Dietary Mycotoxins Effects on Nile Tilapia (Oreochromis niloticus) Microbiomes Can Be Mitigated with Addition of Organically Modified Clinoptilolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Feed Preparation
2.2. Experimental Design and Sampling
2.3. DNA Extraction
2.4. RT-PCR
Name | Primer Sequence (5′ → 3′) | Forward (F)/Reverse (R) | Reference |
---|---|---|---|
Universal Eubacterial gene | 530F (GTCCCAGCMGCNGCGG) | F | [42] |
1100R (GGGTTNCGNTCGTTG) | R | ||
Firmicutes | 928F (TGAAACTYAAAGGAATTGACG) | F | [43] |
1040R (ACCATGCACCACCTGTC) | R | ||
Bacteroidetes | 798cfbF (CRAACAGGATTAGATACCCT) | F | [43] |
cfb967R (GGTAAGGGTTCCTCGCGTAT) | R | ||
Actinobacteria | Eub338F (ACGGGCGGTGTGTACA) | F | [44] |
Act1159R (TCCGAGTTRACCCCGGC) | R | ||
Proteobacteria | 27F (GAGTTTGATCMTGGCTCAG) | F | [45] |
1529R (CAKAAAGGAGGTGATCC) | R | ||
Clostridiaceae | Clos-58-f (AAAGGAAGATTAATACCGCATAA) | F | [46] |
Clos780-r (ATCTTGCGACCGTACTCCCC) | R |
2.5. Statistical Analysis
3. Results
3.1. Gills
3.2. Intestines
3.3. Water
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Parata, L.; Sammut, J.; Egan, S. Opportunities for microbiome research to enhance farmed freshwater fish quality and production. Rev. Aquac. 2021, 13, 2027–2037. [Google Scholar] [CrossRef]
- Talwar, C.; Nagar, S.; Lal, R.; Negi, R.K. Fish gut microbiome: Current approaches and future perspectives. Indian J. Microbiol. 2018, 58, 397–414. [Google Scholar] [CrossRef]
- Dehler, C.E.; Secombes, C.J.; Martin, S.A. Environmental and physiological factors shape the gut microbiota of Atlantic salmon parr (Salmo salar L.). Aquaculture 2017, 467, 149–157. [Google Scholar] [CrossRef]
- Ghanbari, M.; Kneifel, W.; Domig, K.J. A new view of the fish gut microbiome: Advances from next-generation sequencing. Aquaculture 2015, 448, 464–475. [Google Scholar] [CrossRef]
- Casadei, E.; Wang, T.; Zou, J.; Vecino, J.L.G.; Wadsworth, S.; Secombes, C.J. Characterization of three novel β-defensin antimicrobial peptides in rainbow trout (Oncorhynchus mykiss). Mol. Immunol. 2009, 46, 3358–3366. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, D.L.; Rodiles, A. The fish microbiome and its interactions with mucosal tissues. In Mucosal Health in Aquaculture; Academic Press: New York, NY, USA, 2015; pp. 273–295. [Google Scholar]
- Mougin, J.; Joyce, A. Fish disease prevention via microbial dysbiosis-associated biomarkers in aquaculture. Rev. Aquac. 2023, 15, 579–594. [Google Scholar] [CrossRef]
- Caruso, G.; Pedà, C.; Cappello, S.; Leonardi, M.; La Ferla, R.; Lo Giudice, A.; Romeo, T. Effects of microplastics on trophic parameters, abundance and metabolic activities of seawater and fish gut bacteria in mesocosm conditions. Environ. Sci. Pollut. Res. 2018, 25, 30067–30083. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Liao, Z.; Ma, X.; Liang, M.; Xu, H.; Mai, K.; Zhang, Y. Response of Intestinal Microbiota of Tiger Puffer (Takifugu rubripes) to the Fish Oil Finishing Strategy. Microorganisms 2023, 11, 208. [Google Scholar] [CrossRef]
- Miao, S.; Zhu, J.; Zhao, C.; Sun, L.; Dong, X.; Chen, G. Effect of dietary soybean meal associated with feeding time on the growth performance and intestinal microbiota composition of northern snakehead. Aquac. Res. 2019, 50, 2751–2759. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Y.; Tan, Y.; Kumkhong, S.; Gu, Y.; Yu, H.; Yang, Y. Effects of deoxynivalenol-contaminated diet on the composition and diversity of the intestinal microbial community and intestinal ultrastructure of juvenile largemouth bass (Micropterus salmoides). Aquaculture 2021, 538, 736544. [Google Scholar] [CrossRef]
