Microbiomes-Plant Interactions and K-Humate Application for Salinity Stress Mitigation and Yield Enhancement in Wheat and Faba Bean in Egypt’s Northeastern Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Microbial Inoculation
2.1.1. Cyanobacteria (Cyano)
2.1.2. Yeast (Y)
2.1.3. Arbuscular Mycorrhizal Fungi (AMF)
2.2. K-Humate Preparation (K-H)
2.3. In Vitro and Field Trials
2.3.1. In Vitro Experiment
2.3.2. Field Experiment
Experimental Location and Soil Analysis
2.4. Measurements
2.4.1. Soil Microbial Enzymes Analysis
2.4.2. Oxidative Enzymes Bioassay
2.4.3. Soil Biological Activity
2.4.4. Crop Components and Some Chemical Analyses
2.4.5. Statistical Analysis
3. Results
3.1. Effect of Microbiomes-Plant Interactions and K-Humate on Wheat and Faba Bean Seedlings under Salinity Stress In Vitro
3.1.1. Seedling Growth
Shoot Length
Root Length
Root-to-Shoot Length Ratio
3.1.2. Plant Antioxidant Enzymes
Catalase (CAT) Activity
Peroxidase (POD) Activity
3.1.3. Soil Enzymes
Dehydrogenase (DHA-ase) Activity
Nitrogenase Activity (N-ase)
3.2. Effect of Exogenously Applied Microbiomes and K-Humate on Alleviating Salinity Stress in Wheat and Faba Bean in the Field Trial
3.2.1. Soil Microbial Activity
AMF Colonization Rates and Spore Density
Cyanobacterial Counts
Bacterial Counts
Yeast Counts
Soil Enzyme Activity
3.3. Effects of Microbiomes and K-Humate on Wheat and Faba Bean Yield and Yield Components under Saline Soil Conditions
3.3.1. Faba Bean
3.3.2. Wheat
3.4. Effect of Different Treatments on Nutrient Composition, Protein Content, and K+/Na+ Ratio in Wheat and Faba Bean
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minhas, P.S.; Ramos, T.B.; Ben-Gal, A.; Pereira, L.S. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agric. Water Manag. 2020, 227, 105832. [Google Scholar] [CrossRef]
- Negm, M.E.; El-Kallawy, W.; Hefeina, A. Comparative study on rice germination and seedling growth under salinity and drought stresses. Environ. Biodivers. Soil Secur. 2019, 3, 109–117. [Google Scholar] [CrossRef]
- Ouda, S.; Zohry, A.E.H. Water Scarcity Leads to Food Insecurity. In Deficit Irrigation; Springer: Cham, Switzerland, 2020; pp. 1–13. [Google Scholar] [CrossRef]
- Abdellatif, K.F.; El Absawy, A.; Zakaria, A.M. Drought stress tolerance of faba bean as studied by morphological traits and seed storage protein pattern. J. Plant Stud. 2012, 1, 47–54. [Google Scholar] [CrossRef]
- Mohamed, A.I. Irrigation water quality evaluation In El-Salam canal project. Int. J. Eng. Appl. Sci. 2013, 3, 21–28. [Google Scholar]
- Abdalla, A.; Stellmacher, T.; Becker, M. Trends and Prospects of Change in Wheat Self-Sufficiency in Egypt. Agriculture 2023, 13, 7. [Google Scholar] [CrossRef]
- Khalil, Y.M.M.; Abd El-Ghani, S.S.; Mansour, T.G.I. A standard analysis of Egyptian foreign trade structure for wheat. Bull. Natl. Cent. 2020, 44, 20. [Google Scholar] [CrossRef]
- Royo, A.; Abió, D. Salt tolerance in durum wheat cultivars. Span. J. Agric. Res. 2003, 1, 27–35. [Google Scholar] [CrossRef]
- Vogelsang-O’Dwyer, M.; Petersen, I.L.; Joehnke, M.S.; Sørensen, J.C.; Bez, J.; Detzel, A.; Busch, M.; Krueger, M.; O’Mahony, J.A.; Arendt, E.K.; et al. Comparison of faba bean protein ingredients produced using dry fractionation and isoelectric precipitation: Techno-functional, nutritional and environmental performance. Foods 2020, 9, 322. [Google Scholar] [CrossRef]
- Mass, E.V.; Hoffman, G.J. Crop salt tolerance: Current assessment. Am. Soc. Civ. Eng. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Al-Ashkar, I.; Alderfasi, A.; Ben Romdhane, W.; Seleiman, M.F.; El-Said, R.A.; Al-Doss, A. Morphological and genetic diversity within salt tolerance detection in eighteen wheat genotypes. Plants 2003, 9, 287. [Google Scholar] [CrossRef]
