Rhizophagus irregularis and Azotobacter chroococcum Uphold Eggplant Production and Quality under Low Fertilization
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Layout
2.2. Plant Characterization
2.3. Data Analysis
3. Results
3.1. Effects of Different Fertilizer Treatments on Eggplants Performance
3.2. Pearson Correlations of the Effects of Different Fertilizer Treatments on Eggplant Performance and Fruit Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaushik, P. Application of Conventional, Biotechnological and Genomics Approaches for Eggplant (Solanum melongena L). Breeding with a Focus on Bioactive Phenolics. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 2019. [Google Scholar]
- Butnariu, M.; Butu, A. Chemical Composition of Vegetables and Their Products. In Handbook of Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2015; pp. 627–692. [Google Scholar]
- Fraikue, F.B. Unveiling the Potential Utility of Eggplant: A Review. In Proceedings of the Conference Proceedings of INCEDI, Accra, Ghana, 29–31 August 2016; Volume 1, pp. 883–895. Available online: https://www.researchgate.net/profile/Frances-Fraikue/publication/310846026_Enter_titleUNVEILING_THE_POTENTIAL_UTILITY_OF_EGGPLANT_A_REVIEW/links/583f253408ae8e63e618268d/Enter-titleUNVEILING-THE-POTENTIAL-UTILITY-OF-EGGPLANT-A-REVIEW.pdf (accessed on 1 November 2020).
- San José, R.; Sánchez-Mata, M.-C.; Cámara, M.; Prohens, J. Eggplant Fruit Composition as Affected by the Cultivation Environment and Genetic Constitution. J. Sci. Food Agric. 2014, 94, 2774–2784. [Google Scholar] [CrossRef] [PubMed]
- Gürbüz, N.; Uluişik, S.; Frary, A.; Frary, A.; Doğanlar, S. Health Benefits and Bioactive Compounds of Eggplant. Food Chem. 2018, 268, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.J.; Lister, C.E. Nutritional Attributes of Spinach, Silver Beet and Eggplant; Crop & Food Research Confidential Report No. 1928; New Zealand Institute for Crop & Food Research Limited: Christchurch, New Zealand, 2007; Available online: https://www.researchgate.net/profile/Carolyn-Lister-2/publication/268516190_Nutritional_attributes_of_spinach_silver_beet_and_eggplant/links/546e85d60cf2b5fc176078f8/Nutritional-attributes-of-spinach-silver-beet-and-eggplant.pdf (accessed on 15 July 2020).
- Naeem, M.Y.; Ugur, S. Nutritional Content and Health Benefits of Eggplant. Turk. J. Agric.-Food Sci. Technol. 2019, 7, 31–36. [Google Scholar]
- Da Costa, P.B.; Beneduzi, A.; de Souza, R.; Schoenfeld, R.; Vargas, L.K.; Passaglia, L.M. The Effects of Different Fertilization Conditions on Bacterial Plant Growth Promoting Traits: Guidelines for Directed Bacterial Prospection and Testing. Plant Soil 2013, 368, 267–280. [Google Scholar] [CrossRef]
- Adesemoye, A.O.; Kloepper, J.W. Plant–Microbes Interactions in Enhanced Fertilizer-Use Efficiency. Appl. Microbiol. Biotechnol. 2009, 85, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ruano-Rosa, D.; Mercado-Blanco, J. Combining Biocontrol Agents and Organics Amendments to Manage Soil-Borne Phytopathogens. In Organic Amendments and Soil Suppressiveness in Plant Disease Management; Springer: Berlin/Heidelberg, Germany, 2015; pp. 457–478. [Google Scholar]
- Simpson, R.J.; Oberson, A.; Culvenor, R.A.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A. Strategies and Agronomic Interventions to Improve the Phosphorus-Use Efficiency of Farming Systems. Plant Soil 2011, 349, 89–120. [Google Scholar] [CrossRef]
