Multiple Foliar Fungal Disease Management in Tomatoes: A Comprehensive Approach
Abstract
:1. Introduction
2. Foliar Diseases Caused by Fungi and Oomycetes
2.1. Early Blight
2.2. Late Blight
2.3. Septoria Leaf Spot
3. Common Management Strategies for Foliar Fungal/Oomycetes Diseases
3.1. Cultural Practices
3.2. Secondary Metabolites and Their Role in Plant Disease Management
3.3. Nanotechnology in Plant Protection
3.4. Integrated Disease Management (IDM) for the Management of Foliar Fungal Diseases of Tomato
3.5. Breeding and Use of Resistant Cultivars
4. Crop Improvement Efforts through Molecular and Conventional Methods
4.1. Early Blight
4.2. Late Blight
4.3. Septoria Leaf Spot
5. Potential to Improve Using Modern Tools
5.1. Genomic Resources
5.2. Genetic Transformation
5.3. Genome Editing
6. Future Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT Crop and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 2 June 2023).
- Abramovitch, R.B.; Kim, Y.J.; Chen, S.; Dickman, M.B.; Martin, G.B. Pseudomonas Type III Effector AvrPtoB Induces Plant Disease Susceptibility by Inhibition of Host Programmed Cell Death. EMBO J. 2003, 22, 60–69. [Google Scholar] [CrossRef]
- Sobczak, M.; Avrova, A.; Jupowicz, J.; Phillips, M.S.; Ernst, K.; Kumar, A. Characterization of Susceptibility and Resistance Responses to Potato Cyst Nematode (Globodera Spp.) Infection of Tomato Lines in the Absence and Presence of the Broad-Spectrum Nematode Resistance Hero Gene. Mol. Plant Microbe Interact 2005, 18, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lubberstedt, T.; Xu, M. The Genetic and Molecular Basis of Plant Resistance to Pathogens. J. Genet. Genom. 2013, 40, 23–35. [Google Scholar] [CrossRef]
- Hoagland, L.; Navazio, J.; Zystro, J.; Kaplan, I.; Vargas, J.G.; Gibson, K. Key Traits and Promising Germplasm for an Organic Participatory Tomato Breeding Program in the U.S. Midwest. HortScience 2015, 50, 1301–1308. [Google Scholar] [CrossRef]
- Adhikari, P.; Oh, Y.; Panthee, D.R. Current Status of Early Blight Resistance in Tomato: An Update. Int. J. Mol. Sci. 2017, 18, 2019. [Google Scholar] [CrossRef] [PubMed]
- Jindo, K.; Evenhuis, A.; Kempenaar, C.; Sudré, C.P.; Zhan, X.; Goitom Teklu, M.; Kessel, G. Review: Holistic Pest Management against Early Blight Disease towards Sustainable Agriculture. Pest Manag. Sci. 2021, 77, 3871–3880. [Google Scholar] [CrossRef]
- Pandey, A.K.; Dinesh, K.; Nirmala, N.S.; Kumar, A.; Chakraborti, D.; Bhattacharyya, A. Insight into Tomato Plant Immunity to Necrotrophic Fungi. Curr. Res. Biotechnol. 2023, 6, 100144. [Google Scholar] [CrossRef]
- Adhikari, T.B.; Ingram, T.; Halterman, D.; Louws, F.J. Gene Genealogies Reveal High Nucleotide Diversity and Admixture Haplotypes within Three Alternaria Species Associated with Tomato and Potato. Phytopathology 2020, 110, 1449–1464. [Google Scholar] [CrossRef]
- Chaerani, R.; Voorrips, R.E. Tomato Early Blight (Alternaria solani): The Pathogen, Genetics, and Breeding for Resistance. J. Gen. Plant Pathol. 2006, 72, 335–347. [Google Scholar] [CrossRef]
- Beattie, A.D.; Scoles, G.J.; Rossnagel, B.G. Identification of Molecular Markers Linked to a Pyrenophora Teres Avirulence Gene. Phytopathology 2007, 97, 842–849. [Google Scholar] [CrossRef]
- Sherf, A.F.; MacNab, A.A. Vegetable Diseases and Their Control; John Wiley: Hoboken, NJ, USA, 1986; Available online: https://books.google.com/books?hl=en&lr=&id=kbYNgTGxz4wC&oi=fnd&pg=PA1&ots=F4CCqLmdq9&sig=M7BnkBj7j9-bv52i7aSTMYYqTmk#v=onepage&q=Septoria%20&f=false (accessed on 4 January 2024).
- Kemmitt, G. Early Blight of Potato and Tomato. Plant Health Instr. 2002. [Google Scholar] [CrossRef]
- Black, L.L.; Wang, T.C.; Hanson, P.M.; Chen, J.T. Late Blight Resistance in Four Wild Tomato Accessions: Effectiveness in Diverse Locations and Inheritance of Resistance. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C34&q=Late+blight+resistance+in+four+wild+tomato+accessions%3A+effectiveness+in+diverse+locations+and+inheritance+of+resistance.+&btnG= (accessed on 4 June 2023).