- Inbaraj, M.P. Plant-Microbe Interactions in Alleviating Abiotic Stress—A Mini Review. Front. Agron. 2021, 3, 667903. [Google Scholar] [CrossRef]
- Alharbi, K.; Rashwan, E.; Hafez, E.; Omara, A.E.-D.; Mohamed, H.H.; Alshaal, T. Potassium Humate and Plant Growth-Promoting Microbes Jointly Mitigate Water Deficit Stress in Soybean Cultivated in Salt-Affected Soil. Plants 2022, 11, 3016. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, J.; Daliakopoulos, I.N.; del Moral, F.; Hueso, J.J.; Tsanis, I.K. A review of soil-improving cropping systems for soil salinization. Agronomy 2019, 9, 295. [Google Scholar] [CrossRef]
- Rippka, R.; Deruelles, J.; Waterburg, J.B.; Herdman, M.; Stanier, R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteira. J. Gen. Microbiol. 1979, 111, 1–16. [Google Scholar]
- Zarrouk, C. Contribution á L’étuded’unecyanophycée. Influence de Divers Facteurs Physiques et Chimiquessur la Croissance et la Photosynthése de Spirulina Maxima (Setch. et Gardner) Geitler. Ph. D. Thesis, University of Paris, Paris, France, 1966. [Google Scholar]
- Vonshak, A. Laboratory techniques for the cultivation of microalgae. In Handbook of Microalgal Mass Culture; Richmond, A., Ed.; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- Leduy, A.; Therien, N. An improved method for optical density measurement of semimcro blue-green alga Spirulina maxima. Biotechnol. Bioeng. 1977, 19, 1219–1224. [Google Scholar] [CrossRef]
- Manual, D. Dehydrated Culture Media and Reagents for Microbiology; Laboratories Incorporated: Detroit, MI, USA, 1985; Volume 48232, p. 621. [Google Scholar]
- Sanchez-Monedero, M.A.; Roid, A.; Cegarra, J.; Bernal, M.P.; Paredes, C. Effects of HCL-HF purification treatment on chemical composition and structure of humic acids. Eur. J. Soil Sci. 2002, 53, 375–381. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Keeny, D.R. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Glathe, H.; Thalmann, A. Über die mikrobielle Aktivität und ihre Beziehungen zu Fruchtbarkeitsmerkmalen einiger Ackerböden unter besonderer Berücksichtigung der Dehydrogenaseaktivität (TTC-Reduktion). Zentralblatt Bakteriol. Abt. II 1970, 124, 1–23. [Google Scholar]
- Dilworth, M.J. Acetylene reduction by nitrogen-fxing preparations from Clostridium pasteurianum. Biochim. Biophys. Acta 1966, 127, 285–294. [Google Scholar] [CrossRef]
- Allam, A.I.; Hollis, J.P. Sulphide Inhibition of Oxidases in Rice Roots. Phytopathology 1972, 62, 634–639. [Google Scholar] [CrossRef]
- Góth, L. A simple method for determination of serum CAT activity and revision of reference range. Clin. Chim. Acta 1991, 196, 143–151. [Google Scholar] [CrossRef]
- Casida, L.E.; Klien, D.A.; Suntoro, T. Soil dehydrogenase activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 18th ed.; American Public Health Association (APHA), American Water Works Association (AWWA) and Water Pollution Control Federation (WPCF): Washington, DC, USA, 1992. [Google Scholar]
- Stanier, R.Y.; Kunisawa, R.; Mandel, M.; Cohen-Bazire, G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 1971, 35, 171–205. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, I.W.; Barraque, L. Low levels of fixed N required for free-living organisms from rice roots. Nature 1979, 277, 565–566. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.A. Improved Procedures for Clearing Roots and Staining Parasitic and Vesicular-Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Gerdemann, J.W.; Nicolson, T.H. Spores of Mycorrhizal Endogone Species Extracted from Soil by Wet Sieving and Decanting. Trans. Br. Mycol. Soc. 1963, 46, 235–244. [Google Scholar] [CrossRef]