- Bouhia, Y.; Hafidi, M.; Ouhdouch, Y.; Boukhari, M.E.M.E.; Mphatso, C.; Zeroual, Y.; Lyamlouli, K. Conversion of Waste into Organo-Mineral Fertilizers: Current Technological Trends and Prospects. Rev. Environ. Sci. Bio/Technol. 2022, 21, 425–446. [Google Scholar] [CrossRef]
- Li, D.-P.; Wu, Z.-J. Impact of Chemical Fertilizers Application on Soil Ecological Environment. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2008, 19, 1158–1165. [Google Scholar]
- Savci, S. An Agricultural Pollutant: Chemical Fertilizer. Int. J. Environ. Sci. Dev. 2012, 3, 73. [Google Scholar] [CrossRef]
- Rahman, M.T.; Zhu, Q.H.; Zhang, Z.B.; Zhou, H.; Peng, X. The Roles of Organic Amendments and Microbial Community in the Improvement of Soil Structure of a Vertisol. Appl. Soil Ecol. 2017, 111, 84–93. [Google Scholar] [CrossRef]
- Rashid, M.I.; Mujawar, L.H.; Shahzad, T.; Almeelbi, T.; Ismail, I.M.; Oves, M. Bacteria and Fungi Can Contribute to Nutrients Bioavailability and Aggregate Formation in Degraded Soils. Microbiol. Res. 2016, 183, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Sumbul, A.; Ansari, R.A.; Rizvi, R.; Mahmood, I. Azotobacter: A Potential Bio-Fertilizer for Soil and Plant Health Management. Saudi J. Biol. Sci. 2020, 27, 3634–3640. [Google Scholar] [CrossRef] [PubMed]
- Saini, I.; Yadav, V.K.; Aggarwal, A.; Kaushik, P. Others Effect of Superphosphate, Urea and Bioinoculants on Zinnia Elegans Jacq. Indian J. Exp. Biol. (IJEB) 2020, 58, 730–737. [Google Scholar]
- Singh, J.S.; Pandey, V.C.; Singh, D.P. Efficient Soil Microorganisms: A New Dimension for Sustainable Agriculture and Environmental Development. Agric. Ecosyst. Environ. 2011, 140, 339–353. [Google Scholar] [CrossRef]
- Sabatino, L.; Iapichino, G.; Consentino, B.B.; D’Anna, F.; Rouphael, Y. Rootstock and Arbuscular Mycorrhiza Combinatorial Effects on Eggplant Crop Performance and Fruit Quality under Greenhouse Conditions. Agronomy 2020, 10, 693. [Google Scholar] [CrossRef]
- Saini, I.; Aggarwal, A.; Kaushik, P. Influence of Biostimulants on Important Traits of Zinnia Elegans Jacq. under Open Field Conditions. Int. J. Agron. 2019, 2019, 3082967. [Google Scholar] [CrossRef]
- Phad, N.V.; Kumbhar, C.T.; Khadatare, R.M.; Khot, G.G. Dual Inoculation of Glomus Fasciculatum and Azotobacter Chroococcum Improves Growth and Yield of Brinjal (Solanum melongena L.). Crop Res. (0970-4884) 2016, 51, 134–139. [Google Scholar]
- Chen, S.; Jin, W.; Liu, A.; Zhang, S.; Liu, D.; Wang, F.; Lin, X.; He, C. Arbuscular Mycorrhizal Fungi (AMF) Increase Growth and Secondary Metabolism in Cucumber Subjected to Low Temperature Stress. Sci. Hortic. 2013, 160, 222–229. [Google Scholar] [CrossRef]
- Dutta, S.C.; Neog, B. Accumulation of Secondary Metabolites in Response to Antioxidant Activity of Turmeric Rhizomes Co-Inoculated with Native Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria. Sci. Hortic. 2016, 204, 179–184. [Google Scholar] [CrossRef]
- Emmanuel, O.C.; Babalola, O.O. Productivity and Quality of Horticultural Crops through Co-Inoculation of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Bacteria. Microbiol. Res. 2020, 239, 126569. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Colla, G. Role of Arbuscular Mycorrhizal Fungi in Alleviating the Adverse Effects of Acidity and Aluminium Toxicity in Zucchini Squash. Sci. Hortic. 2015, 188, 97–105. [Google Scholar] [CrossRef]
