In Vitro Inhibition of Rhizoctonia oryzae-sativae Using Bacterial Strains as a Sustainable Alternative for Controlling Sheath Blight in Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbiological Material
2.2. Reviving of Bacterial Strains
2.3. Determination of the Inhibitory Effect of Volatile Secondary Metabolites on the Growth of R. oryzae-sativae
2.4. Determination of the Inhibitory Effect of the Isolated Bacterial Strains on the Growth of R. oryzae-sativae
2.5. Evaluation of the Inhibitory Activity of Supernatants (Soluble Secondary Metabolites) Produced by Bacterial Strains on the Growth of R. oryzae-sativae
2.6. Molecular Characterization of R. oryzae-sativae
2.7. Statistical Analysis
3. Results
3.1. Inhibitory Activity of Volatile Secondary Metabolites on R. oryzae-sativae Using the ‘Sealed Plate’ Method
3.2. Inhibitory Effect of the Isolated Bacterial Strains on the Growth of R. oryzae-sativae
3.3. Inhibitory Activity of Supernatants (Soluble Secondary Metabolites) Produced by Bacterial Strains on the Growth of R. oryzae-sativae
3.4. Identity of R. oryzae-sativae Through rDNA-ITS Sequencing and Phylogenetic Analysis
4. Discussion
4.1. Inhibition of R. oryzae-sativae Growth by Volatile Secondary Metabolites
4.2. Assessment of the Inhibitory Activity of Isolated Bacterial Strains on the Growth of R. oryzae-sativae
4.3. Perspectives on the Effects of Secondary Metabolites on the Growth of R. oryzae-sativae
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MIDAGRI [Ministerio de Agricultura y Riego]. Informe del Arroz. Perfil Productivo y Competitivo de los Cultivos del Sector. 2023. Available online: https://app.powerbi.com/view?r=eyJrIjoiNzEzNTU2MmUtY2EzZC00YjQ2LTg5YzUtYzJjODRhZjg5NGY5IiwidCI6IjdmMDg0NjI3LTdmNDAtNDg3OS04OTE3LTk0Yjg2ZmQzNWYzZiJ9 (accessed on 21 February 2024).
- Ou, S.H. Rice Diseases; Commonwealth Mycological Institute: London, UK, 1985; p. 380. Available online: https://books.google.es/books?hl=es&lr=&id=-k3mewv9nMoC&oi=fnd&pg=PR1&dq=Rice+Diseases&ots=ZnjYwzue9e&sig=nss24ZRf06ZWyBjhKEnq_ZqtKVg (accessed on 25 September 2024).
- Danish, M.; Shahid, M.; Altaf, M.; Tyagi, A.; Ali, S. Plant growth-promoting rhizobacteria and biocontrol agents triggered plant defence responses against phytopathogenic fungi and improved rice growth. Physiol. Mol. Plant Pathol. 2024, 133, 102337. [Google Scholar] [CrossRef]
- Kumar, V.; Jain, L.; Jain, S.K.; Chaturvedi, S.; Kaushal, P. Bacterial endophytes of Rice (Oryza sativa L.) and their potential for plant growth promotion and antagonistic activities. S. Afr. J. Bot. 2020, 134, 50–63. [Google Scholar] [CrossRef]
- Lore, J.S.; Jain, J.; Hunjan, M.S.; Gargas, G.; Mangat, G.S.; Sandhu, J.S. Virulence spectrum and genetic structure of Rhizoctonia isolates associated with rice sheath blight in the northern region of India. Eur. J. Plant Pathol. 2015, 143, 847–860. [Google Scholar] [CrossRef]