- Abbasi, P.A.; Cuppels, D.A.; Lazarovits, G. Effect of Foliar Applications of Neem Oil and Fish Emulsion on Bacterial Spot and Yield of Tomatoes and Peppers. Can. J. Plant Pathol. 2003, 25, 41–48. [Google Scholar] [CrossRef]
- Andersen, B.; Dongo, A.; Pryor, B.M. Secondary Metabolite Profiling of Alternaria Dauci, A. Porri, A. Solani, and A. Tomatophila. Mycol. Res 2008, 112, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, S.B.; Cohen, B.A.; Fry, W.E. Panglobal Distribution of a Single Clonal Lineage of the Irish Potato Famine Fungus. Proc. Natl. Acad. Sci. USA 1994, 91, 11591–11595. [Google Scholar] [CrossRef] [PubMed]
- Hohl, H.R.; Iselin, K. Strains of Phytophthora Infestans from Switzerland with A2 Mating Type Behaviour. Trans. Br. Mycol. Soc. 1984, 83, 529–530. [Google Scholar] [CrossRef]
- Fry, W.; Goodwin, S.; Dyer, A.; Matuszak, J.; Drenth, A.; Tooley, P.; Sujkowski, L.; Koh, Y.; Cohen, B.; Spielman, L.; et al. Historical and Recent Migrations of Phytophthora infestans—Chronology, Pathways, and Implications. Plant Dis. 1993, 77, 653–661. [Google Scholar] [CrossRef]
- Fry, W.E.; McGrath, M.T.; Seaman, A.; Zitter, T.A.; McLeod, A.; Danies, G.; Small, I.M.; Myers, K.; Everts, K.; Gevens, A.J.; et al. The 2009 Late Blight Pandemic in the Eastern United States—Causes and Results. Plant Dis. 2013, 97, 296–306. [Google Scholar] [CrossRef]
- Schumann, G.L.; D’Arcy, C.J. Late Blight of Potato and Tomato. Plant Health Instr. 2000. [Google Scholar] [CrossRef]
- Saville, A.C.; Martin, M.D.; Ristaino, J.B. Historic Late Blight Outbreaks Caused by a Widespread Dominant Lineage of Phytophthora Infestans (Mont.) de Bary. PLoS ONE 2016, 11, e0168381. [Google Scholar] [CrossRef]
- Majeed, A.; Muhammad, Z.; Ullah, Z.; Ullah, R.; Ahmad, H. Late Blight of Potato (Phytophthora infestans) I: Fungicides Application and Associated Challenges. Turk. J. Agric. Food Sci. Technol. 2017, 5, 261–266. [Google Scholar] [CrossRef]
- Mazumdar, P.; Singh, P.; Kethiravan, D.; Ramathani, I.; Ramakrishnan, N. Late Blight in Tomato: Insights into the Pathogenesis of the Aggressive Pathogen Phytophthora Infestans and Future Research Priorities. Planta 2021, 253, 119. [Google Scholar] [CrossRef] [PubMed]
- Wawra, S.; Belmonte, R.; Löbach, L.; Saraiva, M.; Willems, A.; van West, P. Secretion, Delivery and Function of Oomycete Effector Proteins. Curr. Opin. Microbiol. 2012, 15, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Botella-Pavía, P.; Rodríguez-Concepción, M. Carotenoid Biotechnology in Plants for Nutritionally Improved Foods. Physiol. Plant 2006, 126, 369–381. [Google Scholar] [CrossRef]
- da Costa, C.A.; Lourenço, V.; Santiago, M.F.; Veloso, J.S.; Reis, A. Molecular Phylogenetic, Morphological, and Pathogenic Analyses Reveal a Single Clonal Population of Septoria Lycopersici with a Narrower Host Range in Brazil. Plant Pathol. 2022, 71, 621–633. [Google Scholar] [CrossRef]
- Broggini, G.A.L.; Galli, P.; Parravicini, G.; Gianfranceschi, L.; Gessler, C.; Patocchi, A. HcrVf Paralogs Are Present on Linkage Groups 1 and 6 of Malus. Genome 2009, 52, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Blauth, S.L.; Steffens, J.C.; Churchill, G.A.; Mutschler, M.A. Identification of QTLs Controlling Acylsugar Fatty Acid Composition in an Intraspecific Population of Lycopersicon Pennellii (Corr.) D’Arcy. Theor. Appl. Genet. 1999, 99, 373–381. [Google Scholar] [CrossRef]
- Broman, K.W.; Wu, H.; Sen, Ś.; Churchill, G.A. R/Qtl: QTL Mapping in Experimental Crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef]
- Sohi, H.S.; Sokhi, S.S. Morphological, Physiological and Pathological Studies in Septoria lycopersici. Indian Phytopathol. 1974. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201303096876 (accessed on 3 June 2023).
- Martin-Hernandez, A.M.; Dufresne, M.; Hugouvieux, V.; Melton, R.; Osbourn, A. Effects of Targeted Replacement of the Tomatinase Gene on the Interaction of Septoria Lycopersici with Tomato Plants. Mol. Plant Microbe Interact 2000, 13, 1301–1311. [Google Scholar] [CrossRef]
- Hardy, O.J.; Vekemans, X. Spagedi: A Versatile Computer Program to Analyse Spatial Genetic Structure at the Individual or Population Levels. Mol. Ecol. Notes 2002, 2, 618–620. [Google Scholar] [CrossRef]
- Bohs, L.; Olmstead, R.G. Phylogenetic Relationships in Solanum (Solanaceae) Based on NdhF Sequences. Syst. Bot. 1997, 22, 5–17. [Google Scholar] [CrossRef]
- Dahlin, P.; Müller, M.C.; Ekengren, S.; McKee, L.S.; Bulone, V. The Impact of Steroidal Glycoalkaloids on the Physiology of Phytophthora Infestans, the Causative Agent of Potato Late Blight. Mol. Plant-Microbe Interact. 2017, 30, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Baek, K.H.; Kim, E.S.; Han, J.E.; Kwak, M.; Oh, K.; Kim, J.C.; Kim, S.; Choi, G.J. In Vivo Antifungal Activities of the Methanol Extracts of Invasive Plant Species against Plant Pathogenic Fungi. Plant Pathol. J. 2012, 28, 317–321. [Google Scholar] [CrossRef]
- Chohan, S.; Perveen, R.; Anees, M.; Azeem, M.; Abid, M. Estimation of Secondary Metabolites of Indigenous Medicinal Plant Extracts and Their in Vitro and in Vivo Efficacy against Tomato Early Blight Disease in Pakistan. J. Plant Dis. Prot. 2019, 126, 553–563. [Google Scholar] [CrossRef]
- Blaeser, P.; Steiner, U. Antifungal Activity of Plant Extracts against Potato Late Blight (Phytophthora infestans)—Aspergillus and Aspergillosis. In Proceedings of the Modern Fungicides and Antifungal Compounds 11–12th International Reinhardsbrunn Symposium, Friedrichrode, Germany, 24–29 May 1998; pp. 491–499. [Google Scholar]