- Kaushik, P. Characterization of Cultivated Eggplant and Its Wild Relatives Based on Important Fruit Biochemical Traits. Pak. J. Biol. Sci. PJBS 2020, 23, 1220–1226. [Google Scholar] [CrossRef]
- Good, A.G.; Beatty, P.H. Fertilizing Nature: A Tragedy of Excess in the Commons. PLoS Biol. 2011, 9, e1001124. [Google Scholar] [CrossRef] [PubMed]
- Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I. Soil Beneficial Bacteria and Their Role in Plant Growth Promotion: A Review. Ann. Microbiol. 2010, 60, 579–598. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef]
- Singh, M.; Singh, D.; Gupta, A.; Pandey, K.D.; Singh, P.K.; Kumar, A. Plant Growth Promoting Rhizobacteria: Application in Biofertilizers and Biocontrol of Phytopathogens. In PGPR Amelioration in Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2019; pp. 41–66. [Google Scholar]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef]
- Billah, M.; Khan, M.; Bano, A.; Hassan, T.U.; Munir, A.; Gurmani, A.R. Phosphorus and Phosphate Solubilizing Bacteria: Keys for Sustainable Agriculture. Geomicrobiol. J. 2019, 36, 904–916. [Google Scholar] [CrossRef]
- Kalayu, G. Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers. Int. J. Agron. 2019, 2019, 4917256. [Google Scholar] [CrossRef]
- Kenneth, O.C.; Nwadibe, E.C.; Kalu, A.U.; Unah, U.V. Plant Growth Promoting Rhizobacteria (PGPR): A Novel Agent for Sustainable Food Production. Am. J. Agric. Biol. Sci. 2019, 14, 35–54. [Google Scholar] [CrossRef]
- PAU. Package of Practices for Cultivation of Vegetables; Punjab Agricultural University: Ludhiana, India, 2021; pp. 42–49. [Google Scholar]
- Tanwar, A.; Singh, A.; Aggarwal, A.; Jangra, E.; Pichardo, S.T. Evaluation of Municipal Sewage Sludge for Arbuscular Mycorrhizal Fungi Inoculum Production. Eurasian J. Soil Sci. 2021, 10, 343–353. [Google Scholar] [CrossRef]
- Kennedy, D.M.; Duncan, J.M.; Dugard, P.I.; Topham, P.H. Virulence and Aggressiveness of Single-Zoospore Isolates of Phytophthora Fragariae. Plant Pathol. 1986, 35, 344–354. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved Procedures for Clearing Roots and Staining Parasitic and Vesicular-Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection. Trans. Br. Mycol. Soc. 1970, 55, 158-IN18. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Verbruggen, E.; Toby Kiers, E. Evolutionary Ecology of Mycorrhizal Functional Diversity in Agricultural Systems. Evol. Appl. 2010, 3, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Verzeaux, J.; Hirel, B.; Dubois, F.; Lea, P.J.; Tétu, T. Agricultural Practices to Improve Nitrogen Use Efficiency through the Use of Arbuscular Mycorrhizae: Basic and Agronomic Aspects. Plant Sci. 2017, 264, 48–56. [Google Scholar] [CrossRef]
- Rose, M.T.; Phuong, T.L.; Nhan, D.K.; Cong, P.T.; Hien, N.T.; Kennedy, I.R. Up to 52% N Fertilizer Replaced by Biofertilizer in Lowland Rice via Farmer Participatory Research. Agron. Sustain. Dev. 2014, 34, 857–868. [Google Scholar] [CrossRef]
- Schütz, L.; Gattinger, A.; Meier, M.; Müller, A.; Boller, T.; Mäder, P.; Mathimaran, N. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization—A Global Meta-Analysis. Front. Plant Sci. 2018, 8, 2204. [Google Scholar] [CrossRef]