- Matejova, I.; Svobodova, Z.; Vakula, J.; Mares, J.; Modra, H. Impact of mycotoxins on aquaculture fish species: A review. J. World Aquac. Soc. 2017, 48, 186–200. [Google Scholar] [CrossRef]
- AFSSA. Risk Assessment for Mycotoxins in Human and Animal Food Chains; AFSSA: Oklahoma City, OK, USA, 2006. [Google Scholar]
- Gonçalves, R.A.; Naehrer, K.; Santos, G.A. Occurrence of mycotoxins in commercial aquafeeds in Asia and Europe: A real risk to aquaculture? Rev. Aquac. 2018, 10, 263–280. [Google Scholar] [CrossRef]
- Anater, A.; Manyes, L.; Meca, G.; Ferrer, E.; Luciano, F.B.; Pimpão, C.T.; Font, G. Mycotoxins and their consequences in aquaculture: A review. Aquaculture 2016, 451, 1–10. [Google Scholar] [CrossRef]
- Imran, M.; Cao, S.; Wan, S.F.; Chen, Z.; Saleemi, M.K.; Wang, N.; Munawar, J. Mycotoxins–A global one health concern: A review. Agrobiol. Rec. 2020, 2, 1–16. [Google Scholar] [CrossRef]
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef]
- Marijani, E.; Kigadye, E.; Okoth, S. Occurrence of fungi and mycotoxins in fish feeds and their impact on fish health. Int. J. Microbiol. 2019, 2019, 6743065. [Google Scholar] [CrossRef]
- Di Gregorio, M.C.; Neeff, D.V.D.; Jager, A.V.; Corassin, C.H.; Carão, Á.C.D.P.; Albuquerque, R.D.; Oliveira, C.A.F. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Rev. 2014, 33, 125–135. [Google Scholar] [CrossRef]
- Derome, N.; Gauthier, J.; Boutin, S.; Llewellyn, M. Bacterial opportunistic pathogens of fish. In The Rasputin Effect: When Commensals and Symbionts Become Parasitic; Springer: Cham, Switzerland, 2016; pp. 81–108. [Google Scholar]
- Cavalcante, R.B.; Telli, G.S.; Tachibana, L.; de Carla Dias, D.; Oshiro, E.; Natori, M.M.; Ranzani-Paiva, M.J. Probiotics, Prebiotics and Synbiotics for Nile tilapia: Growth performance and protection against Aeromonas hydrophila infection. Aquac. Rep. 2020, 17, 100343. [Google Scholar] [CrossRef]
- Shi, X.; Xia, Y.; Wei, W.; Ni, B.J. Accelerated spread of antibiotic resistance genes (ARGs) induced by non-antibiotic conditions: Roles and mechanisms. Water Res. 2022, 224, 119060. [Google Scholar] [CrossRef]
- Zhang, X.X.; Zhang, T.; Fang, H.H. Antibiotic resistance genes in water environment. Appl. Microbiol. Biotechnol. 2009, 82, 397–414. [Google Scholar] [CrossRef]
- Marković, M.; Daković, A.; Rottinghaus, G.E.; Kragović, M.; Petković, A.; Krajišnik, D.; de Gennaro, B. Adsorption of the mycotoxin zearalenone by clinoptilolite and phillipsite zeolites treated with cetylpyridinium surfactant. Colloids Surf. B Biointerfaces 2017, 151, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Raj, J.; Vasiljević, M.; Tassis, P.; Farkaš, H.; Bošnjak-Neumüller, J.; Männer, K. Effects of a modified clinoptilolite zeolite on growth performance, health status and detoxification of aflatoxin B1 and ochratoxin A in male broiler chickens. Br. Poult. Sci. 2021, 62, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh Kakhki, R.; Zirjanizadeh, S.; Mohammadpoor, M. A review of clinoptilolite, its photocatalytic, chemical activity, structure and properties: In time of artificial intelligence. J. Mater. Sci. 2023, 58, 10555–10575. [Google Scholar] [CrossRef]
- Sallam, G.R.; Habib, Y.J.; El Basuini, M.F.; Fayed, W.M.; Shehata, A.I. Synergistic interactions of zeolite, stocking density, and water exchange: A holistic approach to optimizing aquaculture performance of juvenile European seabass (Dicentrarchus labrax). Sci. Afr. 2024, 23, e02043. [Google Scholar] [CrossRef]