- Khan, N.; Mishra, A.; Nautiyal, C.S. Paenibacillus Lentimorbus B-30488 r Controls Early Blight Disease in Tomato by Inducing Host Resistance Associated Gene Expression and Inhibiting Alternaria solani. Biol. Control 2012, 62, 65–74. [Google Scholar] [CrossRef]
- Zuluaga, A.P.; Vega-Arreguín, J.C.; Fei, Z.; Matas, A.J.; Patev, S.; Fry, W.E.; Rose, J.K.C. Analysis of the Tomato Leaf Transcriptome during Successive Hemibiotrophic Stages of a Compatible Interaction with the Oomycete Pathogen Phytophthora Infestans. Mol. Plant Pathol. 2016, 17, 42–54. [Google Scholar] [CrossRef]
- Sarkar, D.; Maji, R.K.; Dey, S.; Sarkar, A.; Ghosh, Z.; Kundu, P. Integrated MiRNA and MRNA Expression Profiling Reveals the Response Regulators of a Susceptible Tomato Cultivar to Early Blight Disease. DNA Res. 2017, 24, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Bahramisharif, A.; Rose, L.E. Efficacy of Biological Agents and Compost on Growth and Resistance of Tomatoes to Late Blight. Planta 2019, 249, 799–813. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ochoa, J.S.; Levin, L.N.; Hernández-Luna, C.E.; Contreras-Cordero, J.F.; Niño-Medina, G.; Chávez-Montes, A.; López-Sandin, I.; Gutiérrez-Soto, G. Antagonistic Potential of Macrolepiota Sp. Against Alternaria solani as Causal Agent of Early Blight Disease in Tomato Plants. Gesunde Pflanz. 2020, 72, 69–76. [Google Scholar] [CrossRef]
- Singh, J.; Aggarwal, R.; Bashyal, B.M.; Darshan, K.; Parmar, P.; Saharan, M.S.; Hussain, Z.; Solanke, A.U. Transcriptome Reprogramming of Tomato Orchestrate the Hormone Signaling Network of Systemic Resistance Induced by Chaetomium Globosum. Front. Plant Sci. 2021, 12, 721193. [Google Scholar] [CrossRef]
- Nguyen, M.V.; Han, J.W.; Kim, H.; Choi, G.J. Phenyl Ethers from the Marine-Derived Fungus Aspergillus tabacinus and Their Antimicrobial Activity Against Plant Pathogenic Fungi and Bacteria. ACS Omega 2022, 7, 33273–33279. [Google Scholar] [CrossRef]
- Brooks, S.; Klomchit, A.; Chimthai, S.; Jaidee, W.; Bastian, A.C. Xylaria Feejeensis, SRNE2BP a Fungal Endophyte with Biocontrol Properties to Control Early Blight and Fusarium Wilt Disease in Tomato and Plant Growth Promotion Activity. Curr. Microbiol. 2022, 79, 108. [Google Scholar] [CrossRef] [PubMed]
- Awan, Z.A.; Shoaib, A.; Schenk, P.M.; Ahmad, A.; Alansi, S.; Paray, B.A. Antifungal Potential of Volatiles Produced by Bacillus Subtilis BS-01 against Alternaria solani in Solanum lycopersicum. Front. Plant Sci. 2023, 13, 1089562. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-cervantes, L.F.; Tlapal-bolaños, B.; Tovar-pedraza, J.M.; Pérez-hernández, O.; Leyva-mir, S.G.; Camacho-tapia, M. Efficacy of Biorational Products for Managing Diseases of Tomato in Greenhouse Production. Plants 2022, 11, 1638. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Devkota, A.; Yadegari, Z.; Dumenyo, K.; Taheri, A. Antibacterial Properties of Citric Acid/β-Alanine Carbon Dots against Gram-Negative Bacteria. Nanomaterials 2021, 11, 2012. [Google Scholar] [CrossRef] [PubMed]
- Devkota, A.; Pandey, A.; Yadegari, Z.; Dumenyo, K.; Taheri, A. Amine-Coated Carbon Dots (NH2-FCDs) as Novel Antimicrobial Agent for Gram-Negative Bacteria. Front. Nanotechnol. 2021, 3, 768487. [Google Scholar] [CrossRef]
- Yadav, A.; Yadav, K. Nanoparticle-Based Plant Disease Management: Tools for Sustainable Agriculture. In Nanobiotechnology Applications in Plant Protection; Nanotechnology in the Life Sciences; Springer: Berlin/Heidelberg, Germany,, 2018; pp. 29–61. [Google Scholar] [CrossRef]
- Kanhed, P.; Birla, S.; Gaikwad, S.; Gade, A.; Seabra, A.B.; Rubilar, O.; Duran, N.; Rai, M. In Vitro Antifungal Efficacy of Copper Nanoparticles against Selected Crop Pathogenic Fungi. Mater. Lett. 2014, 115, 13–17. [Google Scholar] [CrossRef]
- Kumari, M.; Pandey, S.; Bhattacharya, A.; Mishra, A.; Nautiyal, C.S. Protective Role of Biosynthesized Silver Nanoparticles against Early Blight Disease in Solanum lycopersicum. Plant Physiol. Biochem. 2017, 121, 216–225. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; et al. Antimicrobial Effects of Silver Nanoparticles. Nanomedicine 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Derbalah, A.; Shenashen, M.; Hamza, A.; Mohamed, A.; El Safty, S. Antifungal Activity of Fabricated Mesoporous Silica Nanoparticles against Early Blight of Tomato. Egypt. J. Basic Appl. Sci. 2018, 5, 145–150. [Google Scholar] [CrossRef]
- Ansari, M.; Ahmed, S.; Abbasi, A.; Hamad, N.A.; Ali, H.M.; Khan, M.T.; Haq, I.U.; Zaman, Q.U. Green Synthesized Silver Nanoparticles: A Novel Approach for the Enhanced Growth and Yield of Tomato against Early Blight Disease. Microorganisms 2023, 11, 886. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hafez, S.I.I.; Nafady, N.A.; Abdel-Rahim, I.R.; Shaltout, A.M.; Daròs, J.A.; Mohamed, M.A. Assessment of Protein Silver Nanoparticles Toxicity against Pathogenic Alternaria solani. 3 Biotech 2016, 6, 199. [Google Scholar] [CrossRef] [PubMed]
- Rad, F.; Mohsenifar, A.; Tabatabaei, M.; Safarnejad, M.R.; Shahryari, F.; Safarpour, H.; Foroutan, A.; Mardi, M.; Davoudi, D.; Fotokian, M. Detection of Candidatus Phytoplasma Aurantifolia With A Quantum Dots FRET-BASED Biosensor. J. Plant Pathol. 2012, 94, 525–534. [Google Scholar] [CrossRef]
- Brusca, J. Inheritance of Tomato Late Blight Resistance from’Richter’s Wild Tomato’and Evaluation of Late Blight Resistance Gene Combinations in Adapted Fresh Market Tomato. Master’s Thesis, NC State University, Raleigh, NC, USA, 2003. Available online: https://repository.lib.ncsu.edu/handle/1840.16/1041 (accessed on 10 June 2023).
