google Scholar] [CrossRef]
- Le-Corre, N.; Pérez, R.; Vizcaya, C.; Martínez-Valdebenito, C.; López, T.; Monge, M.; Alarcón, R.; Moller, F.; Martínez, M.T.; Massardo, J.M.; et al. Relevance of codetection of respiratory viruses in the severity of acute respiratory infection in hospitalized children. Andes Pediatr. Rev. Chil. Pediatr. 2021, 92, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Suzuki, A.; Lupisan, S.; Okamoto, M.; Aniceto, R.; Egos, R.J.; Daya, E.E.; Tamaki, R.; Saito, M.; Fuji, N.; et al. Molecular evolution of enterovirus 68 detected in the Philippines. PLoS ONE 2013, 8, e74221. [Google Scholar] [CrossRef] [PubMed]
- Lauinger, I.L.; Bible, J.M.; Halligan, E.P.; Aarons, E.J.; MacMahon, E.; Tong, C.Y.W. Lineages, sub-lineages and variants of enterovirus 68 in recent outbreaks. PLoS ONE 2012, 7, e36005. [Google Scholar] [CrossRef] [PubMed]
- Bessaud, M.; Delpeyroux, F. Enteroviruses-the famous unknowns. Lancet Infect. Dis. 2020, 20, 268–269. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.Y.; Lin, H.Y.; Gau, S.S.; Lu, C.Y.; Hsia, S.H.; Huang, Y.C.; Huang, L.M.; Lin, T.Y. Enterovirus A71 neurologic complications and long-term sequelae. J. Biomed. Sci. 2019, 26, 57. [Google Scholar] [CrossRef]
- Chen, B.-S.; Lee, H.-C.; Lee, K.-M.; Gong, Y.-N.; Shih, S.-R. Enterovirus and Encephalitis. Front. Microbiol. 2020, 11, 261. [Google Scholar] [CrossRef]
- Mao, Q.; Hao, X.; Hu, Y.; Du, R.; Lang, S.; Bian, L.; Gao, F.; Yang, C.; Cui, B.; Zhu, F. A neonatal mouse model of central nervous system infections caused by Coxsackievirus B5. Emerg. Microbes Infect. 2018, 7, 1–11. [Google Scholar] [CrossRef]
- Fan, Y.-K.; Liu, Y.-P. Magnetic resonance imaging features of pediatric coxsackievirus encephalitis. J. Belg. Soc. Radiol. 2019, 103, 6. [Google Scholar] [CrossRef]
- Tapparel, C.; Siegrist, F.; Petty, T.J.; Kaiser, L. Picornavirus and enterovirus diversity with associated human diseases. Infect. Genet. Evol. 2013, 14, 282–293. [Google Scholar] [CrossRef]
- Machado, R.S.; Tavares, F.N.; Sousa, I.P., Jr. Global landscape of coxsackieviruses in human health. Virus Res. 2024, 344, 199367. [Google Scholar] [CrossRef]
- Xiang, Z.; Gonzalez, R.; Wang, Z.; Ren, L.; Xiao, Y.; Li, J.; Li, Y.; Vernet, G.; Paranhos-Baccalà, G.; Jin, Q.; et al. Coxsackievirus A21, enterovirus 68, and acute respiratory tract infection, China. Emerg. Infect. Dis. 2012, 18, 821–824. [Google Scholar] [CrossRef]
- Zou, L.; Yi, L.; Song, Y.; Zhang, X.; Liang, L.; Ni, H.; Ke, C.; Wu, J.; Lu, J. A cluster of coxsackievirus A21 associated acute respiratory illness: The evidence of efficient transmission of CVA21. Arch. Virol. 2017, 162, 1057–1059. [Google Scholar] [CrossRef]
