Comparative Photosynthetic Capacity, Respiration Rates, and Nutrient Content of Micropropagated and Wild-Sourced Sphagnum
Abstract
:1. Introduction
- Which Sphagnum species, either grown under the same conditions (micropropagated) or grown in the wild, show the greatest rates of photosynthesis and respiration?
- Is there a difference in photosynthetic capacity and respiration rate between micropropagated and wild-sourced Sphagnum species?
- Are there differences in chlorocyst size, chloroplast number, and nutrient content between micropropagated and wild-sourced Sphagnum species that may explain differences in their photosynthetic capacity and respiration rate?
2. Materials and Methods
2.1. Sphagnum Photosynthesis and Respiration
2.2. Sphagnum Samples’ Bulk Density
2.3. Sphagnum Samples’ Nutrient Analysis
2.4. Sphagnum Cell Measurements and Analysis
2.5. Data Analysis
3. Results
3.1. Sphagnum Photosynthesis and Respiration
3.2. Sphagnum Samples’ Bulk Density
3.3. Sphagnum Samples’ Nutrient Content
3.4. Sphagnum Cell Measurements and Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Verhoeven, J.T.; Liefveld, W.M. The ecological significance of organochemical compounds in Sphagnum. Acta Bot. Neerl. 1997, 46, 117–130. [Google Scholar] [CrossRef]
- Rydin, H.; Jeglum, J.K.; Bennett, K.D. The Biology of Peatlands, 2nd ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Lindsay, R.; Birnie, R.; Clough, J. Peat Bog Ecosystems: Key Definitions; International Union for the Conservation of Nature: Edinburgh, UK, 2014; Available online: https://repository.uel.ac.uk/item/85870 (accessed on 24 April 2024).
- Bragazza, L.; Tahvanainen, T.; Kutnar, L.; Rydin, H.; Limpens, J.; Hájek, M.; Grosvernier, P.; Hájek, T.; Hajkova, P.; Hansen, I.; et al. Nutritional constraints in ombrotrophic Sphagnum plants under increasing atmospheric nitrogen deposition in Europe. New Phytol. 2004, 163, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Fritz, C.; Lamers, L.P.; Riaz, M.; van den Berg, L.J.; Elzenga, T.J. Sphagnum mosses-masters of efficient N-uptake while avoiding intoxication. PLoS ONE 2014, 9, e79991. [Google Scholar] [CrossRef]
- van Breemen, N. How Sphagnum bogs down other plants. TREE 1995, 10, 270–275. [Google Scholar] [CrossRef]
- Malmer, N.; Albinsson, C.; Svensson, B.M.; Wallén, B. Interferences between Sphagnum and vascular plants: Effects on plant community structure and peat formation. Oikos 2003, 100, 469–482. [Google Scholar] [CrossRef]
- Clymo, R.S. Interactions of Sphagnum with water and air. In Effects of Atmospheric Pollutants on Forests, Wetlands and Agricultural Systems; Hutchinson, T.C., Meema, K.M., Eds.; Springer: Berlin, Germany, 1987; pp. 513–530. [Google Scholar]
- Rice, S.K.; Aclander, L.; Hanson, D.T. Do bryophyte shoot systems function like vascular plant leaves or canopies? Functional trait relationships in Sphagnum mosses (Sphagnaceae). Am. J. Bot. 2008, 95, 1366–1374. [Google Scholar] [CrossRef]
- Hájek, T.; Tuittila, E.S.; Ilomets, M.; Laiho, R. Light responses of mire mosses–a key to survival after water-level drawdown? Oikos 2009, 118, 240–250. [Google Scholar] [CrossRef]
- Bonnett, S.A.; Ostle, N.; Freeman, C. Short-term effect of deep shade and enhanced nitrogen supply on Sphagnum capillifolium morphophysiology. Plant Ecol. 2010, 207, 347–358. [Google Scholar] [CrossRef]
- Laine, A.M.; Juurola, E.; Hájek, T.; Tuittila, E.S. Sphagnum growth and ecophysiology during mire succession. Oecologia 2011, 167, 1115–1125. [Google Scholar] [CrossRef]
- Joosten, H.; Sirin, A.; Couwenberg, J.; Laine, J.; Smith, P. The role of peatlands in climate regulation. In Peatland Restoration and Ecosystem Services: Science, Policy and Practice; Bonn, A., Allott, T., Evans, M., Joosten, H., Stoneman, R., Eds.; British Ecological Society, Cambridge University Press: Cambridge, UK, 2016; pp. 63–76. [Google Scholar]
- Gregg, R.; Elias, J.; Alonso, I.; Crosher, I.; Muto, P.; Morecroft, M. Carbon sequestration by habitat: A review of the evidence. In Natural England Research Report NERR094; Natural England: York, UK, 2021; Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20220357895 (accessed on 1 September 2024).