- Fukamachi, K.; Konishi, Y.; Nomura, T. Disease Control of Phytophthora Infestans Using Cyazofamid Encapsulated in Poly Lactic-Co-Glycolic Acid (PLGA) Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 315–322. [Google Scholar] [CrossRef]
- Ali, M.; Kim, B.; Belfield, K.D.; Norman, D.; Brennan, M.; Ali, G.S. Inhibition of Phytophthora Parasitica and P. Capsici by Silver Nanoparticles Synthesized Using Aqueous Extract of Artemisia Absinthium. Phytopathology 2015, 105, 1183–1190. [Google Scholar] [CrossRef]
- Bella, P.; Ialacci, G.; Licciardello, G.; Rosa, R.; Catara, V. Characterization of Atypical Clavibacter michiganensis subsp. michiganensis Populations in Greenhouse Tomatoes in Italy. J. Plant Pathol. 2012, 94, 635–642. [Google Scholar] [CrossRef]
- Paret, M.L.; Dufault, N.; Momol, T.; Marois, J.; Olson, S. Integrated Disease Management for Vegetable Crops in Florida. EDIS 2012, 2012. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, A.K.; Kumar, A. Disease Management of Tomato through PGPB: Current Trends and Future Perspective. 3 Biotech 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Bombarely, A.; Menda, N.; Tecle, I.Y.; Buels, R.M.; Strickler, S.; Fischer-York, T.; Pujar, A.; Leto, J.; Gosselin, J.; Mueller, L.A. The Sol Genomics Network (Solgenomics.Net): Growing Tomatoes Using Perl. Nucleic Acids Res. 2011, 39, D1149–D1155. [Google Scholar] [CrossRef]
- Gardner, R.G. NC EBR-1 and NC EBR-2 Early Blight Resistant Tomato Breeding Lines. HortScience 1988, 23, 779–781. [Google Scholar] [CrossRef]
- Gardner, R.G.; Shoemaker, P.B. “Mountain Supreme” Early Blight-Resistant Hybrid Tomato and Its Parents, NC EBR-3 and NC EBR-4. HortScience 1999, 34, 745–746. [Google Scholar] [CrossRef]
- Gardner, R.G. Greenhouse Disease Screen Facilitates Breeding Resistance to Tomato Early Blight. HortScience 1990, 25, 222–223. [Google Scholar] [CrossRef]
- Nash, A.F.; Gardner, R.G. Heritability of Tomato Early Blight Resistance Derived from Lycopersicon Hirsutum P.I. 126445. J. Am. Soc. Hortic. Sci. 1988, 113, 264–268. [Google Scholar] [CrossRef]
- Gardner, R.G. “Plum Dandy”, a Hybrid Tomato, and Its Parents, NC EBR-5 and NC EBR-6. HortScience 2000, 35, 962–963. [Google Scholar] [CrossRef]
- Gardner, R.G.; Panthee, D.R. ‘Plum Regal’ Fresh-Market Plum Tomato Hybrid and Its Parents, NC 25P and NC 30P. HortScience 2010, 45, 824–825. [Google Scholar] [CrossRef]
- Gardner, R.G.; Panthee, D.R. ‘Mountain Magic’: An Early Blight and Late Blight-Resistant Specialty Type F1 Hybrid Tomato. HortScience 2012, 47, 299–300. [Google Scholar] [CrossRef]
- Panthee, D.R. ‘Mountain Regina’: Multiple Disease Resistant Fresh-Market Hybrid Tomato and Its Parents, NC 1LF and NC 2LF. HortScience 2021, 56, 736–738. [Google Scholar] [CrossRef]
- Panthee, D.R.; Gardner, R.G. ‘Mountain Bebe’: Hybrid Grape Tomato and Its Parents NC 7 Grape and NC 8 Grape. HortScience 2022, 57, 444–446. [Google Scholar] [CrossRef]
- Panthee, D.R. ‘Mountain Crown’: Late Blight and Tomato Mosaic Virus-Resistant Plum Hybrid Tomato and Its Parent, NC 1 Plum. HortScience 2020, 55, 2056–2057. [Google Scholar] [CrossRef]
- Peirce, L.C. Linkage Tests with Ph Conditioning Resistance to Race 0, Phytophthora Infestans. Rep. Tomato Genet. Coop. 1971, 21, 30. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C34&q=Linkage+tests+with+Ph+conditioning+resistance+to+race+0%2C+Phytophthora+infestans.+Rep.+Tomato+Genet.+Coop.+21%2C+30&btnG= (accessed on 10 June 2023).
- Moreau, P.; Thoquet, P.; Olivier, J.; Laterrot, H.; Grimsley, N. Genetic Mapping of Ph-2, a Single Locus Controlling Partial Resistance to Phytophthora Infestans in Tomato. Mol. Plant Microbe Interact. 1998, 11, 259–269. [Google Scholar] [CrossRef]
- Gallegly, M.E. Resistance to the late-blight fungus in tomato. In Proceedings of the Plant Science Seminar, (PS’60), Cambell Soup Cornpany, Camden, NJ, USA, 1960; pp. 113–135. [Google Scholar]
- Goodwin, S.B.; Schneider, R.E.; Fry, W.E. Use of Cellulose-Acetate Electrophoresis for Rapid Identification of Allozyme Genotypes of Phytophthora Infestans. Plant Dis. 1995, 79, 1181–1185. [Google Scholar] [CrossRef]
- Chunwongse, J.; Chunwongse, C.; Black, L.; Hanson, P. Molecular Mapping of the Ph-3 Gene for Late Blight Resistance in Tomato. J. Hortic. Sci. Biotechnol. 2002, 77, 281–286. [Google Scholar] [CrossRef]
- Panthee, D.R.; Gardner, R.G. ‘Mountain Rouge’: A Pink-Fruited, Heirloom-Type Hybrid Tomato and Its Parent Line NC 161L. HortScience 2014, 49, 1463–1464. [Google Scholar] [CrossRef]
- Panthee, D.R.; Gardner, R.G. ‘Mountain Merit’: A Late Blight-Resistant Large-Fruited Tomato Hybrid. HortScience 2010, 45, 1547–1548. [Google Scholar] [CrossRef]
- Anderson, T.; Dejong, D.; Glos, M.; Bojanowski, J.B.; Mutschler, M. Mapping Campbell 1943 Stem Early Blight Resistance and Adding an Additional Source of Foliar Early Blight Resistance to Cornell Fungal Resistant Tomato Line; Cornell University: Ithaca, NY, USA, 2019. [Google Scholar]
- Mutschler, M.A.; McGrath, M. VEGEdge: Cornell Cooperative Extension. 2019. Available online: https://rvpadmin.cce.cornell.edu/pdf/veg_edge/pdf159_pdf.pdf (accessed on 4 January 2024).