- Van Schouwenburg, L.C.; Walinga, I. The rapid determination of phosphorus in the presence of arsenic, silicon and germanium. Anal. Chim. Acta 1967, 37, 269–271. [Google Scholar] [CrossRef]
- Kay, J.A. Farm Management, 2nd ed.; Mc Graw-Hill: New York, NY, USA, 1986. [Google Scholar]
- Gomez, M.A.; Gomez, A.A. Statistical Procedure for Agricultural Research, 2nd ed.; John Wile and Sons: New York, NY, USA, 1993; p. 680. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef]
- Azzam, C.R.; Al-Taweel, S.K.; Abdel-Aziz, R.M.; Rabea, K.M.; Abou-Sreea, A.I.B.; Rady, M.M.; Ali, E.F. Salinity Effects on Gene Expression, Morphological, and Physio-Biochemical Responses of Stevia rebaudiana Bertoni In Vitro. Plants 2021, 10, 820. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Elucidating the molecular mechanisms mediating plant salt stress responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef]
- Anjum, N.A.; Sharma, P.; Gill, S.S.; Hasanuzzaman, M.; Khan, E.A.; Kachhap, K.; Mohamed, A.A.; Thangavel, P.; Devi, G.D.; Vasudhevan, P.; et al. Catalase and ascorbate peroxidase-representative H2O2-detoxifying heme enzymes in plants. Environ. Sci. Pollut. Res. Int. 2016, 23, 19002–19029. [Google Scholar] [CrossRef] [PubMed]
- Asada, K. The water–water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Biol. 1999, 50, 601–639. [Google Scholar] [CrossRef] [PubMed]
- Abogadallah, G.M.; Serag, M.M.; Quick, W.P. Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild-type parents under salt stress. Physiol. Plant 2010, 138, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Liu, Y.; Xun, W.; Chen, L.; Xu, Z.; Zhang, N.; Feng, H.; Zhang, Q.; Zhang, R. Rhizosphere microbes enhance plant salt tolerance: Toward crop production in saline soil. Comput. Struct. Biotechnol. J. 2022, 20, 6543–6551. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumawat, K.C.; Sharma, B.; Nagpal, S.; Kumar, A.; Tiwari, S.; Nair, R.M. Plant growth-promoting rhizobacteria: Salt stress alleviators to improve crop productivity for sustainable agriculture development. Front. Plant Sci. 2023, 13, 1101862. [Google Scholar] [CrossRef]
- Munir, N.; Hanif, M.; Abideen, Z.; Sohail, M.; El-Keblawy, A.; Radicetti, E.; Mancinelli, R.; Haider, G. Mechanisms and Strategies of Plant Microbiomes Interactions to Mitigate Abiotic Stresses. Agronomy 2022, 12, 2069. [Google Scholar] [CrossRef]
- Abou-Sreea, A.I.B.; Azzam, C.R.; Al-Taweel, S.K.; Abdel-Aziz, R.M.; Belal, H.E.E.; Rady, M.M.; Abdel-Kader, A.A.S.; Majrashi, A.; Khaled, K.A.M. Natural Biostimulant Attenuates Salinity Stress Effects in Chili Pepper by Remodeling Antioxidant, Ion, and Phytohormone Balances, and Augments Gene Expression. Plants 2021, 10, 2316. [Google Scholar] [CrossRef]
- Azzam, C.R.; Zaki, S.N.S.; Bamagoos, A.A.; Rady, M.M.; Alharby, H.F. Alharby. Soaking Maize Seeds in Zeatin-Type Cytokinin Biostimulators Improves Salt Tolerance by Enhancing the Antioxidant System and Photosynthetic Efficiency. Plants 2022, 11, 1004. [Google Scholar] [CrossRef]
- Zhu, J.K. Plant salt tolerance. Trends Plant Sci. 2001, 6, 66–71. [Google Scholar] [CrossRef]
- Jisha, S.; Sabu, K.K. Multifunctional aspects of Piriformospora indica in plant endosymbiosis. Mycology 2019, 10, 182–190. [Google Scholar] [CrossRef]
