Response of Cowpea (Vigna unguiculata L. Walp) Accessions to Moisture Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Experimental Materials
2.2. Experimental Design and Procedure
2.2.1. Field
2.2.2. Glasshouse
2.3. Data Collection
2.4. Weather Conditions During Field Experiment
2.5. Weather Conditions During Glasshouse Experiment
2.6. Data Analyses
3. Results
3.1. Variation Among Cowpea Accessions for Agronomic Traits Under Moisture-Stressed and Non-Stressed Field Conditions
3.2. Variation in Seedling Traits Among Cowpea Accessions in Glasshouse
3.3. The Seed Weight of the Most Promising Accessions from the Moisture-Stressed and the Non-Moisture-Stressed Field Experiment
3.4. Correlations Among Traits of Cowpea Accessions Evaluated Under Moisture-Stressed Condition in Field
3.5. Correlations Among Traits of Cowpea Accessions Evaluated Under Non-Moisture-Stressed Condition in Field
3.6. Correlations Among Traits of Cowpea Accessions Evaluated in Glasshouse
3.7. The Heritability Estimates of the Traits Among Cowpea Accessions Evaluated in the Field Under Moisture-Stressed and Non-Stressed Environments
3.8. Heritability Estimates of Traits Evaluated in Glasshouse
3.9. The Percentage of Recovered Plants from the Glasshouse Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Digrado, A.; Gonzalez-Escobar, E.; Owston, N.; Page, R.; Mohammed, S.B.; Umar, M.L.; Boukar, O.; Ainsworth, E.A.; Carmo-Silva, E. Cowpea leaf width correlates with above ground biomass across diverse environments. Legume Sci. 2022, 4, e144. [Google Scholar] [CrossRef]
- Alidu, M.S.; Asante, I.K.; Mensah, H.K. Evaluation of nutritional and phytochemical variability of cowpea recombinant inbred lines under contrasting soil moisture conditions in the guinea and sudan savannah agro-ecologies. Heliyon 2020, 6, e03406. [Google Scholar] [CrossRef] [PubMed]
- Alidu, M.S.; Padi, F.K. Variation in canopy temperature and its relationship with drought tolerance in cowpea [Vigna unguiculata (L.) Walp] recombinant inbred lines. Int. J. Plant Soil Sci. 2019, 26, 1–13. [Google Scholar] [CrossRef]
- USDA. Food Data Central. 2021. Available online: https://fdc.nal.usda.gov/ (accessed on 15 April 2024).
- Silva, A.C.; Santos, D.; Junior, D.L.; Silva, P.; Santos, R.; Siviero, A. Cowpea: A strategic legume species for food security and health. In Legume Seed Nutraceutical Research; Jimenez-Lopez, J.C., Clemente, A., Eds.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Jayathilake, C.; Visvanathan, R.; Deen, A.; Bangamuwage, R.; Jayawardana, B.C.; Nammi, S.; Liyanage, R. Cowpea: An overview on its nutritional facts and health benefits. J. Sci. Food Agric. 2018, 98, 4793–4806. [Google Scholar] [CrossRef]
- Nkomo, G.V.; Sedibe, M.M.; Mofokeng, M.A. Production constraints and improvement strategies of cowpea (Vigna unguiculata L. Walp.) genotypes for drought tolerance. Int. J. Agron. 2021, 2021, 5536417. [Google Scholar] [CrossRef]
- Mekonnen, T.W.; Gerrano, A.S.; Mbuma, N.W.; Labuschagne, M.T. Breeding of vegetable cowpea for nutrition and climate resilience in Sub-Saharan Africa: Progress, opportunities, and challenges. Plants 2022, 11, 1583. [Google Scholar] [CrossRef]