- Anderson, T.A.; Zitter, S.M.; De Jong, D.M.; Francis, D.M.; Mutschler, M.A. Cryptic Introgressions Contribute to Transgressive Segregation for Early Blight Resistance in Tomato. Theor. Appl. Genet. 2021, 134, 2561–2575. [Google Scholar] [CrossRef]
- Foolad, M.R.; Subbiah, P.; Ghangas, G.S. Parent-Offspring Correlation Estimate of Heritability for Early Blight Resistance in Tomato, Lycopersicon Esculentum Mill. Euphytica 2002, 126, 291–297. [Google Scholar] [CrossRef]
- Foolad, M.R.; Lin, G.Y. Heritability of Early Blight Resistance in a Lycopersicon Esculentum×Lycopersicon Hirsutum Cross Estimated by Correlation between Parent and Progeny. Plant Breeding 2001, 120, 173–177. [Google Scholar] [CrossRef]
- Foolad, M.R.; Zhang, L.P.; Khan, A.A.; Niño-Liu, D.; Lin, G.Y. Identification of QTLs for Early Blight (Alternaria solani) Resistance in Tomato Using Backcross Populations of a Lycopersicon Esculentum × L. Hirsutum Cross. Theor. Appl. Genet. 2002, 104, 945–958. [Google Scholar] [CrossRef]
- Zhang, L.P.; Lin, G.Y.; Niño-Liu, D.; Foolad, M.R. Mapping QTLs Conferring Early Blight (Alternaria solani) Resistance in a Lycopersicon Esculentum x L. Hirsutum Cross by Selective Genotyping. Molecular Breeding 2003, 12, 3–19. [Google Scholar] [CrossRef]
- Foolad, M.R.; Merk, H.L.; Ashrafi, H. Genetics, Genomics and Breeding of Late Blight and Early Blight Resistance in Tomato. Crit. Rev. Plant Sci. 2008, 27, 75–107. [Google Scholar] [CrossRef]
- Adhikari, T.B.; Siddique, M.I.; Louws, F.J.; Sim, S.-C.; Panthee, D.R. Molecular Mapping of Quantitative Trait Loci for Resistance to Early Blight in Tomatoes. Front. Plant Sci. 2023, 14, 1684. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, H.; Foolad, M.R. Characterization of Early Blight Resistance in a Recombinant Inbred Line Population of Tomato: II. Identification of QTLs and Their Co-Localization with Candidate Resistance Genes. Adv. Stud. Biol. 2015, 7, 149–168. [Google Scholar] [CrossRef]
- Chen, A.L.; Liu, C.Y.; Chen, C.H.; Wang, J.F.; Liao, Y.C.; Chang, C.H.; Tsai, M.H.; Hwu, K.K.; Chen, K.Y. Reassessment of QTLs for Late Blight Resistance in the Tomato Accession L3708 Using a Restriction Site Associated DNA (RAD) Linkage Map and Highly Aggressive Isolates of Phytophthora Infestans. PLoS ONE 2014, 9, e96417. [Google Scholar] [CrossRef] [PubMed]
- Panthee, D.R.; Piotrowski, A.; Ibrahem, R. Mapping Quantitative Trait Loci (QTL) for Resistance to Late Blight in Tomato. Int. J. Mol. Sci. 2017, 18, 1589. [Google Scholar] [CrossRef] [PubMed]
- Andrus, C.F.; Reynard, G.B. Resistance to Septoria Leaf Spot and Its Inheritance in Tomatoes. Phytopathology 1945, 35, 16–24. [Google Scholar]
- Locke, S.B. Resistance to Early Blight and Septoria Leaf Spot in the Genus Lycopersicon. Phytopathology 1949, 39, 829–836. Available online: https://ci.nii.ac.jp/naid/10018788092/ (accessed on 10 June 2023).
- Joshi, B.K.; Louws, F.J.; Yencho, G.C.; Sosinski, B.R.; Arellano, C.; Panthee, D.R. Molecular Markers for Septoria Leaf Spot (Septoria Lycopersicii Speg.) Resistance in Tomato (Solanum lycopersicum L.). Nepal J. Biotechnol. 2015, 3, 40–47. [Google Scholar] [CrossRef]
- Boziné-Pullai, K.; Csambalik, L.; Drexler, D.; Reiter, D.; Tóth, F.; Bogdányi, F.T.; Ladányi, M. Tomato Landraces Are Competitive with Commercial Varieties in Terms of Tolerance to Plant Pathogens—A Case Study of Hungarian Gene Bank Accessions on Organic Farms. Diversity 2021, 13, 195. [Google Scholar] [CrossRef]
- Nash, A.F.; Gardner, R.G. Tomato Early Blight Resistance in a Breeding Line Derived from Lycopersicon Hirsutum PI 126445. Plant Dis. 1988. Available online: https://worldveg.tind.io/record/6838 (accessed on 10 June 2023). [CrossRef]
- Chaerani, R.; Smulders, M.J.M.; Van Der Linden, C.G.; Vosman, B.; Stam, P.; Voorrips, R.E. QTL Identification for Early Blight Resistance (Alternaria solani) in a Solanum lycopersicum × S. Arcanum Cross. Theor. Appl. Genet. 2007, 114, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Rao, E.S.; Munshi, A.D.; Sinha, P.; Rajkumar. Genetics of Rate Limiting Disease Reaction to Alternaria solani in Tomato. Euphytica 2008, 159, 123–134. [Google Scholar] [CrossRef]
- Gardner, R.G.; Panthee, D.R. NC 1 CELBR and NC 2 CELBR: Early Blight and Late Blight-Resistant Fresh Market Tomato Breeding Lines. HortScience 2010, 45, 975–976. [Google Scholar] [CrossRef]
- Bihon, W.; Ognakossan, K.E.; Tignegre, J.B.; Hanson, P.; Ndiaye, K.; Srinivasan, R. Evaluation of Different Tomato (Solanum lycopersicum L.) Entries and Varieties for Performance and Adaptation in Mali, West Africa. Horticulturae 2022, 8, 579. [Google Scholar] [CrossRef]
- Akhtar, K.P.; Ullah, N.; Saleem, M.Y.; Iqbal, Q.; Asghar, M.; Khan, A.R. Evaluation of Tomato Genotypes for Early Blight Disease Resistance Caused by Alternaria solani in Pakistan. J. Plant Pathol. 2019, 101, 1159–1170. [Google Scholar] [CrossRef]
- Singh, A.K.; Rai, N.; Singh, R.K.; Saha, S.; Rai, R.K.; Singh, R.P. Genetics of Resistance to Early Blight Disease in Crosses of Wild Derivatives of Tomato. Sci. Hortic. 2017, 219, 70–78. [Google Scholar] [CrossRef]
- Chaerani. Chaerani Related Wild Species for Breeding of Tomato Resistant to Early Blight Disease (Alternaria solani). IOP Conf. Ser. Earth Environ. Sci. 2020, 482, 012019. [Google Scholar] [CrossRef]
- Oliveira, M.D.M.; Varanda, C.M.R.; Félix, M.R.F. Induced Resistance during the Interaction Pathogen x Plant and the Use of Resistance Inducers. Phytochem. Lett. 2016, 15, 152–158. [Google Scholar] [CrossRef]