Group | Total Sample | Male (%) | Mean Age (Median, SD) |
---|---|---|---|
ILI: 2016–2018 * | 4593 | 2690 (58.6) | 12.6 (5.6,14.8) |
Influenza RT PCR-Pos ** | 2758 | 1590 (57.6) | 13.9 (6.8, 15.1) |
Influenza RT PCR-Neg *** | 1835 | 1100 (59.6) | 11.4 (4.1, 15.0) |
Luminex xTAG RVP FAST v2 assay **** | 997 | 601 (60.3) | 9.8 (3.9, 13.4) |
Targets (N = 997) | Total Positive (%) | Positive Among Children Aged <= 15 Yrs, N = 803 (%) |
---|---|---|
Influenza A non-typed * | 5 (0.5) | 5 (0.6) |
Influenza A (H1N1pdm09) | 6 (0.6) | 4 (0.5) |
Influenza A H1 | 0 (0.0) | 0 (0.0) |
Influenza A H3 | 1 (0.1) | 1 (0.1) |
Influenza B | 9 (0.9) | 8 (1.0) |
Respiratory syncytial virus | 137 (13.7) | 132 (16.4) |
Corona 229E | 10 (1.0) | 6 (0.8) |
Corona HKU1 | 15 (1.5) | 9 (1.1) |
Corona NL63 | 12 (1.2) | 8 (1.0) |
Corona OC43 | 15 (1.5) | 11 (1.4) |
Parainfluenza 1 | 26 (2.6) | 23 (2.9) |
Parainfluenza 2 | 8 (0.8) | 6 (0.8) |
Parainfluenza 3 | 62 (6.2) | 54 (6.7) |
Parainfluenza 4 | 20 (2.0) | 16 (2.0) |
Enterovirus/Rhinovirus | 362 (36.3) | 291 (36.2) |
Human metapneumovirus | 98 (9.8) | 87 (10.8) |
Adenovirus | 121 (12.1) | 117 (14.6%) |
Human bocavirus | 20 (2.0) | 20 (2.5) |
Sign and Symptom | ARIs (N = 785) * | EV/RV (N = 362) ** | RSV (N = 137) *** | hCoV (N = 51) **** | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yes | No | Unknown | Yes | No | Unknown | Yes | No | Unknown | Yes | No | Unknown | |
Cough | 778 | 7 | 0 | 358 | 4 | 0 | 136 | 1 | 0 | 50 | 1 | 0 |
Runny nose | 774 | 10 | 1 | 356 | 6 | 0 | 137 | 0 | 0 | 51 | 0 | 0 |
Diarrhea | 38 | 742 | 5 | 14 | 348 | 0 | 5 | 130 | 2 | 5 | 46 | 0 |
Injected pharynx | 129 | 649 | 7 | 72 | 289 | 1 | 16 | 118 | 3 | 10 | 40 | 1 |
Chill | 139 | 543 | 103 | 72 | 251 | 39 | 6 | 108 | 23 | 15 | 27 | 9 |
Sore throat | 571 | 109 | 105 | 256 | 64 | 42 | 90 | 12 | 35 | 37 | 8 | 6 |
Breathing difficulty | 51 | 560 | 174 | 30 | 257 | 75 | 5 | 109 | 23 | 3 | 37 | 11 |
Malaise | 328 | 216 | 241 | 164 | 90 | 108 | 47 | 42 | 89 | 27 | 11 | 13 |
Generalized body pain | 277 | 230 | 278 | 141 | 101 | 120 | 28 | 47 | 62 | 23 | 13 | 15 |
Headache | 284 | 180 | 321 | 138 | 84 | 140 | 23 | 41 | 73 | 22 | 11 | 18 |
Age Group | ARIs | EV/RV | RSV | hCoV | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
+ve | OR * | 95% CI | p-Value | +ve | OR * | 95% CI | p-Value | +ve | OR * | 95% CI | p-Value | +ve | OR * | 95% CI | p-Value | |
0–04 (N = 588) | 511 | 4.17 | 2.78–6.24 | <0.0001 | 218 | 1.08 | 0.75–1.57 | 0.6840 | 116 | 12.29 | 3.85–39.23 | <0.0001 | 25 | 0.48 | 0.24–0.96 | 0.0376 |