- Pavlovich-Cristopulos, G.; Schiavo, B.; Romero, F.M.; Hernández-Mendiola, E.; Angulo-Molina, A.; Meza-Figueroa, D. Oral bioaccessibility of metal (oid) s in commercial zeolite used as a dietary supplement: Implications to human health risk. J. Food Compos. Anal. 2023, 115, 104990. [Google Scholar] [CrossRef]
- Magdalena Tomasevic-Canovic, S.M. Patent Co Preduzece Za Proizvodnju Usluge I Pro. EU Patent No. EP1363854B1, 22 April 2009. [Google Scholar]
- Ergün, S.; Yigit, M.; Türker, A. Growth and Feed Consumption of Young Rainbow Trout (Oncorhynchus Mykiss) Exposed To Different Photoperiods. Isr. J. Aquac. Bamidgeh 2003, 55, 132–138. [Google Scholar] [CrossRef]
- Zahran, E.; Risha, E.; Hamed, M.; Ibrahim, T.; Palić, D. Dietary mycotoxicosis prevention with modified zeolite (Clinoptilolite) feed additive in Nile tilapia (Oreochromis niloticus). Aquaculture 2020, 515, 734562. [Google Scholar] [CrossRef]
- Kaya, D.; Genc, E.; Palić, D.; Genc, M.A.; Todorović, N.; Sevgili, H.; Guroy, D. Effect of dietary modified zeolite (Clinoptilolite) on growth performance of gilthead sea bream (Sparus aurata) in the recirculating aquaculture system. Aquac. Res. 2022, 53, 1284–1292. [Google Scholar] [CrossRef]
- Prasai, T.P.; Walsh, K.B.; Bhattarai, S.P.; Midmore, D.J.; Van, T.T.; Moore, R.J.; Stanley, D. Zeolite food supplementation reduces abundance of enterobacteria. Microbiol. Res. 2017, 195, 24–30. [Google Scholar] [CrossRef]
- Amr, E.; Elazab, M.A.; Soltan, Y.A.; Elkomy, A.E.; El-Zaiat, H.M.; Sallam, S.M.; El-Azrak, K.E.D. Nano and natural zeolite feed supplements for dairy goats: Feed intake, ruminal fermentation, blood metabolites, and milk yield and fatty acids profile. Anim. Feed. Sci. Technol. 2023, 295, 115522. [Google Scholar]
- Özogul, F.; Šimat, V.; Gokdogan, S.; Regenstein, J.M.; Özogul, Y. Effect of natural zeolite (Clinoptilolite) on in vitro biogenic amine production by gram positive and gram-negative pathogens. Front. Microbiol. 2018, 9, 2585. [Google Scholar] [CrossRef] [PubMed]
- Novoslavskij, A.; Terentjeva, M.; Eizenberga, I.; Valciņa, O.; Bartkevičs, V.; Bērziņš, A. Major foodborne pathogens in fish and fish products: A review. Ann. Microbiol. 2016, 66, 1–15. [Google Scholar] [CrossRef]
- Sabry, M.; Abd El-Moein, K.; Hamza, E.; Kader, F.A. Occurrence of Clostridium perfringens types A, E, and C in fresh fish and its public health significance. J. Food Prot. 2016, 79, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Li, L.; Huang, H.; Jiang, K.; Zhang, F.; Chen, X.; Zhao, M.; Ma, L. 2016 The gut microbial commu-nity of antarctic fish detected by 16S rRNA gene sequence analysis. BioMed Res. Int. 2016, 1, 3241529. [Google Scholar]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef]
- Cholewińska, P.; Szeligowska, N.; Wojnarowski, K.; Nazar, P.; Greguła-Kania, M.; Junkuszew, A.; Bodkowski, R. Selected bacteria in sheep stool depending on breed and physiology state. Sci. Rep. 2023, 13, 11739. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Dowd, S.E.; Callaway, T.R.; Wolcott, R.D.; Sun, Y.; McKeehan, T.; Hagevoort, R.G.; Edrington, T.S. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 2008, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- De Gregoris, T.B.; Aldred, N.; Clare, A.S.; Burgess, J.G. Improvement of phylum-and class-specific primers for real-time PCR quantification of bacterial taxa. J. Microbiol. Methods 2011, 86, 351–356. [Google Scholar] [CrossRef]
- Blackwood, C.B.; Oaks, A.; Buyer, J.S. Phylum-and class-specific PCR primers for general microbial community analysis. Appl. Environ. Microbiol. 2005, 71, 6193–6198. [Google Scholar] [CrossRef]