- Igiehon, N.O.; Babalola, O.O. Below-Ground-above-Ground Plant-Microbial Interactions: Focusing on Soybean, Rhizobacteria and Mycorrhizal Fungi. Open Microbiol. J. 2018, 12, 261. [Google Scholar] [CrossRef]
- Yang, T.; Chen, Y.; Wang, X.-X.; Dai, C.-C. Plant Symbionts: Keys to the Phytosphere. Symbiosis 2013, 59, 1–14. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef]
- Vafadar, F.; Amooaghaie, R.; Otroshy, M. Effects of Plant-Growth-Promoting Rhizobacteria and Arbuscular Mycorrhizal Fungus on Plant Growth, Stevioside, NPK, and Chlorophyll Content of Stevia Rebaudiana. J. Plant Interact. 2014, 9, 128–136. [Google Scholar] [CrossRef]
- Yan, Z.; Ma, T.; Guo, S.; Liu, R.; Li, M. Leaf Anatomy, Photosynthesis and Chlorophyll Fluorescence of Lettuce as Influenced by Arbuscular Mycorrhizal Fungi under High Temperature Stress. Sci. Hortic. 2021, 280, 109933. [Google Scholar] [CrossRef]
- Lehmann, A.; Rillig, M.C. Arbuscular Mycorrhizal Contribution to Copper, Manganese and Iron Nutrient Concentrations in Crops–a Meta-Analysis. Soil Biol. Biochem. 2015, 81, 147–158. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-Organic Fertilizer with Reduced Rates of Chemical Fertilization Improves Soil Fertility and Enhances Tomato Yield and Quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Aseri, G.K.; Jain, N.; Panwar, J.; Rao, A.V.; Meghwal, P.R. Biofertilizers Improve Plant Growth, Fruit Yield, Nutrition, Metabolism and Rhizosphere Enzyme Activities of Pomegranate (Punica granatum L.) in Indian Thar Desert. Sci. Hortic. 2008, 117, 130–135. [Google Scholar] [CrossRef]
- Bona, E.; Lingua, G.; Manassero, P.; Cantamessa, S.; Marsano, F.; Todeschini, V.; Copetta, A.; D’Agostino, G.; Massa, N.; Avidano, L. AM Fungi and PGP Pseudomonads Increase Flowering, Fruit Production, and Vitamin Content in Strawberry Grown at Low Nitrogen and Phosphorus Levels. Mycorrhiza 2015, 25, 181–193. [Google Scholar] [CrossRef]
- Esitken, A.; Yildiz, H.E.; Ercisli, S.; Donmez, M.F.; Turan, M.; Gunes, A. Effects of Plant Growth Promoting Bacteria (PGPB) on Yield, Growth and Nutrient Contents of Organically Grown Strawberry. Sci. Hortic. 2010, 124, 62–66. [Google Scholar] [CrossRef]
- Ferdous, A.S.; Islam, M.R.; Khan, H. Transkingdom Signaling Systems between Plant and Its Associated Beneficial Microbes in Relation to Plant Growth and Development. In Mycorrhiza-Nutrient Uptake, Biocontrol, Ecorestoration; Springer: Berlin/Heidelberg, Germany, 2017; pp. 451–472. [Google Scholar]
- Lanfranco, L.; Fiorilli, V.; Venice, F.; Bonfante, P. Strigolactones Cross the Kingdoms: Plants, Fungi, and Bacteria in the Arbuscular Mycorrhizal Symbiosis. J. Exp. Bot. 2018, 69, 2175–2188. [Google Scholar] [CrossRef]
- Mitra, D.; Rad, K.V.; Chaudhary, P.; Ruparelia, J.; Sagarika, M.S.; Boutaj, H.; Mohapatra, P.K.D.; Panneerselvam, P. Involvement of Strigolactone Hormone in Root Development, Influence and Interaction with Mycorrhizal Fungi in Plant: Mini-Review. Curr. Res. Microb. Sci. 2021, 2, 100026. [Google Scholar] [CrossRef]
- Itelima, J.U.; Bang, W.J.; Onyimba, I.A.; Sila, M.D.; Egbere, O.J. Bio-Fertilizers as Key Player in Enhancing Soil Fertility and Crop Productivity: A Review. 2018. Available online: https://dspace.unijos.edu.ng/jspui/handle/123456789/1999 (accessed on 23 January 2021).