- Tripathi, D.; Raikhy, G.; Kumar, D. Chemical Elicitors of Systemic Acquired Resistance—Salicylic Acid and Its Functional Analogs. Curr. Plant Biol. 2019, 17, 48–59. [Google Scholar] [CrossRef]
- Belkhadir, Y.; Nimchuk, Z.; Hubert, D.A.; Mackey, D.; Dangl, J.L. Arabidopsis RIN4 Negatively Regulates Disease Resistance Mediated by RPS2 and RPM1 Downstream or Independent of the NDR1 Signal Modulator and Is Not Required for the Virulence Functions of Bacterial Type III Effectors AvrRpt2 or AvrRpm1. Plant Cell 2004, 16, 2822–2835. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, L.; Zheng, Z.; Sun, Y.; Zhou, L.; Yang, Y.; Cheng, F.; Zhang, Z.; Wang, X.; Huang, S.; et al. Fine Mapping of the Ph-3 Gene Conferring Resistance to Late Blight (Phytophthora infestans) in Tomato. Theor. Appl. Genet. 2013, 126, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, L.; Wang, X.; Vossen, J.; Li, G.; Li, T.; Zheng, Z.; Gao, J.; Guo, Y.; Visser, R.G.F.; et al. The Ph-3 Gene from Solanum Pimpinellifolium Encodes CC-NBS-LRR Protein Conferring Resistance to Phytophthora infestans. Theor. Appl. Genet. 2014, 127, 1353. [Google Scholar] [CrossRef] [PubMed]
- Foolad, M.R.; Panthee, D.R. Marker-Assisted Selection in Tomato Breeding. CRC Crit. Rev. Plant Sci. 2012, 31, 93–123. [Google Scholar] [CrossRef]
- Robbins, M.D.; Masud, M.A.T.; Panthee, D.R.; Gardner, R.G.; Francis, D.M.; Stevens, M.R. Marker-Assisted Selection for Coupling Phase Resistance to Tomato Spotted Wilt Virus and Phytophthora Infestans (Late Blight) in Tomato. HortScience 2010, 45, 1424–1428. [Google Scholar] [CrossRef]
- Brouwer, D.J.; St. Clair, D.A. Fine Mapping of Three Quantitative Trait Loci for Late Blight Resistance in Tomato Using near Isogenic Lines (NILs) and Sub-NILs. Theor. Appl. Genet. 2004, 108, 628–638. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, D.J.; Jones, E.S.; Clair, D.A.S. QTL Analysis of Quantitative Resistance to Phytophthora Infestans (Late Blight) in Tomato and Comparisons with Potato. Genome 2004, 47, 475–492. [Google Scholar] [CrossRef]
- Haggard, J.E.; Johnson, E.B.; St. Clair, D.A. Linkage Relationships among Multiple QTL for Horticultural Traits and Late Blight (P. Infestans) Resistance on Chromosome 5 Introgressed from Wild Tomato Solanum Habrochaites. G3 Genes Genomes Genet. 2013, 3, 2131–2146. [Google Scholar] [CrossRef]
- Haggard, J.E.; Johnson, E.B.; St. Clair, D.A. Multiple QTL for Horticultural Traits and Quantitative Resistance to Phytophthora Infestans Linked on Solanum Habrochaites Chromosome 11. G3 Genes Genomes Genet. 2015, 5, 219–233. [Google Scholar] [CrossRef]
- Johnson, E.B.; Erron Haggard, J.; St.Clair, D.A. Fractionation, Stability, and Isolate-Specificity of QTL for Resistance to Phytophthora Infestans in Cultivated Tomato (Solanum lycopersicum). G3 Genes Genomes Genet. 2012, 2, 1145–1159. [Google Scholar] [CrossRef]
- Li, J.; Liu, L.; Bai, Y.; Finkers, R.; Wang, F.; Du, Y.; Yang, Y.; Xie, B.; Visser, R.G.F.; van Heusden, A.W. Identification and Mapping of Quantitative Resistance to Late Blight (Phytophthora infestans) in Solanum Habrochaites LA1777. Euphytica 2011, 179, 427–438. [Google Scholar] [CrossRef]
- Haggard, J.E.; St.Clair, D.A. Combining Ability for Phytophthora Infestans Quantitative Resistance from Wild Tomato. Crop Sci. 2015, 55, 240–254. [Google Scholar] [CrossRef]
- Smart, C.D.; Tanksley, S.D.; Mayton, H.; Fry, W.E. Resistance to Phytophthora Infestans in Lycopersicon Pennellii. Plant Dis. 2007, 91, 1045–1049. [Google Scholar] [CrossRef] [PubMed]
- Hanson, P.; Lu, S.F.; Wang, J.F.; Chen, W.; Kenyon, L.; Tan, C.W.; Tee, K.L.; Wang, Y.Y.; Hsu, Y.C.; Schafleitner, R.; et al. Conventional and Molecular Marker-Assisted Selection and Pyramiding of Genes for Multiple Disease Resistance in Tomato. Sci. Hortic. 2016, 201, 346–354. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Chen, C.H.; Hoffmann, A.; Hsu, Y.C.; Lu, S.F.; Wang, J.F.; Hanson, P. Evaluation of the Ph-3 Gene-Specific Marker Developed for Marker-Assisted Selection of Late Blight-Resistant Tomato. Plant Breeding 2016, 135, 636–642. [Google Scholar] [CrossRef]
- Sullenberger, M.T.; Jia, M.; Gao, S.; Ashrafi, H.; Foolad, M.R. Identification of Late Blight Resistance Quantitative Trait Loci in Solanum Pimpinellifolium Accession PI 270441. Plant Genome 2022, 15, e20251. [Google Scholar] [CrossRef]
- Ohlson, E.W.; Ashrafi, H.; Foolad, M.R. Identification and Mapping of Late Blight Resistance Quantitative Trait Loci in Tomato Accession PI 163245. Plant Genome 2018, 11, 180007. [Google Scholar] [CrossRef]
- Brekke, T.D.; Stroud, J.A.; Shaw, D.S.; Crawford, S.; Steele, K.A. QTL Mapping in Salad Tomatoes. Euphytica 2019, 215, 1–12. [Google Scholar] [CrossRef]
- Kimura, S.; Sinha, N. Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop. Cold Spring Harb. Protoc. 2008, 2008, pdb.emo105. [Google Scholar] [CrossRef]
- Satelis, J.F.; Boiteux, L.S.; Reis, A. Resistance to Septoria Lycopersici in Solanum (Section lycopersicon) Species and in Progenies of S. lycopersicum × S. peruvianum. Sci. Agric. 2010, 67, 334–341. [Google Scholar] [CrossRef]
- Lincoln, R.E.; Cummins, G.B. Septoria Blight Resistance in the Tomato. Phytopathology 1949, 39, 647–655. Available online: https://www.webofscience.com/wos/woscc/full-record/WOS:A1949UM94800005 (accessed on 3 November 2022).