- Evans, C.; Artz, R.; Moxley, J.; Smyth, M.A.; Taylor, E.; Archer, E.; Burden, A.; Williamson, J.; Donnelly, D.; Thomson, A.; et al. Implementation of an Emissions Inventory for UK Peatlands; Centre for Ecology and Hydrology: Report to the Department for Business, Energy and Industrial Strategy; Centre for Ecology and Hydrology: Bangor, UK, 2017. [Google Scholar]
- 2017 UK Greenhouse Gas emissions, final figures. In Statistical Release: National Statistics; Department for Business, Energy and Industrial Strategy: London, UK, 2019. Available online: https://assets.publishing.service.gov.uk/media/5c584a12e5274a317cc0eaf7/2017_Final_emissions_statistics_-_report.pdf (accessed on 24 April 2024).
- Wilson, D.; Farrell, C.; Mueller, C.; Hepp, S.; Renou-Wilson, F. Rewetted industrial cutaway peatlands in western Ireland: A prime location for climate change mitigation? Mires Peat 2013, 11(1), 1–22. [Google Scholar]
- Renou-Wilson, F.; Moser, G.; Fallon, D.; Farrell, C.A.; Müller, C.; Wilson, D. Rewetting degraded peatlands for climate and biodiversity benefits: Results from two raised bogs. Ecol. Eng. 2019, 127, 547–560. [Google Scholar] [CrossRef]
- Quinty, F.; Rochefort, L. Peatland Restoration Guide, 2nd ed.; Canadian Sphagnum Peat Moss Association and New Brunswick Department of Natural Resources and Energy: Québec, QC, Canada, 2003; Available online: https://www1.up.poznan.pl/glinbar/wp-content/uploads/2015/03/Restoration-Guide_2nd_2003.pdf (accessed on 27 May 2024).
- Caporn, S.J.; Rosenburgh, A.E.; Keightley, A.T.; Hinde, S.L.; Riggs, J.L.; Buckler, M.; Wright, N.A. Sphagnum restoration on degraded blanket and raised bogs in the UK using micropropagated source material: A review of progress. Mires Peat 2018, 20, 1–17. [Google Scholar]
- Crouch, T. Kinder Scout Sphagnum Trials: 2018 Update Report; Moors for the Future Report: Edale, UK, 2018; Available online: https://www.moorsforthefuture.org.uk/__data/assets/pdf_file/0027/93933/MFFP-Kinder-Scout-Sphagnum-Trials-Update-Report-2018.pdf (accessed on 27 May 2024).
