Biologically Active Compounds in Tomato Fruits Under the Application of Water–Ethanol Spirulina, Dunaliella and Chlorella Microalgae Extracts on Plants’ Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Microalgae Extractions
2.2. Plant Material and Sampling
2.3. Determination of Vitamin C Content
2.4. Determination of Titratable Acidity (TA)
2.5. pH Measurement
2.6. Determination of β-Carotene and Lycopene Contents
2.7. Determination of Anthocyanin Content
2.8. Determination of Total Phenol Content
2.9. Determination of Dry Matter (DM) and Total Soluble Solids (TSSs)
2.10. Determination of Tomato Fruit Mass and Taste Index
2.11. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ronga, D.; Biazzi, E.; Parati, K.; Carminati, D.; Carminati, E.; Tava, A. Microalgal bio-stimulants and biofertilisers in crop productions. Agronomy 2019, 9, 192. [Google Scholar] [CrossRef]
- Sousa, V.; Marques, P.R.A.; Vicente, A.M.; Dias, O.; Geada, P. Microalgae biomass as an alternative source of biocompounds: New insights and future perspectives of extraction methodologies. Food Res. Int. 2023, 173, 113282. [Google Scholar] [CrossRef] [PubMed]
- Montuori, E.; Lima, S.; Marchese, A.; Scargiali, F.; Lauritano, C. Lutein production and extraction from microalgae: Recent insights and bioactive potential. Int. J. Mol. Sci. 2024, 25, 2892. [Google Scholar] [CrossRef] [PubMed]
- Gharib, F.A.E.L.; Osama, K.; Sattar, A.M.A.E.; Ahmed, E.Z. Impact of Chlorella vulgaris, Nannochloropsis salina, and Arthrspira insights and bioactive potential. Sci. Rep. 2024, 14, 1398. [Google Scholar]
- Nemani, N.; Dehnavi, S.M.; Pazuki, G. Extraction and separation of astaxanthin with the help of pre-treatment of Haematococcus pluvialis microalgae biomass using aqueous two-phase systems based on deep eutectic solvents. Sci. Rep. 2024, 14, 5420. [Google Scholar] [CrossRef] [PubMed]
- Dudina, I.; Kalashnikova, E.; Kirakosyan, R. Green microalgae Chlorella in the study of the biosynthetic potential of higher plants in vitro. BIO Web Conf. 2024, 113, 01010. [Google Scholar] [CrossRef]
- Mapelli-Brahm, P.; Gómez-Villegas, P.; Gonda, M.L.; León-Vaz, A.; León, R.; Mildenberger, J.; Rebours, C.; Saravia, V.; Vero, S.; Vila, E.; et al. Microalgae, seaweeds and aquatic bacteria, archaea, and yeasts: Sources of carotenoids with potential antioxidant and anti-Inflammatory health-promoting actions in the sustainability era. Mar. Drugs 2023, 21, 340. [Google Scholar] [CrossRef] [PubMed]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahim, H.; Eladel, H.; Battah, M.; Radwan, A.; Saber, A.A. Antioxidant, antimicrobial, and anticancer activity of an extract of two pollution-tolerant green microalgae. Benha J. Appl. Sci. 2024, 9, 187–196. [Google Scholar] [CrossRef]
- Mularczyk, M.; Michalak, I.; Marycz, K. Astaxanthin and other nutrients from Haematococcus pluvialis—Multifunctional applications. Mar. Drugs 2020, 18, 459. [Google Scholar] [CrossRef]
- Di Lena, G.; Casini, I.; Lucarini, M.; Lombardi-Boccia, G. Carotenoid profiling of five microalgae species from large-scale production. Food Res. Int. 2019, 120, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Coppens, J.; Grunert, O.; Hende, S.V.D.; Vanhoutte, I.; Boon, N.; Haesaert, G.; Gelder, L.D. The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. J. Appl. Phycol. 2016, 28, 2367–2377. [Google Scholar] [CrossRef]
- Geada, P.; Loureiro, L.; Teixeira, J.A.; Vasconcelos, V.; Vicente, A.A.; Fernandes, B.D. Evaluation of disruption/permeabilization methodologies for Microcystis aeruginosa as alternatives to obtain high yields of microcystin release. Algal Res. 2019, 42, 101611. [Google Scholar] [CrossRef]
- Cunha, E.; Sousa, V.; Geada, P.; Teixeira, J.A.; Vicente, A.A.; Dias, O. Systems biology’s role in leveraging microalgal biomass potential: Current status and future perspectives. Algal Res. 2023, 69, 102963. [Google Scholar] [CrossRef]