- Poysa, V.; Tul, J.C. Response of Cultivars and Breeding Lines of Lycopersicon spp. to Septoria lycopersici. Can. Plant Dis. Surv. 1993, 73, 9–13. [Google Scholar]
- Zitter, T.A.; Mutschler-Chu, M.A. Choosing LB, EB and SLS Resistant Tomato Varieties for 2014 What Tomato Growers Need to Know About Foliar Disease Resistance Issues? In Cornell University: Cooperative Extension; Cornell University: Ithaca, NY, USA, 2013. [Google Scholar]
- Sato, S.; Tabata, S.; Hirakawa, H.; Asamizu, E.; Shirasawa, K.; Isobe, S.; Kaneko, T.; Nakamura, Y.; Shibata, D.; Aoki, K.; et al. The Tomato Genome Sequence Provides Insights into Fleshy Fruit Evolution. Nature 2012, 485, 635–641. [Google Scholar] [CrossRef]
- Rothan, C.; Diouf, I.; Causse, M. Trait Discovery and Editing in Tomato. Plant J. 2019, 97, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Alwala, S.; Suman, A.; Arro, J.A.; Veremis, J.C.; Kimbeng, C.A. Target Region Amplification Polymorphism (TRAP) for Assessing Genetic Diversity in Sugarcane Germplasm Collections. Crop Sci. 2006, 46, 448–455. [Google Scholar] [CrossRef]
- Albuquerque, P.; Caridade, C.M.R.; Rodrigues, A.S.; Marcal, A.R.S.; Cruz, J.; Cruz, L.; Santos, C.L.; Mendes, M.V.; Tavares, F. Evolutionary and Experimental Assessment of Novel Markers for Detection of Xanthomonas Euvesicatoria in Plant Samples. PLoS ONE 2012, 7, e37836. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yeh, C.T.; Tang, H.M.; Nettleton, D.; Schnable, P.S. Gene Mapping via Bulked Segregant RNA-Seq (BSR-Seq). PLoS ONE 2012, 7, e36406. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lun, A.T.L.; Smyth, G.K. Differential Expression Analysis of Complex RNA-Seq Experiments Using EdgeR. Stat. Anal. Next Gener. Seq. Data 2014, 51–74. [Google Scholar] [CrossRef]
- Suresh, B.V.; Roy, R.; Sahu, K.; Misra, G.; Chattopadhyay, D. Tomato Genomic Resources Database: An Integrated Repository of Useful Tomato Genomic Information for Basic and Applied Research. PLoS ONE 2014, 9, e86387. [Google Scholar] [CrossRef]
- Yano, K.; Aoki, K.; Shibata, D. Genomic Databases for Tomato. Plant Biotechnol. 2007, 24, 17–25. [Google Scholar] [CrossRef]
- Matsukura, C.; Aoki, K.; Fukuda, N.; Mizoguchi, T.; Asamizu, E.; Saito, T.; Shibata, D.; Ezura, H. Comprehensive Resources for Tomato Functional Genomics Based on the Miniature Model Tomato Micro-Tom. Curr. Genom. 2008, 9, 436–443. [Google Scholar] [CrossRef]
- Barone, A.; Matteo, A.; Carputo, D.; Frusciante, L. High-Throughput Genomics Enhances Tomato Breeding Efficiency. Curr. Genom. 2009, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.K.; Rogers, R.B.; Lila, M.A.; Erdman, J.W. Biosynthesis of 14C-Phytoene from Tomato Cell Suspension Cultures (Lycopersicon esculentum) for Utilization in Prostate Cancer Cell Culture Studies. J. Agric. Food Chem. 2006, 54, 747–755. [Google Scholar] [CrossRef]
- Shi, R.; Panthee, D.R. Transcriptome-Based Analysis of Tomato Genotypes Resistant to Bacterial Spot (Xanthomonas Perforans) Race T4. Int. J. Mol. Sci. 2020, 21, 4070. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Nguyen, T.T.P.; Ahn, J.H.; Kim, G.J.; Sim, S.C. Genome-Wide Association Study Identifies QTL for Eight Fruit Traits in Cultivated Tomato (Solanum lycopersicum L.). Hortic. Res. 2021, 8, 203. [Google Scholar] [CrossRef] [PubMed]
- Casa, A.M.; Pressoir, G.; Brown, P.J.; Mitchell, S.E.; Rooney, W.L.; Tuinstra, M.R.; Franks, C.D.; Kresovich, S. Community Resources and Strategies for Association Mapping in Sorghum. Crop Sci. 2008, 48, 30–40. [Google Scholar] [CrossRef]
- Lu, J.; Liu, T.; Zhang, X.; Li, J.; Wang, X.; Liang, X.; Xu, G.; Jing, M.; Li, Z.; Hein, I.; et al. Comparison of the Distinct, Host-Specific Response of Three Solanaceae Hosts Induced by Phytophthora infestans. Int. J. Mol. Sci. 2021, 22, 11000. [Google Scholar] [CrossRef]
- Gao, L.; Gonda, I.; Sun, H.; Ma, Q.; Bao, K.; Tieman, D.M.; Burzynski-Chang, E.A.; Fish, T.L.; Stromberg, K.A.; Sacks, G.L.; et al. The Tomato Pan-Genome Uncovers New Genes and a Rare Allele Regulating Fruit Flavor. Nat. Genet. 2019, 51, 1044–1051. [Google Scholar] [CrossRef]
- Gonda, I.; Ashrafi, H.; Lyon, D.A.; Strickler, S.R.; Hulse-Kemp, A.M.; Ma, Q.; Sun, H.; Stoffel, K.; Powell, A.F.; Futrell, S.; et al. Sequencing-Based Bin Map Construction of a Tomato Mapping Population, Facilitating High-Resolution Quantitative Trait Loci Detection. Plant Genome 2019, 12, 180010. [Google Scholar] [CrossRef]
- Chetty, V.J.; Ceballos, N.; Garcia, D.; Narváez-Vásquez, J.; Lopez, W.; Orozco-Cárdenas, M.L. Evaluation of Four Agrobacterium Tumefaciens Strains for the Genetic Transformation of Tomato (Solanum lycopersicum L.) Cultivar Micro-Tom. Plant Cell Rep. 2013, 32, 239–247. [Google Scholar] [CrossRef]
- Arshad, W.; Haq, I.U.; Waheed, M.T.; Mysore, K.S.; Mirza, B. Agrobacterium-Mediated Transformation of Tomato with RolB Gene Results in Enhancement of Fruit Quality and Foliar Resistance against Fungal Pathogens. PLoS ONE 2014, 9, e96979. [Google Scholar] [CrossRef]
- Khan, R.S.; Nakamura, I.; Mii, M. Development of Disease-Resistant Marker-Free Tomato by R/RS Site-Specific Recombination. Plant Cell Rep. 2011, 30, 1041–1053. [Google Scholar] [CrossRef] [PubMed]