- Zorb, C.; Geilfus, C.M.; Dietz, K.J.; Ludwig-Müller, J. Salinity and crop yield. Plant Biol. 2019, 21, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Han, H.S.; Lee, K.D. Plant Growth Promoting Rhizobacteria Effect on Antioxidant Status, Photosynthesis, Mineral Uptake and Growth of Lettuce under Soil Salinity. Res. J. Agric. Biol. Sci. 2005, 1, 210–215. [Google Scholar]
- Kumar, A.; Sharma, S.; Mishra, S. Influence of Arbuscular Mycorrhizal (AM) Fungi and Salinity on Seedling Growth, Solute Accumulation, and Mycorrhizal Dependency of Jatropha curcas L. J. Plant Growth Regul. 2010, 29, 297–306. [Google Scholar] [CrossRef]
- Evelin, H.; Kapoor, R.; Giri, B. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann. Bot. 2009, 104, 1263–1280. [Google Scholar] [CrossRef]
- Wahab, A.; Muhammad, M.; Munir, A.; Abdi, G.; Zaman, W.; Ayaz, A.; Khizar, C.; Reddy, S.P.P. Role of Arbuscular Mycorrhizal Fungi in Regulating Growth, Enhancing Productivity, and Potentially Influencing Ecosystems under Abiotic and Biotic Stresses. Plants 2023, 12, 3102. [Google Scholar] [CrossRef]
- Chandrasekaran, M. A meta-analytical approach on arbuscular mycorrhizal fungi inoculation efficiency on plant growth and nutrient uptake. Agriculture 2020, 10, 370. [Google Scholar] [CrossRef]
- Torun, H.; Toprak, B. Arbuscular Mycorrhizal Fungi and K-Humate Combined as Biostimulants: Changes in Antioxidant Defense System and Radical Scavenging Capacity in Elaeagnus angustifolia. J. Soil Sci. Plant Nutr. 2020, 20, 2379–2393. [Google Scholar] [CrossRef]
- Ishka, M.R.; Sussman, H.; Hu, Y.; Daghash, M.; Alqahtani, M.D.; Craft, E.; Sicat, R.; Wang, M.; Yu, L.; AitHaddou, R.; et al. Natural variation in salt-induced changes in root:shoot ratio reveals SR3G as a negative regulator of root suberization and salt resilience in Arabidopsis. eLife 2024, 13, RP98896. [Google Scholar] [CrossRef]
- Nawaz, T.; Saud, S.; Gu, L.; Khan, I.; Fahad, S.; Zhou, R. Cyanobacteria harnessing the power of microorganisms for plant growth promotion, stress alleviation, and phytoremediation in the era of sustainable agriculture. Plant Stress 2024, 11, 100399. [Google Scholar] [CrossRef]
- Nassar, A.H.; El-Tarabily, K.A.; Sivasithamparam, K. Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol. Fertil. Soils 2005, 42, 97–108. [Google Scholar] [CrossRef]
- Mohan, A.; Kumar, B.; Nath, D. Cyanobacterial Consortium in the Improvement of Maize Crop. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 264–274. [Google Scholar]
- Ali, K.M.; Mostafa, S.M. Evaluation of potassium humate and Spirulina platensis as bioorganic fertilizer for sesame plants grown under salinity stress. Egypt. J. Res. 2009, 87, 369–388. [Google Scholar]
- Mostafa, S.S.; El-Kheir, A.W.A.; Shehata, H.S. Effect of plant growth promoting substances from rhizo- and cyano-bacteria on sugar beet growth, yield and yield quality in saline soil. Int. J. Acad. Res. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Badawi, H.; Soha, S.M.; Abo El-Rakha, S.E.; Mostafa, A.A.; Fayez, M. Cereal-PGPR interweave in salt-affected environments: Towards plant persistence and growth promotion. Int. J. Sci. Eng. Res. 2016, 7, 1774–1814. [Google Scholar]
- Morais, P.B.; Martins, M.B.; Hagler, A.N.; Mendonça-Hagler, L.C.; Klaczko, L.B. Yeast succession in the Amazon fruit Parahancorniaamapa as resource partitioning among Drosophila spp. Appl. Environ. Microbiol. 1995, 61, 4251–4257. [Google Scholar] [CrossRef]
- Ganter, P.F. Yeast and invertebrate associations. In Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook; Rosa, C.A., Peter, G., Eds.; Springer: Heidelberg, Germany, 2006; pp. 303–370. [Google Scholar]