- Digrado, A.; Mitchell, N.G.; Montes, C.M.; Dirvanskyte, P.; Ainsworth, E.A. Assessing diversity in canopy architecture, photosynthesis, and water-use efficiency in a cowpea magic population. Food Energy Secur. 2020, 9, e236. [Google Scholar] [CrossRef]
- Owusu, E.Y.; Karikari, B.; Kusi, F.; Haruna, M.; Amoah, R.A.; Attamah, P.; Adazebra, G.; Sie, E.K.; Issahaku, M. Genetic variability, heritability and correlation analysis among maturity and yield traits in cowpea (Vigna unguiculata (L) Walp) in northern Ghana. Heliyon 2021, 7, e07890. [Google Scholar] [CrossRef]
- Nkomo, G.V.; Sedibe, M.M.; Mofokeng, M.A. Phenotyping cowpea accessions at the seedling stage for drought tolerance in controlled environments. Open Agric. 2022, 7, 433–444. [Google Scholar] [CrossRef]
- Horn, L.N.; Shimelis, H. Production constraints and breeding approaches for cowpea improvement for drought prone agro-ecologies in sub-Saharan Africa. Ann. Agric. Sci. 2020, 65, 83–91. [Google Scholar] [CrossRef]
- Mwale, S.E.; Ochwo-Ssemakula, M.; Sadik, K.; Achola, E.; Okul, V.; Gibson, P.; Edema, R.; Singini, W.; Rubaihayo, P. Response of cowpea genotypes to drought stress in Uganda. Am. J. Plant Sci. 2017, 8, 720–733. [Google Scholar] [CrossRef]
- Ajayi, A.T.; Gbadamosi, A.E.; Olumekun, V.O.; Nwosu, P.O. GT biplot analysis of shoot traits indicating drought tolerance in cowpea [Vigna unguiculata (L.) Walp] accessions at vegetative stage. Int. J. BioSciences Technol. 2020, 13, 18–33. [Google Scholar] [CrossRef]
- Boukar, O.; Abberton, M.; Oyatomi, O.; Togola, A.; Tripathi, L.; Fatokun, C.A. Introgression breeding in cowpea [Vigna unguiculata (L.) Walp.]. Front. Plant Sci. 2020, 11, 567425. [Google Scholar] [CrossRef] [PubMed]
- Ravelombola, W.; Shi, A.; Huynh, B.-L. Loci discovery, network-guided approach, and genomic prediction for drought tolerance index in a multi-parent advanced generation intercross (MAGIC) cowpea population. Hortic. Res. 2021, 8, 24. [Google Scholar] [CrossRef]
- Hall, A.E.; Cisse, N.; Thiaw, S.; Elawad, H.O.A.; Ehlers, J.D.; Ismail, A.M.; Fery, R.L.; Roberts, P.A.; Kitch, L.W.; Murdock, L.L.; et al. Development of Cowpea Cultivars and Germplasm by the Bean/Cowpea CRSP. Field Crop. Res. 2003, 82, 103–134. [Google Scholar] [CrossRef]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models; Chapman & Hall: London, UK, 1989. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 13 May 2024).
- Cairns, J.E.; Crossa, J.; Zaidi, P.H.; Grudloyma, P.; Sanchez, C.; Araus, J.L.; Thaitad, S.; Makumbi, D.; Magorokosho, C.; Bänziger, M.; et al. Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Sci. 2013, 53, 1335–1346. [Google Scholar] [CrossRef]
- Nkomo, G.V.; Sedibe, M.M.; Mofokeng, M.A. Phenotyping cowpea accessions at the seedling stage for drought tolerance using the pot method. bioRxiv 2020, 2020, 196915. [Google Scholar] [CrossRef]
- Upadhyaya, H.D.; Dwivedi, S.L.; Vetriventhan, M.; Krishnamurthy, L.; Singh, S.K. Post-flowering drought tolerance using managed stress trials, adjustment to flowering, and mini core collection in sorghum. Crop Sci. 2017, 57, 310–321. [Google Scholar] [CrossRef]