- Liao, D.; Wang, S.; Cui, M.; Liu, J.; Chen, A.; Xu, G. Phytohormones Regulate the Development of Arbuscular Mycorrhizal Symbiosis. Int. J. Mol. Sci. 2018, 19, 3146. [Google Scholar] [CrossRef]
- De Jong, M.; Wolters-Arts, M.; Feron, R.; Mariani, C.; Vriezen, W.H. The Solanum Lycopersicum Auxin Response Factor 7 (SlARF7) Regulates Auxin Signaling during Tomato Fruit Set and Development. Plant J. 2009, 57, 160–170. [Google Scholar] [CrossRef]
- Serrani, J.C.; Fos, M.; Atarés, A.; García-Martínez, J.L. Effect of Gibberellin and Auxin on Parthenocarpic Fruit Growth Induction in the Cv Micro-Tom of Tomato. J. Plant Growth Regul. 2007, 26, 211–221. [Google Scholar] [CrossRef]
- Ferrol, N.; Azcón-Aguilar, C.; Pérez-Tienda, J. Arbuscular Mycorrhizas as Key Players in Sustainable Plant Phosphorus Acquisition: An Overview on the Mechanisms Involved. Plant Sci. 2019, 280, 441–447. [Google Scholar] [CrossRef]
- Salvioli, A.; Ghignone, S.; Novero, M.; Navazio, L.; Venice, F.; Bagnaresi, P.; Bonfante, P. Symbiosis with an Endobacterium Increases the Fitness of a Mycorrhizal Fungus, Raising Its Bioenergetic Potential. ISME J. 2016, 10, 130–144. [Google Scholar] [CrossRef]
- Ludwig-Müller, J. Hormonal Responses in Host Plants Triggered by Arbuscular Mycorrhizal Fungi. In Arbuscular Mycorrhizas: Physiology and Function; Springer: Berlin/Heidelberg, Germany, 2010; pp. 169–190. [Google Scholar]
- Yadav, A.; Saini, I.; Kaushik, P.; Ansari, M.A.; Khan, M.R.; Haq, N. Effects of Arbuscular Mycorrhizal Fungi and P-Solubilizing Pseudomonas Fluorescence (ATCC-17400) on Morphological Traits and Mineral Content of Sesame. Saudi J. Biol. Sci. 2021, 28, 2649–2654. [Google Scholar] [CrossRef] [PubMed]
- Diagne, N.; Ngom, M.; Djighaly, P.I.; Fall, D.; Hocher, V.; Svistoonoff, S. Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity 2020, 12, 370. [Google Scholar] [CrossRef]
- Saini, I.; Kaushik, P.; Al-Huqail, A.A.; Khan, F.; Siddiqui, M.H. Effect of the Diverse Combinations of Useful Microbes and Chemical Fertilizers on Important Traits of Potato. Saudi J. Biol. Sci. 2021, 28, 2641–2648. [Google Scholar] [CrossRef]
- Saini, I.; Aggarwal, A.; Kaushik, P. Inoculation with Mycorrhizal Fungi and Other Microbes to Improve the Morpho-Physiological and Floral Traits of Gazania rigens (L.) Gaertn. Agriculture 2019, 9, 51. [Google Scholar] [CrossRef]