- Mitsumori, M.; Ajisaka, N.; Tajima, K.; Kajikawa, H.; Kurihara, M. Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett. Appl. Microbiol. 2002, 35, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Amit-Romach, E.; Sklan, D.; Uni, Z. Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poult. Sci. 2004, 83, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Wang, C.; Liu, P.; Li, Y.; Ma, X. Effects of dietary mycotoxins on gut microbiome. Protein Pept. Lett. 2017, 24, 397–405. [Google Scholar] [CrossRef]
- Zhang, P. Influence of foods and nutrition on the gut microbiome and implications for intestinal health. Int. J. Mol. Sci. 2022, 23, 9588. [Google Scholar] [CrossRef] [PubMed]
- Gareau, M.G.; Sherman, P.M.; Walker, W.A. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 503–514. [Google Scholar] [CrossRef]
- Ingerslev, H.C.; von Gersdorff Jørgensen, L.; Strube, M.L.; Larsen, N.; Dalsgaard, I.; Boye, M.; Madsen, L. The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture 2014, 424, 24–34. [Google Scholar] [CrossRef]
- Baquero, F.; Martínez, J.L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef]
- Perrone, G.; Ferrara, M.; Medina, A.; Pascale, M.; Magan, N. Toxigenic fungi and mycotoxins in a climate change scenario: Ecology, genomics, distribution, prediction and prevention of the risk. Microorganisms 2020, 8, 1496. [Google Scholar] [CrossRef]
- Mateo, E.M.; Tarazona, A.; Aznar, R.; Mateo, F. Exploring the impact of lactic acid bacteria on the biocontrol of toxigenic Fusarium spp. and their main mycotoxins. Int. J. Food Microbiol. 2023, 387, 110054. [Google Scholar] [CrossRef]
- Kuang, T.; He, A.; Lin, Y.; Huang, X.; Liu, L.; Zhou, L. Comparative analysis of microbial communities associated with the gill, gut, and habitat of two filter-feeding fish. Aquac. Rep. 2020, 18, 100501. [Google Scholar] [CrossRef]
- Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S.A.; Premoli, M.; Aria, F.; Memo, M. Zeolite clinoptilolite: Therapeutic virtues of an ancient mineral. Molecules 2019, 24, 1517. [Google Scholar] [CrossRef]
- Ambrozova, P.; Kynicky, J.; Urubek, T.; Nguyen, V.D. Synthesis and modification of clinoptilolite. Molecules 2017, 22, 1107. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.J.; Wang, L.C.; Zhou, Y.M.; Zhang, J.F.; Wang, T. Effects of clinoptilolite and modified clinoptilolite on the growth performance, intestinal microflora, and gut parameters of broilers. Poult. Sci. 2023, 92, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Wang, F.; Shen, Y.; Duan, X.; Zhao, S.; Chen, X.; Liang, J. Removal of emerging organic pollutants by zeolite mineral (Clinoptilolite) composite photocatalysts in drinking water and watershed water. Catalysts 2024, 14, 216. [Google Scholar] [CrossRef]
- Ghasemi, Z.; Sourinejad, I.; Kazemian, H.; Rohani, S. Application of zeolites in aquaculture industry: A review. Rev. Aquac. 2018, 10, 75–95. [Google Scholar] [CrossRef]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef]
- Medina-Félix, D.; Garibay-Valdez, E.; Vargas-Albores, F.; Martínez-Porchas, M. Fish disease and intestinal microbiota: A close and indivisible relationship. Rev. Aquac. 2023, 15, 820–839. [Google Scholar] [CrossRef]
- Kim, A.; Kim, N.; Roh, H.J.; Chun, W.K.; Ho, D.T.; Lee, Y.; Kim, D.H. Administration of antibiotics can cause dysbiosis in fish gut. Aquaculture 2019, 512, 734330. [Google Scholar] [CrossRef]