- Muchero, W.; Ehlers, J.D.; Roberts, P.A. Seedling stage drought-induced phenotypes and drought-responsive genes in diverse cowpea genotypes. Crop Sci. 2008, 48, 541–552. [Google Scholar] [CrossRef]
- Olorunwa, O.J.; Shi, A.; Barickman, T.C. Varying drought stress induces morpho-physiological changes in cowpea (Vigna unguiculata (L.) genotypes inoculated with Bradyrhizobium japonicum. Plant Stress 2021, 2, 100033. [Google Scholar] [CrossRef]
- Ajayi, A. Screening for drought tolerance in cowpea at the flowering stage. Int. J. Sci. Lett. 2022, 4, 236–268. [Google Scholar] [CrossRef]
- Boukar, O.; Belko, N.; Chamarthi, S.K.; Togola, A.; Batieno, B.J.; Owusu, E.Y.; Haruna, M.; Diallo, S.; Umar, M.L.; Olufajo, O.; et al. Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breed. 2018, 138, 415–424. [Google Scholar] [CrossRef]
- Santos, R.; Carvalho, M.; Rosa, E.; Carnide, V.; Castro, I. Root and agro-morphological traits performance in cowpea under drought stress. Agronomy 2020, 10, 1604. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Dwivedi, S.K.; Raman, R.K.; Kumar, S.; Kumar, R.; Kumar, S.; Dubey, R.; Bhakta, N.; Shubha, K. Unveiling Genotypic Response of Chickpea to Moisture Stress Based on Morpho-Physiological Parameters in the Eastern Indo-Gangetic Plains. J. Agron. Crop Sci. 2024, 210, 12728. [Google Scholar] [CrossRef]
- Fatokun, C.A.; Boukar, O.; Muranaka, S. Evaluation of cowpea (Vigna unguiculata (L.) Walp.) germplasm lines for tolerance to drought. Plant Genet. Resour. 2012, 10, 171–176. [Google Scholar] [CrossRef]
- Fathi, A.; Tari, D.B. Effect of drought stress and its mechanism in plants. Int. J. Life Sci. 2016, 10, 1–6. [Google Scholar] [CrossRef]
- Jukanti, A.K.; Bhatt, R.; Sharma, R.; Kalia, R.K. Morphological, agronomic, and yield characterization of cluster bean (Cyamopsis tetragonoloba L.) germplasm accessions. J. Crop Sci. Biotechnol. 2015, 18, 83–88. [Google Scholar] [CrossRef]
- Usharani, K.S.; Suguna, R.; Anandakumar, C.R. Relationship between the yield contributing characters in cowpea for grain purpose [Vigna unguiculata (L). Walp]. Electron. J. Plant Breed. 2010, 1, 882–884. [Google Scholar]
- Walle, T.; Mekbib, F.; Amsalu, B.; Gedil, M. Correlation and path coefficient analyses of cowpea (Vigna unguiculata L.) landraces in Ethiopia. Am. J. Plant Sci. 2018, 9, 2794–2812. [Google Scholar] [CrossRef]
- Alidu, M.S. Evaluation of cowpea genotypes for drought tolerance using the pot screening approach. Asian Res. J. Agric. 2018, 10, 1–11. [Google Scholar] [CrossRef]
- Nkoana, K.D. Evaluation of Diverse Cowpea (Vigna unguiculata [L.] Walp.) Germplasm for Field Performance and Drought Tolerance. Ph.D. Thesis, University of Venda, Thohoyandou, South Africa, 2018. [Google Scholar]
- Manggoel, W. Genetic variability, correlation and path coefficient analysis of some yield components of ten cowpea [Vigna unguiculata (L.) Walp] accessions. J. Plant Breed. Crop Sci. 2012, 4, 80–86. [Google Scholar] [CrossRef]