- Pilkington, M.; Walker, J.; Fry, C.; Eades, P.; Meade, R.; Pollett, N.; Rogers, T.; Helliwell, T.; Chandler, D.; Fawcett, E.; et al. Diversification of Molinia-dominated blanket bogs using Sphagnum propagules. Ecol. Solut. Evid. 2021, 2, e12113. [Google Scholar] [CrossRef]
- Bengtsson, F.; Rydin, H.; Baltzer, J.L.; Bragazza, L.; Bu, Z.J.; Caporn, S.J.; Dorrepaal, E.; Flatberg, K.I.; Galanina, O.; Gałka, M.; et al. Environmental drivers of Sphagnum growth in peatlands across the Holarctic region. J. Ecol. 2021, 109, 417–431. [Google Scholar] [CrossRef]
- Loisel, J.; Gallego-Sala, A.V.; Yu, Z. Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences 2012, 9, 2737–2746. [Google Scholar] [CrossRef]
- Hassel, K.; Kyrkjeeide, M.O.; Yousefi, N.; Prestø, T.; Stenøien, H.K.; Shaw, J.A.; Flatberg, K.I. Sphagnum divinum (sp. nov.) and S. medium Limpr. and their relationship to S. magellanicum Brid. J. Bryol. 2018, 40, 197–222. [Google Scholar] [CrossRef]
- Hájek, T. Physiological ecology of peatland bryophytes. In Photosynthesis in Bryophytes and Early Land Plants; Hanson, D.T., Rice, S.K., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 233–252. [Google Scholar]
- Bubier, J.L.; Moore, T.R.; Bledzki, L.A. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob. Change Biol. 2007, 13, 1168–1186. [Google Scholar] [CrossRef]
- Mazziotta, A.; Granath, G.; Rydin, H.; Bengtsson, F.; Norberg, J. Scaling functional traits to ecosystem processes: Towards a mechanistic understanding in peat mosses. J. Ecol. 2019, 107, 843–859. [Google Scholar] [CrossRef]
- Aldous, A.R. Nitrogen translocation in Sphagnum mosses: Effects of atmospheric nitrogen deposition. New Phytol. 2002, 156, 241–253. [Google Scholar] [CrossRef]
- Laing, C.; Granath, G.; Belyea, L.R.; Allton, K.E.; Rydin, H. Tradeoffs and scaling of functional traits in Sphagnum as drivers of carbon cycling in peatlands. Oikos 2014, 123, 817–828. [Google Scholar] [CrossRef]
- Black, C.C., Jr.; Mollenhauer, H.H. Structure and distribution of chloroplasts and other organelles in leaves with various rates of photosynthesis. Plant Physiol. 1971, 47, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Haraguchi, A.; Yamada, N. Temperature dependency of photosynthesis of Sphagnum spp. distributed in the warm-temperate and the cool-temperate mires of Japan. Am. J. Plant Sci. 2011, 2, 716. [Google Scholar] [CrossRef]
- Kangas, L.; Maanavilja, L.; Hájek, T.; Juurola, E.; Chimner, R.A.; Mehtätalo, L.; Tuittila, E.S. Photosynthetic traits of Sphagnum and feather moss species in undrained, drained and rewetted boreal spruce swamp forests. Ecol. Evol. 2014, 4, 381–396. [Google Scholar] [CrossRef]
- Dossa, G.G.; Paudel, E.; Wang, H.; Cao, K.; Schaefer, D.; Harrison, R.D. Correct calculation of CO2 efflux using a closed-chamber linked to a non-dispersive infrared gas analyzer. Methods Ecol. Evol. 2015, 6, 1435–1442. [Google Scholar] [CrossRef]