- Pereira, L.; Cotas, J.; Valado, A. Antioxidants from microalgae and their potential impact on human well-being. Drug Sci. 2024, 2, 292–321. [Google Scholar]
- Hernández-Urcera, J.; Romero, A.; Cruz, P.; Vasconcelos, V.; Figueras, A.; Novoa, B.; Rodríguez, F. Screening of microalgae for bioactivity with antiviral, antibacterial, anti-inflammatory and anti-cancer assays. Biology 2024, 13, 255. [Google Scholar] [CrossRef]
- Izadi, Z.; Jalali, H.; Safavi, M. Protective activity of Chlorella vulgaris microalgae extract on the in vitro cultured oocytes. Iran. J. Fish. Sci. 2024, 23, 589–602. [Google Scholar]
- Morón-Ortiz, Á.; Karamalegkos, A.A.; Mapelli-Brahm, P.; Ezcurra, M.; Meléndez-Martínez, A.J. Phytoene and phytoene-rich microalgae extracts extend lifespan in C. elegans and protect against amyloid-β toxicity in an Alzheimer’s disease model. Antioxidants 2024, 13, 931. [Google Scholar] [CrossRef]
- Prabakaran, G.; Moovendhan, M.; Arumugam, A.; Matharasi, A.; Dineshkumar, R.; Sampathkumar, P. Evaluation of chemical composition and in vitro anti-inflammatory effect of marine microalgae Chlorella vulgaris. Waste Biomass Valorization 2018, 10, 3263–3270. [Google Scholar] [CrossRef]
- Sudhakar, M.P.; Ramesh Kumar, B.; Mathimani, T.; Arunkumar, K.A. Review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J. Clean. Prod. 2019, 228, 1320–1333. [Google Scholar] [CrossRef]
- Siddhnath, K.; Surasani, V.K.R.; Singh, A.; Singh, S.M.; Hauzoukim; Murthy, L.N.; Baraiya, K.G. Bioactive compounds from micro-algae and its application in foods: A review. Disc. Food 2024, 4, 27. [Google Scholar] [CrossRef]
- Garcia, M.P.; Regueiras, A.; Lopes, G.; Matos, G.; Silva, L.P.; Cerqueira, M.T.; Cardoso, H.; Correia, N.; Saraiva, J.A.; Silva, J.L.; et al. Nonthermal high-pressure microalgae extracts: A new source of natural ingredients for cosmetics. Algal Res. 2024, 81, 103591. [Google Scholar] [CrossRef]
- Kumari, R.; Kaur, I.; Bhatnagar, A.K. Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J. Appl. Phycol. 2011, 23, 623–633. [Google Scholar]
- Mulbry, W.; Kondrad, S.; Pizarro, C. Biofertilizers from algal treatment of dairy and swine manure effluents. J. Veg. Sci. 2007, 12, 107–125. [Google Scholar] [CrossRef]
- Ali, A.; Cavallaro, V.; Santoro, P.; Mori, J.; Ferrante, A.; Cocetta, G. Quality and physiological evaluation of tomato subjected to different supplemental lighting systems. Sci. Hort. 2024, 323, 112469. [Google Scholar] [CrossRef]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, I.; Gan, S.H. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods 2020, 10, 45. [Google Scholar] [CrossRef]
- Lima, G.P.P.; Gomez, H.A.G.; Seabra, S.; Maraschin, M.; Tecchio, M.A.; Borges, C.V. Functional and nutraceutical compounds of tomatoes as affected by agronomic practices, postharvest management, and processing methods: A mini review. Front. Nutr. 2022, 9, 868492. [Google Scholar] [CrossRef] [PubMed]
- Ullah, N.; Basit, A.; Ahmad, I.; Ullah, I.; Shah, S.T.; Mohamed, H.I.; Javed, S. Mitigation the adverse effect of salinity stress on the performance of the tomato crop by exogenous application of chitosan. Bull. Natl. Res. Cent. 2020, 44, 181. [Google Scholar] [CrossRef]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a source of carotenoids and polyphenols targeted to cancer. Prev. Cancers 2016, 8, 58. [Google Scholar] [CrossRef]
- Tamasi, G.; Pardini, A.; Bonechi, C.; Donati, A.; Pessina, F.; Marcolongo, P.; Gamberucci, A.; Leone, G.; Consumi, M.; Magnani, A.; et al. Characterization of nutraceutical components in tomato pulp, skin and locular gel. Eur. Food Res. Technol. 2019, 245, 907–918. [Google Scholar] [CrossRef]