- Srivastava, A.; Sharma, V.K.; Kaushik, P.; El-Sheikh, M.A.; Qadir, S.; Mansoor, S. Effect of Silicon Application with Mycorrhizal Inoculation on Brassica Juncea Cultivated under Water Stress. PLoS ONE 2022, 17, e0261569. [Google Scholar] [CrossRef]
Trait | Treatments | Year | Treatments X Year | Residuals |
---|---|---|---|---|
df | 4 | 1 | 4 | 20 |
Plant height (cm) | 155.24 | 18.28 | 87.06 | 20.29 |
F | 76.84 | 0.90 | 4.29 | |
p | <0.001 | 0.35 | 0.01 | |
Primary Branches/Plant | 7.07 | 0.17 | 1.07 | 0.73 |
F | 9.68 | 0.24 | 1.46 | |
p | <0.001 | 0.63 | 0.25 | |
Leaf length (cm) | 32.75 | 5.83 | 8.68 | 3.03 |
F | 10.82 | 1.92 | 2.87 | |
p | <0.001 | 0.18 | 0.05 | |
Leaf width (cm) | 15.36 | 0.03 | 2.69 | 1.85 |
F | 8.29 | 0.02 | 1.45 | |
p | <0.001 | 0.9 | 0.25 | |
Flowers/Cluster | 4.14 | 0.09 | 0.29 | 0.38 |
F | 10.78 | 0.22 | 0.76 | |
p | <0.001 | 0.64 | 0.56 | |
Days to 50% Flowering | 139.03 | 31.79 | 3.70 | 17.40 |
F | 7.99 | 1.83 | 0.21 | |
p | <0.001 | 0.19 | 0.93 | |
Fruit length (cm) | 11.86 | 0.43 | 1.37 | 1.38 |
F | 8.58 | 0.31 | 0.99 | |
p | <0.001 | 0.58 | 0.44 | |
Fruit circumference (cm) | 336.07 | 10.50 | 2.30 | 5.03 |
F | 66.82 | 2.09 | 0.46 | |
p | <0.001 | 0.16 | 0.76 | |
Number of Fruits/Plant | 111.52 | 27.28 | 1.15 | 3.67 |
F | 13.25 | 2.76 | 10.22 | |
p | <0.001 | 0.18 | 0.54 | |
Yield (Kg) | 32.75 | 4.04 | 3.87 | 2.13 |
F | 8.10 | 5.18 | 2.01 | |
p | <0.001 | 0.21 | 0.49 | |
Dry matter% | 10.39 | 4.36 | 1.76 | 1.34 |
F | 7.75 | 3.25 | 1.31 | |
p | <0.001 | 0.09 | 0.30 | |
TSS (°Brix) | 4.79 | 0.78 | 0.55 | 0.34 |
F | 13.98 | 2.29 | 1.61 | |
p | <0.001 | 0.15 | 0.21 | |
AM spore number | 19,072.03 | 9.63 | 4.63 | 10.63 |
F | 1793.61 | 0.56 | 0.44 | |
p | <0.001 | 0.49 | 0.78 | |
Root colonization (%) | 7558.31 | 5.35 | 2.09 | 2.82 |
F | 2681.44 | 2.14 | 0.74 | |
p | <0.001 | 0.22 | 0.57 |
Years | 100%CF | 75%CF | 75%CF + RI | 75%CF + AC | 75%CF + RI + AC | |
---|---|---|---|---|---|---|
Plant height (cm) | 2018 | 60.31 ± 4.53 d | 42.86 ± 1.66 e | 68.42 ± 0.87 c | 74.98 ± 2.77 b | 84.15 ± 3.76 a |
2019 | 67.46 ± 2.33 b | 39.86 ± 0.87 c | 79.27 ± 3.78 a | 66.88 ± 3.25 b | 85.07 ± 11.23 a | |
Overall | 63.88 ± 5.07 C | 41.36 ± 2.03 D | 73.84 ± 6.43 B | 70.93 ± 5.20 B | 84.61 ± 7.51 A | |
Primary branches/Plant | 2018 | 3.56 ± 0.61 c | 3.66 ± 0.66 c | 5.48 ± 1.57 b | 6.02 ± 0.34 a | 6.02 ± 0.51 a |
2019 | 4.75 ± 1.67 b | 3.15 ± 0.72 c | 4.79 ± 0.42 b | 5.13 ± 0.27 b | 6.15 ± 0.31 a | |
Overall | 4.15 ± 1.30 BC | 3.41 ± 0.68 C | 5.14 ± 1.10 AB | 5.58 ± 0.56 A | 6.09 ± 0.38 A | |