- Sampedro, I.; Aranda, E.; Scervino, J.M.; Fracchia, S.; García-Romera, I.; Ocampo, J.A.; Godeas, A. Improvement by soil yeasts of arbuscular mycorrhizal symbiosis of soybean (Glycine max) colonized by Glomus mosseae. Mycorrhiza 2004, 14, 229–234. [Google Scholar] [CrossRef]
- Boby, V.U.; Balakrishna, A.N.; Bagyaroj, D.J. Effect of combined inoculation of an AM fungus with soil yeasts on growth and nutrition of cowpea in sterilized soil. World J. Agric. Sci. 2007, 3, 423–429. [Google Scholar]
- Hesham, A.; Mohamed, H.M. Molecular genetic identification of yeast strains isolation from Egyption soils for solubilization of inorganic phosphates and growth promotion of corn plants. J. Microbiol. Biotechnol. 2011, 21, 55–61. [Google Scholar] [CrossRef]
- Olivares, F.L.; Busato, J.G.; de Paula, A.M.; da Silva Lima, L.; Aguiar, N.O.; Canellas, L.P. Plant growth promoting bacteria and humic substances: Crop promotion and mechanisms of action. Chem. Biol. Technol. Agric. 2017, 4, 1–13. [Google Scholar] [CrossRef]
- Kthiri, Z.; Ben Jabeur, M.; Machraoui, M.; Gargouri, S.; Hiba, K.; Hamada, W. Coating seeds with Trichoderma strains promotes plant growth and enhance the systemic resistance against Fusarium crown rot in durum wheat. Egypt. J. Biol. Pest Control 2020, 30, 139. [Google Scholar] [CrossRef]
- Lau, S.E.; Teo, W.F.A.; Teoh, E.Y.; Tan, B.C. Microbiome engineering and plant biostimulants for sustainable crop improvement and mitigation of biotic and abiotic stresses. Discov. Food 2022, 2, 9. [Google Scholar] [CrossRef]
- Phour, M.; Sindhu, S.S.; Salama, K.H.A.; Morsy, A.A. Mitigating abiotic stress: Microbiome engineering for improving agricultural production and environmental sustainability. Planta 2022, 256, 85. [Google Scholar] [CrossRef]
- Türkmen, Ö.; Şensoy, S.; Erdal, İ. Effect of Potassium on Emergence and Seedling Growth of Cucumber Grown in Salty Conditions. YuzuncuYil Univ. J. Agric. Sci. 2000, 10, 113–117. [Google Scholar]
- Pinali, N.; Kaplan, M. Investigation of effect on nutrient uptake of humic acid applications of different forms to strawberry plant. J. Plant Nutr. 2003, 26, 835–843. [Google Scholar]
- Aydın, A.; Kant, C.; Turan, M. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr. J. Agric. Res. 2012, 7, 1073–1086. [Google Scholar]
- Faten, M.M.; Soha, S.M.M.; Omar, M.N.A. Influence of beneficial microbes or proline treatments on sugar beet under nitrogen limitation in saline-sodic soil. New Egypt. J. Microbiol. 2011, 30, 76–103. [Google Scholar]
- De Carvalho Neta, S.J.; Araújo, V.L.V.P.; Fracetto, F.J.C.; da Silva, C.C.G.; de Souza, E.R.; Silva, W.R.; Lumini, E.; Fracetto, G.G.M. Growth-promoting bacteria and arbuscular mycorrhizal fungus enhance maize tolerance to saline stress. Microbiol. Res. 2024, 284, 127708. [Google Scholar] [CrossRef]
- Singh, C.S.; Kapoor, A.; Wange, S.S. The enhancement of root colonization of legumes by vesicular-arbuscular mycorrhizal (VAM) fungi through the inoculation of the legume seed with commercial yeast (Saccharomyces cerevisiae). Plant Soil 1991, 131, 129–133. [Google Scholar] [CrossRef]
- Larsen, J.; Jacobsen, I. Interactions between a mycophagus Collembola, dry yeast and the external mycelium of an arbuscular mycorrhizal fungus. Mycorrhiza 1996, 6, 259–264. [Google Scholar] [CrossRef]
- Hamed, S.M.; El-Gaml, N.M.; Eissa, S.T. Integrated biofertilization using yeast with cyanobacteria on growth and productivity of wheat. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 112. [Google Scholar] [CrossRef]
- Ghazal, F.M.; Moussa, L.A.A.; Fetyan, N.A.H. Cyanobacteria and Rhizobium radiobacter as possible biofertilizers in wheat production. J. Agric. Chem. Biotechnol. 2010, 1, 383–399. [Google Scholar] [CrossRef]