- Limpens, J.; Berendse, F. How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos 2003, 103, 537–547. [Google Scholar] [CrossRef]
- McNeil, P.; Waddington, J.M. Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. J. Appl. Ecol. 2003, 40, 354–367. [Google Scholar] [CrossRef]
- Smith, A.J. The Moss Flora of Britain and Ireland, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Laine, J.; Flatberg, K.I.; Harju, P.; Timonen, T.; Minkkinen, K.J.; Laine, A.; Tuittila, E.S.; Vasander, H.T. Sphagnum mosses: The Stars of European Mires; Sphagna Ky: Helsinki, Finland, 2018. [Google Scholar]
- Atherton, I.; Bosanquet, S.; Lawley, M. (Eds.) Mosses and Liverworts of Britain and Ireland: A field guide; British Bryological Society: Plymouth, UK, 2010. [Google Scholar]
- Hammer, Ø.; Harper, D.A. Past: Paleontological statistics software package for education and data analysis. Palaeont. Electr. 2001, 4, 1. [Google Scholar]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 1997, 94, 13730–13734. [Google Scholar] [CrossRef]
- Bengtsson, F.; Granath, G.; Rydin, H. Photosynthesis, growth, and decay traits in Sphagnum–A multispecies comparison. Ecol. Evol. 2016, 6, 3325–3341. [Google Scholar] [CrossRef]
- Grime, J.P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 1977, 111, 1169–1194. [Google Scholar] [CrossRef]
- Krebs, M.; Gaudig, G.; Joosten, H. Record growth of Sphagnum papillosum in Georgia (Transcaucasus): Rain frequency, temperature and microhabitat as key drivers in natural bogs. Mires Peat 2016, 18, 1–16. [Google Scholar]
- Chapin, F.S.; Matson, P.A.; Vitousek, P.M.; Chapin, F.S.; Matson, P.A.; Vitousek, P.M. Principles of Terrestrial Ecosystem Ecology; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Marschall, M.; Proctor, M.C. Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Ann. Bot. 2004, 94, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Blagnytė, R.; Paliulis, D. Research into heavy metals pollution of atmosphere applying moss as bioindicator: A literature review. Environ. Res. Eng. Manag. 2010, 54, 26–33. [Google Scholar]
- Chapin, F.S., III; Johnson, D.A.; McKendrick, J.D. Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: Implications for herbivory. J. Ecol. 1980, 68, 189–209. [Google Scholar]
- Sterner, R.W.; Elser, J.J. Ecological stoichiometry: The biology of elements from molecules to the biosphere. In Ecological Stoichiometry; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Granath, G.; Strengbom, J.; Rydin, H. Direct physiological effects of nitrogen on Sphagnum: A greenhouse experiment. Funct. Ecol. 2012, 26, 353–364. [Google Scholar] [CrossRef]