- Wang, X.; Wang, A.; Chen, Z.; Wei, L. Phytotoxin of rice aggregate sheath spot pathogen Rhizoctonia oryzae-sativae and its biological activities. Can. J. Microbiol. 2021, 67, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Shamim, M.; Kumar, M.; Kumar, S.; Srivastava, D.; Ranjan, T.; Kesari, R.; Husain, R.; Kumar, V.; Nayyer, M.A.; Jha, V.B. Economical and Environmental Impact of Rice Fungal Diseases on Global Food Security. In Fungal Diseases of Rice and Their Management; Apple Academic Press: New York, NY, USA, 2024; pp. 1–30. [Google Scholar] [CrossRef]
- Tudi, M.; Yang, L.; Wang, L.; Lv, J.; Gu, L.; Li, H.; Peng, W.; Yu, Q.; Rua, H.; Li, Q.; et al. Environmental and human health hazards from chlorpyrifos, pymetrozine and avermectin application in China under a climate change scenario: A comprehensive review. Agriculture 2023, 13, 1683. [Google Scholar] [CrossRef]
- Doni, F.; Suhaimi, N.S.M.; Mispan, M.S.; Fathurrahman, F.; Marzuki, B.M.; Kusmoro, J.; Uphoff, N. Microbial Contributions for Rice Production: From Conventional Crop Management to the use of ‘Omics’ Technologies. Int. J. Mol. Sci. 2022, 23, 737. [Google Scholar] [CrossRef]
- Saranraj, P.; Sayyed, R.Z.; Kokila, M.; Sudha, A.; Sivasakthivelan, P.; Durga Debi, S.; Naz, R.; Humaira, Y. Plant Growth-Promoting and Biocontrol Metabolites Produced by Endophytic Pseudomonas fluorescence. In Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion; Springer: Cham, Switzerland, 2022; pp. 349–381. [Google Scholar] [CrossRef]
- Meng, X.J.; Medison, R.G.; Cao, S.; Wang, L.Q.; Cheng, S.; Tan, L.T.; Sun, Z.X.; Zhou, Y. Isolation, identification, and biocontrol mechanisms of endophytic Burkholderia vietnamiensis C12 from Ficus tikoua Bur against Rhizoctonia solani. Biol. Control 2023, 178, 105132. [Google Scholar] [CrossRef]
- Heo, Y.; Lee, Y.; Balaraju, K.; Jeon, Y. Characterization and evaluation of Bacillus subtilis GYUN-2311 as a biocontrol agent against Colletotrichum spp. on apple and hot pepper in Korea. Front. Microbiol. 2024, 14, 1322641. [Google Scholar] [CrossRef]
- Andric, S.; Rigolet, A.; Argüelles Arias, A.; Steels, S.; Hoff, G.; Balleux, G.; Ongena, L.; Höfte, M.; Meyer, T.; Orgena, M. Plant-associated Bacillus mobilizes its secondary metabolites upon perception of the siderophore pyochelin produced by a Pseudomonas competitor. ISME J. 2022, 17, 263–275. [Google Scholar] [CrossRef]
- Abdel-Nasser, A.; Hathout, A.S.; Badr, A.N.; Barakat, O.S.; Fathy, H.M. Extraction and characterization of bioactive secondary metabolites from lactic acid bacteria and evaluating their antifungal and antiaflatoxigenic activity. Biotechnol. Rep. 2023, 38, e00799. [Google Scholar] [CrossRef]