- Hamidou, F.; Ratnakumar, P.; Halilou, O.; Mponda, O.; Kapewa, T.; Monyo, E.S.; Faye, I.; Ntare, B.R.; Nigam, S.N.; Upadhyaya, H.D.; et al. Selection of intermittent drought tolerant lines across years and locations in the reference collection of groundnut (Arachis hypogaea L.). Field Crop. Res. 2012, 126, 189–199. [Google Scholar] [CrossRef]
- Omoigui, L.O.; Ishiyaku, M.F.; Kamara, A.Y.; Alabi, S.O.; Mohammed, S.G. Genetic Variability and Heritability Studies of Some Reproductive Traits in Cowpea (Vigna unguiculata (L) Walp). Afr. J. Biotechnol. 2005, 5, 1191–1195. [Google Scholar]
df | p | |||||||
---|---|---|---|---|---|---|---|---|
Effects | DFF | D50FL | D90MAT | PODWT | SEEDWT | SEED100WT | BIOMASS | |
NMS | ||||||||
Rep | 2 | 0.432 | 0.671 | 0.093 | 0.002 | 0.001 | 0.038 | 0.002 |
Accession | 258 | 0.999 | 0.999 | 0.999 | <0.001 | <0.001 | <0.001 | <0.001 |
MS | ||||||||
Replicate | 2 | 0.420 | 0.183 | 0.865 | <0.001 | <0.001 | <0.001 | 0.004 |
Accession | 258 | 0.999 | 0.999 | 0.999 | <0.001 | <0.001 | <0.001 | <0.001 |
Traits | NMS | MS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | Min | Max | CV (%) | Mean | SE | Min | Max | CV (%) | |
Days to First Flower | 47.29 | 4.71 | 40.33 | 60.45 | 9.95 | 49.35 | 4.74 | 42.00 | 67.24 | 9.60 |
Days to 50% Flowering | 51.03 | 4.89 | 41.73 | 67.46 | 9.58 | 52.42 | 4.89 | 25.45 | 70.28 | 9.32 |
Days to 90% Pod Maturity | 69.63 | 5.78 | 63.01 | 83.84 | 8.30 | 68.69 | 5.60 | 61.93 | 78.18 | 8.16 |
Pod Weight | 21.16 | 13.05 | 1.07 | 203.85 | 61.66 | 14.12 | 7.81 | 0.13 | 85.81 | 55.32 |
Seed Weight | 14.95 | 9.33 | 0.05 | 144.50 | 62.40 | 10.23 | 5.69 | 0.27 | 61.46 | 55.64 |
100 Seed Weight | 11.07 | 2.08 | 4.49 | 27.03 | 18.57 | 12.57 | 1.92 | 5.52 | 20.01 | 15.27 |
Biomass | 24.16 | 15.78 | 1.42 | 213.95 | 65.32 | 19.42 | 10.52 | 0.42 | 120.13 | 54.13 |
df | p | df | p Value | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Effects | D50E | D90E | D90PLF | DPW | NODP | NOP | SG21 DAS | SG30 DAS | W15 DAS | W21 DAS | W30 DAS | W34 DAS | PPR | ||
rep | 1 | 0.745 | 0.134 | 0.004 | 0.044 | 0.946 | 0.893 | 0.001 | 0.001 | 0.003 | 0.483 | 0.032 | 0.002 | 1 | 0.799 |
accession | 256 | 0.999 | 0.999 | 0.999 | <0.001 | 0.999 | 0.999 | 0.999 | 0.323 | 0.999 | 0.999 | 0.999 | 0.999 | 125 | <0.001 |
Trait | Mean | SE | Min | Max |
---|---|---|---|---|
Days to 50% Emergence | 4.93 | 1.56 | 4.00 | 5.00 |
Days to 90% Emergence | 6.73 | 1.84 | 5.00 | 7.15 |
Days to 90% Plant Leaf Fall | 28.60 | 3.80 | 23.50 | 31.99 |
Days to Permanent Wilting | 45.30 | 4.71 | 33.50 | 60.00 |
Number of Dead Plants | 4.50 | 1.48 | 2.50 | 5.00 |
Number of Recovered Plants | 0.10 | 0.08 | 0.00 | 2.50 |
Percentage of Recovered Plants | 0.87 | 0.02 | 0.00 | 58.59 |
Stem Greenness at 21 Days after Stress was Imposed | 2.15 | 1.01 | 0.50 | 3.99 |
Stem Greenness at 30 Days after Stress was Imposed | 1.29 | 0.73 | 0.00 | 3.48 |
Wilting at 15 Days after Stress was Imposed | 0.57 | 0.47 | 0.00 | 0.99 |
Wilting at 21 Days after Stress was Imposed | 1.31 | 0.79 | 0.50 | 3.00 |
Wilting at 30 Days after Stress was Imposed | 2.58 | 1.12 | 1.00 | 4.00 |
Wilting at 34 Days after Stress was Imposed | 2.96 | 1.20 | 1.00 | 3.99 |
Moisture-Stressed | Non-Moisture-Stressed | ||