- Foysal, M.J.; Nguyen, T.T.T.; Sialumano, M.; Phiri, S.; Chaklader, M.R.; Fotedar, R.; Tay, A. Zeolite mediated processing of nitrogenous waste in the rearing environment influences gut and sediment microbial community in freshwater crayfish (Cherax cainii) culture. Chemosphere 2022, 298, 134276. [Google Scholar] [CrossRef]
- Feng, Y.; Hu, J.; Chen, Y.; Xu, J.; Yang, B.; Jiang, J. Ecological effects of antibiotics on aquaculture ecosystems based on microbial community in sediments. Ocean. Coast. Manag. 2022, 224, 106173. [Google Scholar] [CrossRef]
- Bondad-Reantaso, M.G.; MacKinnon, B.; Karunasagar, I.; Fridman, S.; Alday-Sanz, V.; Brun, E.; Caputo, A. Review of alternatives to antibiotic use in aquaculture. Rev. Aquac. 2023, 15, 1421–1451. [Google Scholar] [CrossRef]
Sample Number | Sample Name | Results(µg/kg) or ppb Relative to Feed with Moisture Content of 12% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aflatoxin | Ochratoxin A | Zearalenone | Deoxynivalenol | Fumonisin | HAT-2 | T-2 | ||||||
B1 | B2 | G1 | G2 | B1 | B2 | |||||||
S22-01-012 | DIET 1 (C) | <0.4 | <0.4 | <0.4 | <0.4 | <1.6 | <16 | <64 | <40 | <40 | <9.6 | <9.6 |
S22-01-013 | DIET 2 (Z) | <0.4 | <0.4 | <0.4 | <0.4 | <1.6 | <16 | <64 | <40 | <40 | <9.6 | <9.6 |
S22-01-014 | DIET 3 (T) | 31.67 | Feb 45 | <0.4 | <0.4 | <1.6 | 53.48 | 145 | 405 | 124 | <9.6 | <9.6 |
S22-01-015 | DIET 4 (M) | 35.85 | Feb 41 | <0.4 | <0.4 | <1.6 | 51.39 | 148 | 421 | 137 | <9.6 | <9.6 |
Water Parameters | C | T | M | Z | ||||
---|---|---|---|---|---|---|---|---|
Average | SD | Average | SD | Average | SD | Average | SD | |
DO (mg/L) | 8.14 | 0.01 | 7.74 | 0.01 | 7.85 | 0.50 | 7.86 | 0.11 |
Temperature (°C) | 27.16 | 0.50 | 27.16 | 0.50 | 27.16 | 0.51 | 27.17 | 0.50 |
NO2 (mg/L) | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 |
NO3 (mg/L) | 1.00 | 0.00 | 0.90 | 0.30 | 0.80 | 0.00 | 1.00 | 0.00 |
KH (°dH) | 14.36 | 2.31 | 14.20 | 1.99 | 14.30 | 1.43 | 13.88 | 1.96 |
Component | Volume Per 10 μL Reaction |
---|---|
SsoAdvanced™ Universal SYBR® Green Supermix | 5 μL |
Forward and reverse primers | 1 μL (0.8 μM) |
DNA template | 2 μL (0.04–0.015 × 10−4) |
Nuclease–free water | 2 μL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussein, W.; Cholewińska, P.; Wojnarowski, K.; Szeligowska, N.; Hu, F.; Greguła-Kania, M.; Rojtinnakorn, J.; Palić, D. Dietary Mycotoxins Effects on Nile Tilapia (Oreochromis niloticus) Microbiomes Can Be Mitigated with Addition of Organically Modified Clinoptilolites. Microbiol. Res. 2024, 15, 2232-2246. https://doi.org/10.3390/microbiolres15040149
Hussein W, Cholewińska P, Wojnarowski K, Szeligowska N, Hu F, Greguła-Kania M, Rojtinnakorn J, Palić D. Dietary Mycotoxins Effects on Nile Tilapia (Oreochromis niloticus) Microbiomes Can Be Mitigated with Addition of Organically Modified Clinoptilolites. Microbiology Research. 2024; 15(4):2232-2246. https://doi.org/10.3390/microbiolres15040149
Chicago/Turabian StyleHussein, Wanvisa, Paulina Cholewińska, Konrad Wojnarowski, Natalia Szeligowska, Fangyuan Hu, Monika Greguła-Kania, Jiraporn Rojtinnakorn, and Dušan Palić. 2024. "Dietary Mycotoxins Effects on Nile Tilapia (Oreochromis niloticus) Microbiomes Can Be Mitigated with Addition of Organically Modified Clinoptilolites" Microbiology Research 15, no. 4: 2232-2246. https://doi.org/10.3390/microbiolres15040149
APA StyleHussein, W., Cholewińska, P., Wojnarowski, K., Szeligowska, N., Hu, F., Greguła-Kania, M., Rojtinnakorn, J., & Palić, D. (2024). Dietary Mycotoxins Effects on Nile Tilapia (Oreochromis niloticus) Microbiomes Can Be Mitigated with Addition of Organically Modified Clinoptilolites. Microbiology Research, 15(4), 2232-2246. https://doi.org/10.3390/microbiolres15040149