Leaf length (cm) | 2018 | 16.41 ± 2.51 a | 15.16 ± 1.76 b | 16.33 ± 1.17 a | 17.29 ± 1.26 a | 19.72 ± 0.92 a |
2019 | 17.91 ± 2.49 a | 12.15 ± 1.48 b | 19.52 ± 0.63 a | 19.60 ± 0.68 a | 20.13 ± 2.80 a | |
Overall | 17.16 ± 2.38 B | 13.65 ± 2.20 C | 17.93 ± 1.94 AB | 18.45 ± 1.56 AB | 19.93 ± 1.88 A | |
Leaf width (cm) | 2018 | 12.81 ± 1.27 b | 11.78 ± 0.39 b | 12.89 ± 2.50 a | 12.57 ± 1.93 a | 15.53 ± 1.19 a |
2019 | 11.57 ± 0.27 b | 10.66 ± 0.98 b | 13.78 ± 1.28 a | 14.46 ± 0.68 a | 15.43 ± 1.48 a | |
Overall | 12.19 ± 1.07 BC | 11.22 ± 0.91 C | 13.33 ± 1.85 B | 13.52 ± 1.66 B | 15.48 ± 1.20 A | |
Flowers/cluster | 2018 | 4.11 ± 0.34 a | 3.02 ± 0.60 b | 3.95 ± 0.89 a | 3.97 ± 0.46 a | 4.93 ± 0.71 a |
2019 | 3.99 ± 0.55 a | 2.47 ± 0.41 b | 4.43 ± 0.40 a | 4.44 ± 0.67 a | 5.18 ± 0.89 a | |
Overall | 4.05 ± 0.42 B | 2.74 ± 0.55 C | 4.19 ± 0.67 B | 4.21 ± 0.57 B | 5.05 ± 0.73 A | |
Days to 50% Flowering | 2018 | 75.44 ± 2.90 ab | 65.96 ± 2.00 d | 70.47 ± 5.51 bc | 68.43 ± 6.49 cd | 78.60 ± 2.59 a |
2019 | 73.71 ± 3.66 ab | 63.37 ± 3.49 d | 70.27 ± 4.90 bc | 67.06 ± 5.58 cd | 74.19 ± 1.31 a | |
Overall | 74.57 ± 3.10 AB | 64.66 ± 2.92 D | 70.37 ± 4.66 BC | 67.75 ± 5.46 CD | 76.39 ± 3.03 A | |
Fruit length (cm) | 2018 | 9.18 ± 0.45 b | 7.96 ± 0.80 c | 9.02 ± 0.29 b | 9.68 ± 2.37 b | 12.71 ± 1.31 a |
2019 | 9.11 ± 1.13 b | 8.19 ± 0.76 b | 9.94 ± 1.27 b | 9.02 ± 0.97 b | 11.10 ± 1.06 a | |
Overall | 9.14 ± 0.77 B | 8.08 ± 0.71 B | 9.48 ± 0.97 B | 9.35 ± 1.66 B | 11.90 ± 1.38 A | |
Fruit circumference (cm) | 2018 | 10.87 ± 1.63 c | 7.68 ± 2.22 c | 14.47 ± 3.49 b | 14.48 ± 1.70 b | 27.08 ± 0.46 a |
2019 | 11.89 ± 1.10 cd | 7.71 ± 2.52 d | 17.75 ± 4.27 b | 15.11 ± 0.80 bc | 28.02 ± 0.98 a | |
Overall | 11.38 ± 1.36 C | 7.69 ± 2.13 D | 16.11 ± 3.93 B | 14.79 ± 1.24 B | 27.55 ± 0.86 A | |
Number of Fruits/Plant | 2018 | 11.70 ± 0.13 bc | 9.56 ± 0.37 c | 12.44 ± 0.15 b | 13.29 ± 0.19 a | 14.33 ± 0.25 a |
2019 | 12.41 ± 0.29 b | 8.36 ± 0.14 d | 12.28 ± 0.31 c | 13.84 ± 0.36 b | 15.12 ± 0.47 a | |
Overall | 12.05 ± 0.49 C | 8.90 ± 0.84 D | 12.30 ± 0.14 C | 13.40 ± 0.56 B | 14.70 ± 0.46 A | |
Yield (Kg) | 2018 | 2.46 ± 0.45 b | 1.15 ± 0.13 d | 2.03 ± 0.06 c | 2.90 ± 0.07 a | 3.05 ± 0.66 a |
2019 | 2.31 ± 0.12 b | 1.63 ± 0.10 d | 2.18 ± 0.11 c | 2.68 ± 0.21 b | 3.26 ± 0.09 a | |
Overall | 2.38 ± 0.10 C | 1.40 ± 0.34 D | 2.10 ± 0.13 C | 2.80 ± 0.15 B | 3.16 ± 0.17 A | |
Dry matter (%) | 2018 | 8.64 ± 1.48 b | 12.59 ± 0.48 a | 10.11 ± 0.78 b | 10.05 ± 1.44 b | 9.00 ± 0.40 b |