- Barker, A.V.; Pilbeam, D.J. (Eds.) Handbook of Plant Nutrition, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Press, M.C.; Woodin, S.J.; Lee, J.A. The potential importance of an increased atmospheric nitrogen supply to the growth of ombrotrophic Sphagnum species. New Phytol. 1986, 103, 45–55. [Google Scholar] [CrossRef]
- Aerts, R.; Wallen, B.O.; Malmer, N. Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J. Ecol. 1992, 80, 131–140. [Google Scholar] [CrossRef]
- Lamers, L.P.; Bobbink, R.; Roelofs, J.G. Natural nitrogen filter fails in polluted raised bogs. Glob. Change Biol. 2000, 6, 583–586. [Google Scholar] [CrossRef]
- Berendse, F.; van Breemen, N.; Rydin, H.; Buttler, A.; Heijmans, M.; Hoosbeek, M.R.; Lee, J.A.; Mitchell, E.; Saarinen, T.; Vasander, H.; et al. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob. Change Biol. 2001, 7, 591–598. [Google Scholar] [CrossRef]
- Wang, M.; Moore, T.R. Carbon, nitrogen, phosphorus, and potassium stoichiometry in an ombrotrophic peatland reflects plant functional type. Ecosystems 2014, 17, 673–684. [Google Scholar] [CrossRef]
- Ma, J.Z.; Bu, Z.J.; Zheng, X.X.; Ge, J.L.; Wang, S.Z. Effects of shading on relative competitive advantage of three species of Sphagnum. Mires Peat 2015, 16, 1–17. [Google Scholar]
- van der Heijden, E.; Verbeek, S.K.; Kuiper, P.J. Elevated atmospheric CO2 and increased nitrogen deposition: Effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst. Glob. Change Biol. 2000, 6, 201–212. [Google Scholar] [CrossRef]
- Limpens, J.; Berendse, F. Growth reduction of Sphagnum magellanicum subjected to high nitrogen deposition: The role of amino acid nitrogen concentration. Oecologia 2003, 135, 339–345. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J.; Wright, I.J. Leaf phosphorus influences the photosynthesis–nitrogen relation: A cross-biome analysis of 314 species. Oecologia 2009, 160, 207–212. [Google Scholar] [CrossRef]
- Rochefort, L. Sphagnum—A keystone genus in habitat restoration. The Bryologist 2000, 103, 503–508. [Google Scholar] [CrossRef]
- Waddington, J.M.; Warner, K. Atmospheric CO2 sequestration in restored mined peatlands. Ecoscience 2001, 8, 359–368. [Google Scholar] [CrossRef]
- Lucchese, M.; Waddington, J.M.; Poulin, M.; Pouliot, R.; Rochefort, L.; Strack, M. Organic matter accumulation in a restored peatland: Evaluating restoration success. Ecol. Eng. 2010, 36, 482–488. [Google Scholar] [CrossRef]
- Waddington, J.M.; Lucchese, M.C.; Duval, T.P. Sphagnum moss moisture retention following the re-vegetation of degraded peatlands. Ecohydrology 2011, 4, 359–366. [Google Scholar] [CrossRef]
- Worrall, F.; Chapman, P.; Holden, J.; Evans, C.; Artz, R.; Smith, P.; Grayson, R. A Review of Current Evidence on Carbon Fluxes and Greenhouse Gas Emissions from UK Peatlands; JNCC Report: Peterborough, UK, 2011; Available online: https://nora.nerc.ac.uk/id/eprint/15889/1/jncc442_webfinal.pdf (accessed on 11 September 2024).