- Hussain, A.; Hasnain, S. Phytostimulation and biofertilization in wheat by cyanobacteria. J. Ind. Microbiol. Biotechnol. 2011, 38, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Chittapun, S.; Limbipichai, S.; Amnuaysin, N.; Boonkerd, R.; Charoensook, M. Effects of using cyanobacteria and fertilizer on growth and yield of rice, Pathum Thani I: A pot experiment. J. Appl. Phycol. 2017, 30, 79–85. [Google Scholar] [CrossRef]
- Singh, R.R.; Prasad, K. Effect of bio-fertilizers on growth and productivity of wheat (Triticum aestivum). J. Farm Sci. 2011, 1, 1–8. [Google Scholar]
- Zhu, X.; Song, F.; Liu, S.; Liu, F. Role of arbuscular mycorrhiza in alleviating salinity stress in wheat (Triticum aestivum L.) grown under ambient and elevated CO2. J. Agron. Crop Sci. 2016, 202, 486–496. [Google Scholar] [CrossRef]
- Arif, Y.; Singh, P.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem. 2020, 156, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.I.; Muscolo, A.; Ahmed, M. Plant Responses to Biotic and Abiotic Stresses: Crosstalk between Biochemistry and Ecophysiology. Plants 2022, 11, 3294. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Unraveling salt stress signaling in plants. J. Integr. Plant Biol. 2018, 60, 796–804. [Google Scholar] [CrossRef]
- Van Zelm, E.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant Biol. 2020, 71, 403–433. [Google Scholar] [CrossRef]
- Mutale-Joan, C.; Rachidi, F.; Mohamed, H.A.; Mernissi, N.E.; Aasfar, A.; Barakate, M.; Mohammed, D.; Sbabou, L.; Arroussi, H.E. Microalgae-cyanobacteria–based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress. J. Appl. Phycol. 2021, 33, 3779–3795. [Google Scholar] [CrossRef]
- Mostafa, S.S.; Mohamed, A.I.; Shehata, H.S.; Awad, A.E. Enviroeconomic impact of cyanobacteria, bacteria, vinasse and pretreated rice straw to Secure yield productivity of rice crop in saline soils. New Egypt. J. Microbiol. 2015, 40, 47–81. [Google Scholar]
- Da Silva, M.S.R.A.; Dos Santos, B.M.S.; da Silva, C.S.R.A.; da Silva, C.S.R.A.; Antunes, L.F.S.; Dos Santos, R.M.; Santos, C.H.B.; Rigobelo, E.C. Humic Substances in Combination with Plant Growth-Promoting Bacteria as an Alternative for Sustainable Agriculture. Front Microbiol. 2021, 12, 719653. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarsekeyeva, F.K.; Sadvakasova, A.K.; Sandybayeva, S.K.; Kossalbayev, B.D.; Huang, Z.; Zayadan, B.K.; Akmukhanova, N.R.; Leong, Y.K.; Chang, J.S.; Allakhverdiev, S.I. Microalgae- and cyanobacteria-derived phytostimulants for mitigation of salt stress and improved agriculture. Algal Res. 2024, 82, 103686. [Google Scholar] [CrossRef]
- Mostafa, S.S.; Tantawy, E.A.; AH, E.G.M.; Abd El-Halim, A.K. Effect of cyano- and endophytic—Bacteria on wheat productivity under nitrogen limitation or irrigation regime in calcareous soil. New Egypt. J. Microbiol. 2011, 30, 210–241. [Google Scholar]
- Hnini, M.; Rabeh, K.; Oubohssaine, M. Interactions between beneficial soil microorganisms (PGPR and AMF) and host plants for environmental restoration: A systematic review. Plant Stress 2024, 11, 100391. [Google Scholar] [CrossRef]
Ser. | Microalgal Strains | NCBI * Accession No. | Family | pH | Optical Density at 560 nm | Total Chlorophyll (mg•L⁻¹) | Dry Weight (mg•L⁻¹) |
---|---|---|---|---|---|---|---|
1 | Nostoc muscorum isolate HSSASE1 | KT277784.1 | Nostocaceae | 8.11 | 1.19 | 5.26 | 760.96 |
2 | Spirulina platensis isolate HSSASE5 | KT277788.1 | Spirulinaceae | 10.16 | 2.77 | 11.63 | 1772.80 |
3 | Anabaena oryzae isolate HSSASE6 | KT277789.1 | Nostocaceae | 7.14 | 0.87 | 4.03 | 557.76 |