05–17 (N = 226) | 158 | 1.46 | 0.99–2.25 | 0.0870 | 77 | 0.95 | 0.62–1.46 | 0.8059 | 17 | 4.07 | 1.17–14.13 | 0.0272 | 9 | 0.45 | 0.19–1.07 | 0.0714 |
18–49 (N = 153) | 94 | 54 | 3 | 13 | ||||||||||||
50–64 (N = 25) | 18 | 1.61 | 0.64–4.10 | 0.3140 | 10 | 1.22 | 0.51–2.91 | 0.6498 | 0 | 0.84 | 0.04–16.81 | 0.9110 | 4 | 2.05 | 0.61–6.89 | 0.2449 |
65 and above (N = 5) | 4 | 2.51 | 0.27–23.01 | 0.4154 | 3 | 2.75 | 0.45–16.97 | 0.2759 | 1 | 12.5 | 1.06–147.99 | 0.0452 | 0 | 0.95 | 0.05–18.05 | 0.9706 |
Targets | Enterovirus/Rhinovirus | RSV | Coronavirus |
---|---|---|---|
Adenovirus | 35 | 3 | 1 |
Human bocavirus | 9 | 3 | - |
Coronaviruses | 15 | 4 | 1 |
Enterovirus/Rhinovirus | - | 20 | 15 |
Influenza A non-typed * | 1 | - | - |
Human metapneumovirus | 19 | 3 | 3 |
Parainfluenza 1 | 2 | 1 | - |
Parainfluenza 2 | 2 | 0 | - |
Parainfluenza 3 | 12 | 1 | - |
Parainfluenza 4 | 3 | 1 | 2 |
Respiratory syncytial virus | 20 | - | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, S.K.; Shrestha, J.; Shrestha, B.; Strand, T.A.; Dudman, S.; Andreassen, A.K.; Shrestha, S.K.; Bastola, A.; Pandey, P.; Fernandez, S., on behalf of the AFRIMS-Department of Virology Group. Enteroviruses, Respiratory Syncytial Virus and Seasonal Coronaviruses in Influenza-like Illness Cases in Nepal. Microbiol. Res. 2024, 15, 2247-2260. https://doi.org/10.3390/microbiolres15040150
Shrestha SK, Shrestha J, Shrestha B, Strand TA, Dudman S, Andreassen AK, Shrestha SK, Bastola A, Pandey P, Fernandez S on behalf of the AFRIMS-Department of Virology Group. Enteroviruses, Respiratory Syncytial Virus and Seasonal Coronaviruses in Influenza-like Illness Cases in Nepal. Microbiology Research. 2024; 15(4):2247-2260. https://doi.org/10.3390/microbiolres15040150
Chicago/Turabian StyleShrestha, Sanjaya K., Jasmin Shrestha, Binob Shrestha, Tor A. Strand, Susanne Dudman, Ashild K. Andreassen, Shree Krishna Shrestha, Anup Bastola, Prativa Pandey, and Stefan Fernandez on behalf of the AFRIMS-Department of Virology Group. 2024. "Enteroviruses, Respiratory Syncytial Virus and Seasonal Coronaviruses in Influenza-like Illness Cases in Nepal" Microbiology Research 15, no. 4: 2247-2260. https://doi.org/10.3390/microbiolres15040150
APA StyleShrestha, S. K., Shrestha, J., Shrestha, B., Strand, T. A., Dudman, S., Andreassen, A. K., Shrestha, S. K., Bastola, A., Pandey, P., & Fernandez, S., on behalf of the AFRIMS-Department of Virology Group. (2024). Enteroviruses, Respiratory Syncytial Virus and Seasonal Coronaviruses in Influenza-like Illness Cases in Nepal. Microbiology Research, 15(4), 2247-2260. https://doi.org/10.3390/microbiolres15040150