- Valdez-Nuñez, R.A.; Ríos-Ruiz, W.F.; Ormeño-Orrillo, E.; Torres-Chávez, E.E.; Torres-Delgado, J. Caracterización genética de bacterias endofíticas de arroz (Oryza sativa L.) con actividad antimicrobiana contra Burkholderia glumae. Rev. Argent Microbiol. 2020, 52, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Ruiz, W.F.; Tuanama-Reátegui, C.; Huamán-Córdova, G.; Valdez-Nuñez, R.A. Co-Inoculation of Endophytes Bacillus siamensis TUR07-02b and Priestia megaterium SMBH14-02 Promotes Growth in Rice with Low Doses of Nitrogen Fertilizer. Plants 2023, 12, 524. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhu, H.; Ren, Z.; Li, X.; Zhong, J.; Liu, E. Efficacy of Bacillus tequilensis strain JN-369 to biocontrol of rice blast and enhance rice growth. Biol. Control 2021, 160, 104652. [Google Scholar] [CrossRef]
- Shahid, M.; Zeyad, M.T.; Syed, A.; Singh, U.B.; Mohamed, A.; Bahkali, A.H.; Elgorban, A.M.; Pichtel, J. Stress-tolerant endophytic isolate Priestia aryabhattai BPR-9 modulates physio-biochemical mechanisms in wheat (Triticum aestivum L.) for enhanced salt tolerance. Int. J. Environ. Res. Public Health 2022, 19, 10883. [Google Scholar] [CrossRef] [PubMed]
- Shinjo, R.; Tanaka, A.; Sugiura, D.; Susuki, T.; Uesaka, K.; Takebayashi, Y.; Kojima, M.; Sakakibara, H.; Takemoto, D.; Kondo, M. Comprehensive analysis of the mechanisms underlying enhanced growth and root N acquisition in rice by the endophytic diazotroph, Burkholderia vietnamiensis RS1. Plant Soil 2020, 450, 537–555. [Google Scholar] [CrossRef]
- Fernando, W.D.; Ramarathnam, R.; Krishnamoorthy, A.S.; Savchuk, S.C. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 2005, 37, 955–964. [Google Scholar] [CrossRef]
- Memenza-Zegarra, M.; Zúñiga-Dávila, D. Isolation and Characterization of Antifungal Secondary Metabolites Produced by Rhizobacteria from Common Bean. In Microbial Probiotics for Agricultural Systems. Sustainability in Plant and Crop Protection; Zúñiga-Dávila, D., González-Andrés, F., Ormeño-Orillo, E., Eds.; Springer: Cham, Switzerland, 2019; pp. 141–153. [Google Scholar] [CrossRef]
- Kalendar, R.; Boronnikova, S.; Seppänen, M. Isolation and Purification of DNA from Complicated Biological Samples. In Molecular Plant Taxonomy. Methods in Molecular Biology; Besse, P., Ed.; Humana: New York, NY, USA, 2021; Volume 2222, pp. 57–67. [Google Scholar] [CrossRef]
- Johanson, A.; Turner, H.C.; McKay, G.J.; Brown, A.E. A PCR-based method to distinguish fungi of the rice sheath-blight complex, Rhizoctonia solani, R. oryzae and R. oryzae-sativae. FEMS Microbiol. Lett. 1998, 162, 289–294. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Vu, D.; Groenewald, M.; De Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Verkley, G.J.M. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef]
- Loor, M.A.V.; Cabrera, A.B.; Coello, D.V.; Mora, M.L.; Aragón, A.R.; de Villegas, L.M.D. Actividad antifúngica de compuestos volátiles producidos por especies endófitas de Bacillus sobre Moniliophthora roreri H.C Evan et al. Rev. Prot. Veg. 2021, 36, 1. [Google Scholar]