4 | Wollea saccata isolate HSSASE7 | KT277790.1 | Nostocaceae | 6.82 | 2.40 | 9.82 | 1532.80 |
5 | Phormidium fragilis isolate HSSASE9 | KT277792.1 | Phormidiaceae | 8.67 | 2.09 | 3.00 | 1334.40 |
6 | Anabaena sp. HSSASE11 | KT277794.1 | Nostocaceae | 8.05 | 1.67 | 7.56 | 1065.60 |
Coarse Sand (%) | Fin Sand (%) | Silt (%) | Clay (%) | Texture | O.M. (%) | CaCO3 (%) | ||
---|---|---|---|---|---|---|---|---|
3.14 | 8.29 | 28.76 | 59.81 | Clay | 0.48 | 5.19 | ||
pH (1:2.5) | EC (dS•m−1) | Cations (meq/L) | Anions (meq/L) | |||||
Ca2+ | Mg2+ | Na+ | K+ | HCO3 − | Cl− | SO4 2− | ||
8.25 | 18.57 | 12.46 | 21.73 | 150 | 0.76 | 8.25 | 132 | 44.70 |
Macronutrients (ppm) | Micronutrients (ppm) | |||||||
N | P | K | Fe | Mn | Zn | Cu | ||
37 | 5.67 | 189 | 1.37 | 3.25 | 0.73 | 0.048 |
pH | EC (dS•m−1) | Cations (meq/L) | Anions (meq/L) | R.S.C. | SAR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
9.00 | 4.94 | Ca2+ | Mg2+ | Na+ | K+ | HCO3 − | CO3 2− | Cl− | SO4 2− | 14.64 | 26.25 |
2.12 | 2.29 | 39.00 | 2.40 | 12.45 | 6.60 | 16.27 | 10.49 |
Treatments | Wheat | Faba Bean | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CyanoCount c.f.u. × 10−3•g−1 Dry Soil | Bacterial Count c.f.u. × 10−6•g−1 Dry Soil | Yeast Count c.f.u. × 10−3•g−1 Dry Soil | N-ase µmole C2H4•g−1 Dry Soil•h−1 | DHA-ase μg TPF•g−1 Dry Soil•Day−1 | CyanoCount c.f.u. × 10−3•g−1 Dry Soil | Bacterial Count c.f.u. × 10−6•g−1 Dry Soil | Yeast Count c.f.u. × 10−3•g−1 Dry Soil | N-ase µmole C2H4•g−1 Dry Soil•h−1 | DHA-ase μg TPF•g−1 Dry Soil•Day−1 | ||
Control | T1 | 10.00 j | 21.50 k | 1.00 k | 0.85 f | 5.29 g | 15.02 jk | 108.00 j | 2.00 l | 3.46 gh | 4.67 h |
Cyano | T2 | 36.00 f | 61.50 g | 3.00 j | 1.60 f | 14.08 d | 30.00 g | 250.25 d | 4.00 k | 1.13 i | 9.33 f |
Y | T3 | 17.00 h | 60.00 h | 7.00 h | 2.70 de | 3.71 ghi | 24.00 h | 245.25 e | 5.00 j | 2.84 h | 7.46 g |
AMF | T4 | 12.00 i | 26.00 j | 6.00 i | 0.70 f | 2.87 i | 14.00 k | 147.33 i | 7.00 i | 4.8 fg | 4.01 h |
K-H | T5 | 12.00 i | 35.00 i | 3.00 j | 2.34 de | 3.36 hi | 32.00 f | 108.50 j | 10.00 h | 8.41 e | 8.95 f |
Cyano + K-H | T6 | 38.00 e | 95.50 d | 9.00 g | 5.89 c | 11.45 e | 36.00 e | 207.00 g | 11.00 g | 12.76 c | 10.85 e |
Y + K-H | T7 | 23.00 g | 79.00 e | 12.00 f | 5.52 c | 7.19 f | 16.00 j | 250.00 d | 17.00 e | 17.46 b | 5.01 h |
AMF + K-H | T8 | 18.00 h | 66.00 f | 13.00 e | 3.12 d | 4.84 gh | 20.00 i | 221.25 f | 16.00 f | 5.13 f | 5.38 h |
Cyano + Y + K-H | T9 | 60.00 c | 95.50 d | 18.00 c | 5.48 c | 21.82 b | 50.00 b | 194.00 h | 32.00 c | 11.14 d | 18.19 b |
Cyano + AMF + K-H | T10 | 64.00 b | 126.00 c | 14.00 d | 8.42 b | 19.69 c | 42.00 c | 307.00 b | 23.00 d | 25.30 a | 12.92 d |
Y + AMF + K-H | T11 | 48.00 d | 194.00 b | 22.00 b | 16.98 a | 18.22 c | 38.00 d | 287.00 c | 35.00 b | 25.11 a | 14.42 c |
Cyano + Y + AMF + K-H | T12 | 78.00 a | 200.00 a | 25.00 a | 17.27 a | 30.88 a | 61.00 a | 378.50 a | 38.00 a | 26.51 a | 24.15 a |
LSD | 1.06 | 0.74 | 0.92 | 1.11 | 1.64 | 1.09 | 0.85 | 0.86 | 1.39 | 1.39 |
Treatments | Number of Pods•Plant−1 | Number of Seeds•Plant−1 | Weight of Seeds•Plant−1 (g) | Weight of 100 Seeds (g) | Seeds Yield (ton•ha−1) | Straw Yield (ton•ha−1) | Biological Yield (ton•ha−1) | Harvest Index (%) | |
---|---|---|---|---|---|---|---|---|---|
T1 | Control | 6.83 g | 16.10 j | 5.83 g | 31.56 l | 1.21 j | 1.45 k | 2.66 | 0.45 |
T2 | Cyano | 14.00 d | 33.75 g | 19.00 e | 50.41 h | 1.33 g | 1.63 h | 2.96 | 0.45 |
T3 | Y | 11.00 ef | 23.43 i | 11.67 f | 46.61 j | 1.22 i | 1.62 i | 2.84 | 0.43 |
T4 | AMF | 10.00 f | 14.00 k | 6.76 g | 42.92 k | 0.98 k | 1.41 l | 2.39 | 0.41 |