---|---|---|---|
Accession | Seed Weight (g/plant) | Accession | Seed Weight (g/plant) |
RK173 | 49.8 | RP225 | 119.9 |
RP289 | 39.7 | RK173 | 90.4 |
RP294 | 36.6 | Vu053 | 85.6 |
Vu089_1_2 | 36.4 | RP218 | 85.1 |
RP225 | 34.6 | RK148 | 63.4 |
RP232 | 33.4 | RM357 | 62.9 |
RP287 | 31.9 | RP232 | 51.9 |
RM357 | 27.9 | Vu081_2_2 | 46.7 |
RK150 | 27.2 | RM351 | 42.3 |
RP282 | 27.1 | RM346 | 41.9 |
RP219 | 26.6 | RP259 | 38.9 |
RP234 | 25.6 | RP272 | 37.7 |
Vu098 | 24.9 | RP276 | 37.2 |
RC383 | 24.7 | RP266 | 35.9 |
RM352 | 24.3 | RC383 | 34.6 |
RK148 | 23.9 | Vu081_AB | 34.5 |
RP266 | 23.0 | Vu031_1 | 34.5 |
RC392 | 22.5 | Vu098 | 34.3 |
Vu081_2_2 | 21.8 | Vu096_2_1 | 33.0 |
RK182 | 20.9 | RS040 | 32.5 |
Traits | Heritability | |
---|---|---|
Moisture-Stressed | Non-Stressed | |
Days to First Flower | <0.01 | <0.01 |
Days to 50% Flowering | <0.01 | <0.01 |
Days to 90% Pod Maturity | <0.01 | <0.01 |
Pod Weight | 0.68 | 0.73 |
Seed Weight | 0.67 | 0.73 |
100 Seed Weight | 0.54 | 0.57 |
Biomass | 0.67 | 0.72 |
Traits | Heritability |
---|---|
Days to 50% Emergence | 0.27 |
Days to 90% Emergence | 0.01 |
Days to Permanent Wilting | 0.63 |
Number of Recovered Plants | 0.22 |
Percentage of Recovered Plants | 0.23 |
Stem Greenness at 21 Days after Stress was Imposed | 0.62 |
Stem Greenness at 30 Days after Stress was Imposed | 0.61 |
Wilting at 15 Days after Stress was Imposed | 0.12 |
Wilting at 21 Days after Stress was Imposed | 0.59 |
Wilting at 30 Days after Stress was Imposed | 0.62 |
Wilting at 34 Days after Stress was Imposed | 0.61 |
S/N | Accession | Percentage of Recovered Plants (%) |
---|---|---|
1 | RS029 | 34.5 |
2 | RK014 | 14.2 |
3 | RS114 | 9.6 |
4 | RK121 | 8.3 |
5 | RS007 | 7.6 |
6 | RK123 | 7.3 |
7 | RS037 | 7.3 |
8 | RS101 | 5.6 |
9 | RS108 | 5.1 |
10 | RP309 | 4.7 |
11 | RS002 | 4.7 |
12 | RS024 | 4.7 |
13 | RS038 | 4.7 |
14 | RS082 | 4.7 |
15 | Vu111 | 4.7 |
16 | RP320 | 4.7 |
17 | RP239 | 3.3 |
18 | RS060 | 2.8 |
19 | RS063 | 2.8 |
20 | RS030 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manneh, N.; Adetimirin, V.O.; Dieng, I.; Ntukidem, S.O.; Fatokun, C.A.; Boukar, O. Response of Cowpea (Vigna unguiculata L. Walp) Accessions to Moisture Stress. Int. J. Plant Biol. 2024, 15, 1201-1214. https://doi.org/10.3390/ijpb15040083
Manneh N, Adetimirin VO, Dieng I, Ntukidem SO, Fatokun CA, Boukar O. Response of Cowpea (Vigna unguiculata L. Walp) Accessions to Moisture Stress. International Journal of Plant Biology. 2024; 15(4):1201-1214. https://doi.org/10.3390/ijpb15040083
Chicago/Turabian StyleManneh, Nyimasata, Victor O. Adetimirin, Ibnou Dieng, Solomon O. Ntukidem, Christian A. Fatokun, and Ousmane Boukar. 2024. "Response of Cowpea (Vigna unguiculata L. Walp) Accessions to Moisture Stress" International Journal of Plant Biology 15, no. 4: 1201-1214. https://doi.org/10.3390/ijpb15040083
APA StyleManneh, N., Adetimirin, V. O., Dieng, I., Ntukidem, S. O., Fatokun, C. A., & Boukar, O. (2024). Response of Cowpea (Vigna unguiculata L. Walp) Accessions to Moisture Stress. International Journal of Plant Biology, 15(4), 1201-1214. https://doi.org/10.3390/ijpb15040083