- Patel, J.K.; Mistry, Y.; Soni, R.; Jha, A. Evaluation of Antifungal Activity of Endophytic Bacillus spp. and Identification of Secondary Metabolites Produced against the Phytopathogenic Fungi. Curr. Microbiol. 2024, 81, 128. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Cabrera, B.E.; Delgado-Alvarado, A.; Salgado-Garciglia, R.; López-Valdez, L.G.; Sánchez-Herrera, L.M.; Montiel-Montoya, J.; Soto-Hernández, M.; Basurto-González, L.M.; Barrales-Cureño, H.J. Volatile organic compound produced by bacteria: Characterization and application. In Bacterial Secondary Metabolites; Elsevier: Amsterdam, The Netherlands, 2024; pp. 177–196. [Google Scholar] [CrossRef]
- Gogoi, P.; Kamle, M.; Kumar, P. Endophytic Bacteria Associated with Rice: Role in Biotic and Abiotic Stress Protection and Plant Growth Promotions. World J. Environ. Biosci. 2023, 12, 1–9. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S.U.; Khan, W.U.; Saleh, T.A.; Khan, M.H.U.; Ullah, S.; Ali, A.; Ikram, M. Antagonist effects of strains of Bacillus spp. against Rhizoctonia solani for their protection against several plant diseases: Alternatives to chemical pesticides. C. R. Biol. 2019, 342, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Begum, F.; Rabaan, A.A.; Aljeldah, M.; Al Shammari, B.R.; Alawfi, A.; Alshengeti, A.; Sulaimán, T.; Khan, A. Classification and multifaceted potential of secondary metabolites produced by Bacillus subtilis group: A comprehensive review. Molecules 2023, 28, 927. [Google Scholar] [CrossRef]
- Devi, S.; Sharma, S.; Tiwari, A.; Bhatt, A.K.; Singh, N.K.; Singh, M.; Kaushalendra; Kumar, A. Screening for Multifarious Plant Growth Promoting and Biocontrol Attributes in Bacillus Strains Isolated from Indo Gangetic Soil for Enhancing Growth of Rice Crops. Microorganisms 2023, 11, 1085. [Google Scholar] [CrossRef]
- Song, D.; Chen, G.; Liu, S.; Khaskheli, M.A.; Wu, L. Complete genome sequence of Burkholderia sp. JP2-270, a rhizosphere isolate of rice with antifungal activity against Rhizoctonia solani. Microb. Pathog. 2019, 127, 1–6. [Google Scholar] [CrossRef]
- Saxena, A.K.; Kumar, M.; Chakdar, H.; Anuroopa, N.; Bagyaraj, D.J. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 2020, 128, 1583–1594. [Google Scholar] [CrossRef]
- Parés-Farrás, R.; Juárez-Giménes, A. Metabolitos secundarios: Composición, producción y actividad. In Bioquímica de los microorganismos; Editorial Reverté: Barcelona, Spain, 2020. [Google Scholar]
- Mohanrasu, K.; Rao, R.G.R.; Dinesh, G.H.; Zhang, K.; Prakash, G.S.; Song, D.P.; Muniyasamy, S.; Pugazhendhi, A.; Jeyakanthan, J.; Arun, A. Optimization of media components and culture conditions for polyhydroxyalkanoates production by Bacillus megaterium. Fuel 2020, 271, 117522. [Google Scholar] [CrossRef]
- Robles-Huízar, M.S.J.; De La Torre-Zavala, S.; De La Garza-Ramos, M.A.; Galan-Wong, L.J. Antimicrobial activity of secondary metabolites obtained with different carbon sources at different stages of the Pseudomonas growth curve isolated from Fresnillo, Zacatecas, México mineral soils. Afr. J. Bacteriol. Res. 2017, 9, 30–36. Available online: https://academicjournals.org/journal/JBR/article-abstract/045B41365844 (accessed on 25 September 2024).