T5 | K-H | 13.50 de | 28.00 h | 17.76 e | 48.78 i | 1.29 h | 1.45 j | 2.75 | 0.47 |
T6 | Cyano + K-H | 19.73 c | 55.24 c | 33.50 c | 61.90 e | 1.42 e | 1.66 f | 3.08 | 0.46 |
T7 | Y + K-H | 18.20 c | 42.22 f | 23.57 d | 54.04 g | 1.42 e | 1.71 e | 3.13 | 0.45 |
T8 | AMF + K-H | 20.30 c | 52.78 e | 33.42 c | 59.28 f | 1.38 f | 1.66 g | 3.04 | 0.45 |
T9 | Cyano + Y + K-H | 24.20 b | 54.21 d | 39.10 b | 70.75 c | 1.93 d | 2.11 d | 4.03 | 0.48 |
T10 | Cyano + AMF + K-H | 25.74 b | 57.14 b | 43.87 a | 75.45 b | 2.36 b | 2.53 b | 4.89 | 0.48 |
T11 | Y + AMF + K-H | 24.97 b | 52.94 e | 37.74 b | 69.88 d | 2.21 c | 2.55 a | 4.77 | 0.46 |
T12 | Cyano + Y + AMF + K-H | 28.86 a | 58.09 a | 46.20 a | 78.24 a | 2.77 a | 2.51 a | 5.28 | 0.52 |
LSD 0.05 | 2.96 | 0.65 | 3.82 | 0.59 | 0.57 | 0.72 |
Treatments | Number of Spike•Plant−1 | Number of Grains•Spike−1 | Weight of 1000-Grain (g) | Grain Yield (ton•ha−1) | Straw Yield (ton•ha−1) | Biological Yield (ton•ha−1) | Harvest Index (%) | |
---|---|---|---|---|---|---|---|---|
T1 | Control | 18.00 f | 35.57 f | 55.80 j | 3.07 g | 4.44 i | 7.51 | 0.41 |
T2 | Cyano | 26.00 a | 60.17 a | 62.30 f | 3.53 def | 5.28 g | 8.81 | 0.40 |
T3 | Y | 19.00 ef | 33.96 g | 61.00 g | 3.34 efg | 4.92 h | 8.26 | 0.40 |
T4 | AMF | 23.00 b | 33.90 g | 59.50 h | 3.14 fg | 5.02 h | 8.16 | 0.39 |
T5 | K-H | 19.00 ef | 44.89 d | 60.98 g | 3.43 efg | 5.64 ef | 9.07 | 0.38 |
T6 | Cyano + K-H | 22.00 bc | 40.76 e | 64.90 e | 3.90 bcd | 5.86 de | 9.77 | 0.40 |
T7 | Y + K-H | 26.00 a | 29.80 h | 62.60 f | 3.70 cde | 5.59 f | 9.31 | 0.40 |
T8 | AMF + K-H | 25.00 a | 29.21 h | 58.26 i | 3.56 def | 5.30 g | 8.86 | 0.40 |
T9 | Cyano + Y + K-H | 14.00 g | 34.81 fg | 66.50 c | 4.06 bc | 6.07 cd | 10.13 | 0.40 |
T10 | Cyano + AMF + K-H | 21.00 cd | 44.20 d | 68.10 b | 4.10 bc | 6.34 ab | 10.44 | 0.39 |
T11 | Y + AMF + K-H | 20.00 de | 48.23 c | 65.80 d | 4.10 bc | 6.17 bc | 10.27 | 0.40 |
T12 | Cyano + Y + AMF + K-H | 18.00 f | 52.24 b | 70.20 a | 4.75 a | 6.43 a | 11.18 | 0.42 |
LSD 0.05 | 1.47 | 1.17 | 0.46 | 0.18 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, S.S.M.; Fares, C.N.; Bishara, M.M.; Azzam, C.R.; Awad, A.A.; Elgaml, N.M.M.; Mostafa, M.S.M. Microbiomes-Plant Interactions and K-Humate Application for Salinity Stress Mitigation and Yield Enhancement in Wheat and Faba Bean in Egypt’s Northeastern Delta. Int. J. Plant Biol. 2024, 15, 1077-1107. https://doi.org/10.3390/ijpb15040076
Mostafa SSM, Fares CN, Bishara MM, Azzam CR, Awad AA, Elgaml NMM, Mostafa MSM. Microbiomes-Plant Interactions and K-Humate Application for Salinity Stress Mitigation and Yield Enhancement in Wheat and Faba Bean in Egypt’s Northeastern Delta. International Journal of Plant Biology. 2024; 15(4):1077-1107. https://doi.org/10.3390/ijpb15040076
Chicago/Turabian StyleMostafa, Soha S. M., Clair N. Fares, Mounira M. Bishara, Clara R. Azzam, Adel A. Awad, Naayem M. M. Elgaml, and Mohamed S. M. Mostafa. 2024. "Microbiomes-Plant Interactions and K-Humate Application for Salinity Stress Mitigation and Yield Enhancement in Wheat and Faba Bean in Egypt’s Northeastern Delta" International Journal of Plant Biology 15, no. 4: 1077-1107. https://doi.org/10.3390/ijpb15040076
APA StyleMostafa, S. S. M., Fares, C. N., Bishara, M. M., Azzam, C. R., Awad, A. A., Elgaml, N. M. M., & Mostafa, M. S. M. (2024). Microbiomes-Plant Interactions and K-Humate Application for Salinity Stress Mitigation and Yield Enhancement in Wheat and Faba Bean in Egypt’s Northeastern Delta. International Journal of Plant Biology, 15(4), 1077-1107. https://doi.org/10.3390/ijpb15040076