2019 | 10.91 ± 2.12 b | 12.84 ± 1.03 a | 9.44 ± 0.92 b | 10.99 ± 1.23 b | 10.02 ± 0.50 b | |
Overall | 9.78 ± 2.05 B | 12.72 ± 0.73 A | 9.77 ± 0.85 B | 10.52 ± 1.30 B | 9.51 ± 0.69 B | |
TSS (°Brix) | 2018 | 5.68 ± 0.16 b | 5.35 ± 0.56 b | 6.23 ± 1.00 b | 7.21 ± 0.38 a | 7.51 ± 0.58 a |
2019 | 6.05 ± 1.05 b | 5.04 ± 0.41 b | 5.66 ± 0.50 b | 6.01 ± 0.21 a | 7.60 ± 0.27 a | |
Overall | 5.87 ± 0.70 CD | 5.19 ± 0.47 D | 5.94 ± 0.77 BC | 6.61 ± 0.71 B | 7.56 ± 0.40 A | |
AM spore number | 2018 | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 94.00 ± 4.35 b | 0.00 ± 0.00 c | 108.33 ± 6.35 a |
2019 | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 98.00 ± 6.24 b | 0.00 ± 0.00 c | 110.00 ± 4.58 a | |
Overall | 0.00 ± 0.00 C | 0.00 ± 0.00 C | 96.00 ± 5.29 B | 0.00 ± 0.00 C | 109.16 ± 5.03 A | |
Root colonization (%) | 2018 | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 59.55 ± 1.26 b | 0.00 ± 0.00 c | 67.55 ± 4.54 a |
2019 | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 62.00 ± 1.73 b | 0.00 ± 0.00 c | 69.33 ± 1.52 a | |
Overall | 0.00 ± 0.00 C | 0.00 ± 0.00 C | 60.77 ± 1.90 B | 0.00 ± 0.00 C | 68.35±1.27 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, M.; Delta, A.K.; Brar, N.S.; Yadav, A.; Dhanda, P.S.; Baslam, M.; Kaushik, P. Rhizophagus irregularis and Azotobacter chroococcum Uphold Eggplant Production and Quality under Low Fertilization. Int. J. Plant Biol. 2022, 13, 601-612. https://doi.org/10.3390/ijpb13040048
Sharma M, Delta AK, Brar NS, Yadav A, Dhanda PS, Baslam M, Kaushik P. Rhizophagus irregularis and Azotobacter chroococcum Uphold Eggplant Production and Quality under Low Fertilization. International Journal of Plant Biology. 2022; 13(4):601-612. https://doi.org/10.3390/ijpb13040048
Chicago/Turabian StyleSharma, Meenakshi, Anil Kumar Delta, Navjot Singh Brar, Alpa Yadav, Parmdeep Singh Dhanda, Marouane Baslam, and Prashant Kaushik. 2022. "Rhizophagus irregularis and Azotobacter chroococcum Uphold Eggplant Production and Quality under Low Fertilization" International Journal of Plant Biology 13, no. 4: 601-612. https://doi.org/10.3390/ijpb13040048
APA StyleSharma, M., Delta, A. K., Brar, N. S., Yadav, A., Dhanda, P. S., Baslam, M., & Kaushik, P. (2022). Rhizophagus irregularis and Azotobacter chroococcum Uphold Eggplant Production and Quality under Low Fertilization. International Journal of Plant Biology, 13(4), 601-612. https://doi.org/10.3390/ijpb13040048