- Jawan, R.; Abbasiliasi, S.; Tan, J.S.; Mustafa, S.; Halim, M.; Ariff, A.B. Influence of Culture Conditions and Medium Compositions on the Production of Bacteriocin-Like Inhibitory Substances by Lactococcus lactis Gh1. Microorganisms 2020, 8, 1454. [Google Scholar] [CrossRef]
- Luo, X.; Chen, Y.; Wang, J.; Liu, L.; Zhao, Y.; Jiang, Z.; Wang, Y.; Li, Z.; Fu, L.; Cui, Z. Biocontrol potential of Burkholderia sp. BV6 against the rice blast fungus Magnaporthe oryzae-sativae. J. Appl. Microbiol. 2022, 133, 883–897. [Google Scholar] [CrossRef]
- Alviz, M.L.; Pérez, G.A.; Pérez-Cordero, A. Efecto inhibitorio de compuestos tipo metabolitos de bacterias endófitas contra Colletotrichum gloeosporioides y Burkholderia glumae. Rev. Colomb. Cienc. Anim. 2017, 9 (Suppl. S1), 18–25. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Z.; Zhao, Q.; Yang, X.; Li, Y.; Zhou, H.; Zhao, M.; Zheng, H. Whole-genome analysis revealed the growth-promoting and biological control mechanism of the endophytic bacterial strain Bacillus halotolerans Q2H2, with strong antagonistic activity in potato plants. Front. Microbiol. 2024, 14, 1287921. [Google Scholar] [CrossRef] [PubMed]
Rice Endophytic Bacteria | Strains | Origin | Accession Numbers |
---|---|---|---|
Bacillus tequilensis | SMNCT17-02 | San Martin | MK449440 |
Priestia aryabhattai | SMNCH17-07 | San Martin | MK449444 |
Burkholderia vietnamiensis | TUR04-03 | Tumbes | MK449433 |
Burkholderia vietnamiensis | TUR04-01 | Tumbes | MK449435 |
Bacterial Strains | Growth Area of Rhizoctonia oryzae-sativae | |
---|---|---|
TSB (cm2) | MM (cm2) | |
Bacillus tequilensis SMNCT17-02 | 8.54 ± 0.28 b | 5.53 ± 0.26 a |
Priestia aryabhattai SMNCH17-07 | 11.76 ± 0.14 c | 13.89 ± 0.02 d |
Burkholderia vietnamiensis TUR04-01 | 30.20 ± 0.07 f | 32.83 ± 0.03 g |
Burkholderia vietnamiensis TUR04-03 | 48.88 ± 0.10 h | 26.87 ± 0.64 e |
Treatments (Bacterial Strains) | Growth Area of R. oryzae-sativae in MM (cm2) |
---|---|
Bacillus tequilensis SMNCT17-02 | 44.07 ± 0.01 a |
Priestia aryabhattai SMNCH17-07 | 47.67 ± 0.02 b |
Burkholderia vietnamiensis TUR04-01 | 55.18 ± 0.00 e |
Burkholderia vietnamiensis TUR04-03 | 50.07 ± 0.00 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiñones-Pezo, L.C.; Ríos-Ruiz, W.F.; Pompa-Vásquez, D.F.; Rios-Reategui, F.; Hernández-Amasifuen, A.D.; Corazón-Guivin, M.A. In Vitro Inhibition of Rhizoctonia oryzae-sativae Using Bacterial Strains as a Sustainable Alternative for Controlling Sheath Blight in Rice. Int. J. Plant Biol. 2024, 15, 988-1000. https://doi.org/10.3390/ijpb15040070
Quiñones-Pezo LC, Ríos-Ruiz WF, Pompa-Vásquez DF, Rios-Reategui F, Hernández-Amasifuen AD, Corazón-Guivin MA. In Vitro Inhibition of Rhizoctonia oryzae-sativae Using Bacterial Strains as a Sustainable Alternative for Controlling Sheath Blight in Rice. International Journal of Plant Biology. 2024; 15(4):988-1000. https://doi.org/10.3390/ijpb15040070
Chicago/Turabian StyleQuiñones-Pezo, Liz Cheril, Winston Franz Ríos-Ruiz, Danny Fran Pompa-Vásquez, Franz Rios-Reategui, Angel David Hernández-Amasifuen, and Mike Anderson Corazón-Guivin. 2024. "In Vitro Inhibition of Rhizoctonia oryzae-sativae Using Bacterial Strains as a Sustainable Alternative for Controlling Sheath Blight in Rice" International Journal of Plant Biology 15, no. 4: 988-1000. https://doi.org/10.3390/ijpb15040070
APA StyleQuiñones-Pezo, L. C., Ríos-Ruiz, W. F., Pompa-Vásquez, D. F., Rios-Reategui, F., Hernández-Amasifuen, A. D., & Corazón-Guivin, M. A. (2024). In Vitro Inhibition of Rhizoctonia oryzae-sativae Using Bacterial Strains as a Sustainable Alternative for Controlling Sheath Blight in Rice. International Journal of Plant Biology, 15(4), 988-1000. https://doi.org/10.3390/ijpb15040070