Sphagnum Species | Micropropagated | Wild-Sourced | ||||
---|---|---|---|---|---|---|
PAR | Pmax | Respiration | PAR | Pmax | Respiration | |
S. squarrosum | 500 | 46.94 ± 4.74 ** | −8.15 ± 1.77 * | 400 | 25.32 ± 3.75 | −6.05 ± 1.11 |
S. palustre | 400 | 37.69 ± 11.58 ** | −5.88 ± 0.66 | 450 | 15.23 ± 1.00 | −4.15 ± 0.60 |
S. papillosum | 550 | 36.28 ± 3.65 ** | −7.03 ± 0.47 ** | 750 | 3.55 ± 1.27 | −1.91 ± 0.49 |
S. fallax | 450 | 32.54 ± 6.17 ** | −5.42 ± 0.82 | 450 | 16.14 ± 1.25 | −4.37 ± 0.72 |
S. capillifolium | 650 | 24.12 ± 2.53 ** | −4.97 ± 0.55 * | 500 | 6.97 ± 1.64 | −2.54 ± 0.31 |
S. medium/divinum | 450 | 20.57 ± 5.51 ** | −4.07 ± 0.78 ** | 550 | 1.59 ± 0.42 | −1.17 ± 0.29 |
Sphagnum Type/sp. | Ca | K | Mg | N | P | S |
---|---|---|---|---|---|---|
microprop S. cap | 4.30 ± 0.38 ** | 11.58 ± 0.52 ** | 1.51 ± 0.08 ** | 21.08 ± 0.72 ** | 2.90 ± 0.16 ** | 0.68 ± 0.03 |
wild S. cap | 1.74 ± 0.27 | 3.32 ± 0.56 | 0.65 ± 0.13 | 12.63 ± 1.43 | 0.44 ± 0.09 | 0.69 ± 0.08 |
microprop S. fal | 4.53 ± 1.17 ** | 10.25 ± 1.30 ** | 1.19 ± 0.19 ** | 19.68 ± 1.71 ** | 1.84 ± 0.27 ** | 0.59 ± 0.08 |
wild S. fal | 0.84 ± 0.29 | 5.34 ± 0.51 | 0.39 ± 0.04 | 12.28 ± 2.63 | 0.55 ± 0.07 | 0.51 ± 0.06 |
microprop S. med/div | 3.48 ± 0.49 ** | 10.32 ± 1.21 ** | 1.06 ± 0.11 ** | 20.41 ± 1.43 ** | 2.09 ± 0.32 ** | 0.57 ± 0.07 |
wild S. med/div | 1.31 ± 0.33 | 2.05 ± 0.49 | 0.70 ± 0.09 | 10.77 ± 1.35 | 0.17 ± 0.01 | 0.49 ± 0.04 |
microprop S. pal | 4.47 ± 0.58 ** | 15.99 ± 1.51 ** | 1.55 ± 0.14 ** | 29.27 ± 0.78 ** | 2.82 ± 0.17 ** | 0.92 ± 0.10 ** |
wild S. pal | 1.34 ± 0.11 | 6.80 ± 0.92 | 0.72 ± 0.11 | 13.94 ± 2.33 | 0.80 ± 0.08 | 0.52 ± 0.03 |
microprop S. pap | 3.14 ± 0.28 ** | 15.40 ± 1.28 ** | 1.26 ± 0.06 ** | 28.69 ± 2.14 ** | 2.80 ± 0.18 ** | 0.85 ± 0.07 ** |
wild S. pap | 1.60 ± 0.37 | 2.75 ± 0.36 | 0.58 ± 0.05 | 10.63 ± 1.21 | 0.25 ± 0.06 | 0.53 ± 0.04 |
microprop S. squ | 2.82 ± 0.20 ** | 15.55 ± 1.43 | 1.19 ± 0.13 * | 26.66 ± 3.11 ** | 2.86 ± 0.33 ** | 0.90 ± 0.12 |
wild S. squ | 1.21 ± 0.19 | 13.61 ± 0.75 | 0.90 ± 0.07 | 20.90 ± 2.05 | 1.83 ± 0.16 | 0.90 ± 0.08 |
Sphagnum Type/sp. | Al | Cu | Fe | Mn | Na | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|
microprop S. cap | 9.75 ± 0.38 | 5.88 ± 0.50 | 52.74 ± 5.10 | 39.12 ± 2.37 ** | 338.0 ± 35.03 | 0.15 ± 0.46 | 0.12 ± 0.03 ** | 47.92 ± 9.82 * |
wild S. cap | 91.66 ± 9.86 | 4.48 ± 0.87 | 143.7 ± 12.63 | 64.30 ± 12.54 | 470.7 ± 90.91 | 0.60 ± 0.71 | 2.27 ± 0.26 | 24.89 ± 7.55 |
microprop S. fal | 15.58 ± 2.53 | 5.65 ± 0.78 ** | 35.44 ± 3.99 * | 28.21 ± 5.38 | 505.3 ± 120.3 | 0.33 ± 0.37 | 0.25 ± 0.04 ** | 66.08 ± 17.08 ** |
wild S. fal | 83.05 ± 10.78 | 2.68 ± 0.64 | 198.9 ± 21.32 | 19.32 ± 2.95 | 256.8 ± 29.67 | 0.18 ± 0.13 | 1.34 ± 0.50 | 7.81 ± 2.19 |