- Catanzariti, A.M.; Lim, G.T.T.; Jones, D.A. The Tomato I-3 Gene: A Novel Gene for Resistance to Fusarium Wilt Disease. New Phytol. 2015, 207, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Kaplanoglu, E.; Kolotilin, I.; Menassa, R.; Donly, C. Plastid Transformation of Micro-Tom Tomato with a Hemipteran Double-Stranded RNA Results in RNA Interference in Multiple Insect Species. Int. J. Mol. Sci. 2022, 23, 3918. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Sarkar, A.; Chowdhury, S.; Singh, R.; Mukherjee, A.; Ghosh, Z.; Kundu, P. Heightened MiR6024-NLR Interactions Facilitate Necrotrophic Pathogenesis in Tomato. Plant Mol. Biol. 2022, 109, 717–739. [Google Scholar] [CrossRef]
- Čermák, T.; Gasparini, K.; Kevei, Z.; Zsögön, A. Genome Editing to Achieve the Crop Ideotype in Tomato. In Crop Breeding; Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany,, 2021; Volume 2264, pp. 219–244. [Google Scholar] [CrossRef] [PubMed]
- Nagamine, A.; Takayama, M.; Ezura, H. Genetic Improvement of Tomato Using Gene Editing Technologies. J. Hortic. Sci. Biotechnol. 2022, 98, 1–9. [Google Scholar] [CrossRef]
- Barka, G.D.; Lee, J. Advances in S Gene Targeted Genome-Editing and Its Applicability to Disease Resistance Breeding in Selected Solanaceae Crop Plants. Bioengineered 2022, 13, 14646–14666. [Google Scholar] [CrossRef]
- Bhargava, A.; Shukla, S.; Ohri, D. Evaluation of Foliage Yield and Leaf Quality Traits in Chenopodium spp. in Multiyear Trials. Euphytica 2007, 153, 199–213. [Google Scholar] [CrossRef]
- Hong, Y.; Meng, J.; He, X.; Zhang, Y.; Liu, Y.; Zhang, C.; Qi, H.; Luan, Y. Editing Mir482b and Mir482c Simultaneously by Crispr/Cas9 Enhanced Tomato Resistance to Phytophthora Infestans. Phytopathology 2021, 111, 1008–1016. [Google Scholar] [CrossRef]
- Tiwari, J.K.; Singh, A.K.; Behera, T.K. CRISPR/Cas Genome Editing in Tomato Improvement: Advances and Applications. Front. Plant Sci. 2023, 14, 1121209. [Google Scholar] [CrossRef]
Country | Production (Million Tons) | Area (‘000 ha) | Yield (ton/ha) | World Production (%) |
---|---|---|---|---|
China | 64.9 | 1111.5 | 58.4 | 34.7 |
India | 20.6 | 812.0 | 25.3 | 11.0 |
Turkey | 13.2 | 181.9 | 72.6 | 7.1 |
USA | 12.2 | 110.4 | 110.7 | 6.5 |
Egypt | 6.7 | 170.9 | 39.4 | 3.6 |
Italy | 6.2 | 99.8 | 62.6 | 3.3 |
Iran | 5.8 | 129.1 | 44.8 | 3.1 |
Spain | 4.3 | 55.5 | 77.8 | 2.3 |
Mexico | 4.1 | 84.9 | 48.7 | 2.2 |
Brazil | 3.8 | 52.0 | 72.2 | 2.0 |
Trait | Population | QTL | Chr | Position | LOD Score | Additive Effect | R2-Value (%) | Reference |
---|---|---|---|---|---|---|---|---|
Early blight | NC 1CELBR × Fla. 7775 | qEBR-2 | 2 | 16.6–20.0 | 4.2 | −1.42 | 3.8 | [91] |
qEBR-8 | 8 | 32.4–51.3 | 4.2 | −1.44 | 12.1 | |||
qEBR-11 | 11 | 44.1–50.9 | 4.0 | −1.44 | 11.7 | |||
Early blight | - | EB-1.2 | 1 | 85.0 | 5.7 | 87.9 | 4.9 | [85] |
- | EB-5 | 5 | 64.4 | 10.4 | −126.4 | 11.0 | ||
- | EB-9 | 9 | 66.9 | 24.0 | 12.0 | 26.4 | ||
Early blight | NC EBR1 × LA2093 | cLEC73K6b-CT205 | 2 | 1.1–12.2 | 3 | −184.9 | 8 | [92] |
cTOF19J9-TG-463 | 2 | 46.9–64.9 | 3.4 | −197.4 | 8 | |||
EB5.1 cLEY-18H8-Ctoc20j21 | 5 | 69.4–81.5 | 5.6 | 283.2 | 18 | |||
EB6.1 TG274-TG590 | 6 | 14.8–17.3 | 4.6 | −182.2 | 16 | |||
TG274-cLEN10H12 | 6 | 14.8–29.0 | 3.7 | −224.2 | 10 | |||
EB9.1 TG348-cTOE10J18 | 9 | 52.8–54.6 | 5.1 | 205.6 | 14 | |||
TG343-cLED4N20 | 9 | 60.8–69.8 | 3 | 179.7 | 7 | |||
Late blight | Fla. 8059 × PI 270441 | 02g30527779 | 2 | 11.7 | 0.97 | −0.12 | 3 | [93] |
02g30827526 | 2 | 13.7 | 1.95 | −0.17 | 6 | |||
2 | 14.7 | 1.87 | −0.17 | 6 | ||||
09g66536514 | 9 | 114.9 | 9.37 | −0.76 | 39 | |||
09g66864250 | 9 | 116.4 | 10.14 | −0.78 | 42 | |||
09g67494653 | 9 | 119.3 | 9.54 | −0.76 | 40 | |||
Late blight | NC 1CELBR × Fla 7775 | solcap_snp_sl_65677 | 6 | 0 | 2.52 | 0.03 | 2 | [94] |
solcap_snp_sl_65677 | 6 | 0.01 | 2.52 | 0.03 | 2 | |||
solcap_snp_sl_11588 | 8 | 0.27 | 2.01 | −0.15 | 8 | |||
solcap_snp_sl_22830 | 9 | 0.32 | 9.18 | −0.33 | 81 | |||
CL016855–0847 | 9 | 0.67 | 41.99 | −1.69 | 66 | |||
solcap_snp_sl_69978 | 9 | 0.67 | 42.44 | −1.72 | 67 | |||
solcap_snp_sl_8807 | 10 | 0.64 | 4 | −0.44 | 2 | |||
solcap_snp_sl_1490 | 12 | 0.01 | 3.1 | −0.37 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panthee, D.R.; Pandey, A.; Paudel, R. Multiple Foliar Fungal Disease Management in Tomatoes: A Comprehensive Approach. Int. J. Plant Biol. 2024, 15, 69-93. https://doi.org/10.3390/ijpb15010007
Panthee DR, Pandey A, Paudel R. Multiple Foliar Fungal Disease Management in Tomatoes: A Comprehensive Approach. International Journal of Plant Biology. 2024; 15(1):69-93. https://doi.org/10.3390/ijpb15010007
Chicago/Turabian StylePanthee, Dilip R., Anju Pandey, and Rajan Paudel. 2024. "Multiple Foliar Fungal Disease Management in Tomatoes: A Comprehensive Approach" International Journal of Plant Biology 15, no. 1: 69-93. https://doi.org/10.3390/ijpb15010007
APA StylePanthee, D. R., Pandey, A., & Paudel, R. (2024). Multiple Foliar Fungal Disease Management in Tomatoes: A Comprehensive Approach. International Journal of Plant Biology, 15(1), 69-93. https://doi.org/10.3390/ijpb15010007