microprop S. med/div | 18.20 ± 5.43 | 7.43 ± 0.89 ** | 47.35 ± 4.18 | 27.95 ± 3.62 | 430.0 ± 76.53 ** | 0.89 ± 0.94 | 0.33 ± 0.09 | 76.96 ± 8.94 ** |
wild S. med/div | 62.51 ± 12.35 | 3.29 ± 0.66 | 90.15 ± 17.61 | 29.50 ± 13.02 | 899.7 ± 195.3 | 0.32 ± 0.24 | 0.70 ± 0.06 | 10.74 ± 2.74 |
microprop S. pal | 13.32 ± 3.32 | 8.87 ± 0.62 | 66.89 ± 3.66 | 35.81 ± 4.45 | 497.9 ± 110.9 | 0.14 ± 0.22 | 0.17 ± 0.03 | 57.57 ± 5.83 ** |
wild S. pal | 36.95 ± 4.80 | 4.68 ± 0.89 | 46.62 ± 6.59 | 89.78 ± 9.53 | 372.1 ± 51.82 | 0.54 ± 0.69 | 0.63 ± 0.14 | 18.53 ± 4.28 |
microprop S. pap | 11.20 ± 2.65 ** | 7.79 ± 0.90 ** | 50.42 ± 3.84 * | 29.56 ± 2.01 ** | 360.7 ± 55.17 ** | 0.34 ± 0.49 | 0.24 ± 0.03 ** | 38.47 ± 8.75 * |
wild S. pap | 303.8 ± 268.4 | 3.72 ± 1.06 | 245.5 ± 175.2 | 171.5 ± 102.6 | 1159.0 ± 387.5 | 1.08 ± 0.34 | 1.65 ± 0.88 | 16.92 ± 8.92 |
microprop S. squ | 7.87 ± 1.44 | 6.29 ± 1.65 | 83.87 ± 83.46 | 28.30 ± 2.71 | 303.8 ± 39.22 | 0 ± 0.07 | 0.20 ± 0.15 | 40.44 ± 5.45 ** |
wild S. squ | 35.17 ± 3.67 | 6.33 ± 1.01 | 52.79 ± 5.91 | 92.32 ± 11.15 | 448.2 ± 97.71 | 0.24 ± 0.10 | 0.70 ± 0.10 | 67.41 ± 6.03 |
Sphagnum Species | Cell Width (µm) | Chloroplast No. | ||
---|---|---|---|---|
Micropropagated | Wild-Sourced | Micropropagated | Wild-Sourced | |
S. capillifolium | 7.14 ± 0.91 | 6.65 ± 0.65 | 16.6 ± 2.7 * | 10.6 ± 1.1 |
S. fallax | 7.14 ± 0.83 | 6.96 ± 0.39 | 11.1 ± 2.7 | 7.1 ± 1.7 |
S. medium/divinum | 9.86 ± 0.72 | 10.10 ± 1.36 | 16.7 ± 2.6 | 13.1 ± 2.9 |
S. palustre | 12.37 ± 0.93 | 11.05 ± 1.24 | 24.5 ± 3.7 * | 19.8 ± 4.3 |
S. papillosum | 9.88 ± 0.59 | 9.84 ± 0.31 | 25.6 ± 3.9 ** | 12.2 ± 2.2 |
S. squarrosum | 5.65 ± 0.59 * | 7.30 ± 1.36 | 11.9 ± 2.4 | 15.1 ± 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keightley, A.T.; Field, C.D.; Rowson, J.G.; Caporn, S.J.M. Comparative Photosynthetic Capacity, Respiration Rates, and Nutrient Content of Micropropagated and Wild-Sourced Sphagnum. Int. J. Plant Biol. 2024, 15, 959-978. https://doi.org/10.3390/ijpb15040068
Keightley AT, Field CD, Rowson JG, Caporn SJM. Comparative Photosynthetic Capacity, Respiration Rates, and Nutrient Content of Micropropagated and Wild-Sourced Sphagnum. International Journal of Plant Biology. 2024; 15(4):959-978. https://doi.org/10.3390/ijpb15040068
Chicago/Turabian StyleKeightley, Anna T., Chris D. Field, James G. Rowson, and Simon J. M. Caporn. 2024. "Comparative Photosynthetic Capacity, Respiration Rates, and Nutrient Content of Micropropagated and Wild-Sourced Sphagnum" International Journal of Plant Biology 15, no. 4: 959-978. https://doi.org/10.3390/ijpb15040068
APA StyleKeightley, A. T., Field, C. D., Rowson, J. G., & Caporn, S. J. M. (2024). Comparative Photosynthetic Capacity, Respiration Rates, and Nutrient Content of Micropropagated and Wild-Sourced Sphagnum. International Journal of Plant Biology, 15(4), 959-978. https://doi.org/10.3390/ijpb15040068