- Antal-Tremurici, A.; Ambăruş, S.; Bute, A.; Brezeanu, P.M.; Iosob, G.-A.; Brezeanu, C. Preliminary study on the fruit morphology, agronomic, and physio-chemical characteristics of tomato varieties in greenhouse conditions. Sci. Pap. Ser. B Hortic. 2023, 67, 511–518. [Google Scholar]
- Raza, B.; Hameed, A.; Saleem, M.Y. Fruit nutritional composition, antioxidant and biochemical profiling of diverse tomato (Solanum lycopersicum L.) genetic resource. Front. Plant Sci. 2022, 13, 1035163. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, M.M.; Hammad, D.M.; Reda, M.M.; El-Khair, A.; El-Sayed, B. Water extracts of Spirulina platensis and Chlorella vulgaris enhance tomato (Solanum lycopersicum L.) tolerance against saline water irrigation. Biomass Convers. Biorefinery 2024, 14, 21181–21191. [Google Scholar] [CrossRef]
- Rahimah, S.; Ghassani, D.; Martha, H.; Nurhasanah, S.; Satya, A.; Chrismadha, T.; Mardawati, E. Incorporation of Spirulina platensis in Edible Coating for Shelf-Life Extension of Tomatoes (Lycopersicon esculentum Mill.) Umagna Variety. BIO Web Conf. 2024, 92, 02007. [Google Scholar] [CrossRef]
- Duma, M.; Alsina, I.; Dubova, L.; Erdberga, I. Quality of tomatoes during storage. In Proceedings of the 11th Baltic Conference on Food Science and Technology “Food Science and Technology in a Changing World”, Jelgava, Latvia, 27–28 April 2017; pp. 130–133. [Google Scholar]
- Dūma, M.; Alsiņa, I.; Dubova, L.; Gavare, D.; Erdberga, I. Quality of different coloured tomatoes depending on the growing season. Proc. Latv. Acad. Sci. Sect. B 2022, 76, 89–95. [Google Scholar] [CrossRef]
- Duma, M.; Alsina, I. The content of plant pigments in red and yellow bell peppers. Sci. Pap. B Hortic. 2012, 56, 10. [Google Scholar]
- Nagata, M.; Yamashita, I. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J. Jpn. Food Sci. Technol. 1992, 39, 922–928. [Google Scholar]
- Kerch, G.; Sabovics, M.; Kruma, Z.; Kampuse, S.; Straumite, E. Effect of chitosan and chitooligosaccharide on vitamin C and polyphenols contents in cherries and strawberries during refrigerated storage. Eur. Food Res. Technol. 2011, 233, 351–358. [Google Scholar] [CrossRef]
- Moor, U.; Karp, K.; Põldma, P.; Pae, A. Cultural systems affect content of anthocyanins and vitamin C in strawberry fruits. Eur. J. Hortic. Sci. 2005, 70, 195–201. [Google Scholar]
- Ozola, L.; Kampuse, S.; Galoburda, R. The effect of high-pressure processing on enteral food made from fresh or semi-finished ingredients. In Proceedings of the Baltic Conference on Food Science and Technology FOODBALT “Food for Consumer Well-Being”, Jelgava, Latvia, 27–28 April 2017; pp. 80–85. [Google Scholar]
- Singleton, V.L.; Orthofer, R.M.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioksidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Narvez, B.; Letard, M.; Graselly, D.; Jost, M. Les criteres de qualite de la tomate. Infos CTIFL 1999, 155, 41–47. [Google Scholar]
- Nielsen, S. Food Analysis, 3rd ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2003; p. 534. [Google Scholar]
- Dobrin, A.; Nedeluș, O.; Bujor, A.; Mot, M.; Zugravu, L.; Bădulescu, T.A. Nutritional quality parameters of the fresh red. Horticulture 2019, 63, 439–443. [Google Scholar]
- Anthon, G.E.; LeStrange, M.; Barrett, D.M. Changes in pH, acids, sugars and other quality parameters during extended vine holding of ripe processing tomatoes. J. Sci. Food Agric. 2011, 91, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Astuti, S.D.; Salengke, S.; Lagac, A.; Bilangd, M.; Mochtar, H.; Waris, A. Characteristics of pH, Total Acid, Total Soluble Solid on Tomato Juice by Ohmic Heating Technology. Int. J. Sci. Basic Appl. Res. 2018, 39, 21–28. [Google Scholar]
- Yong, K.T.; Yong, P.H.; Ng, Z.H. Tomato and human health: A perspective from post-harvest processing, nutrient bio-accessibility, and pharmacological interaction. Food Front. 2023, 4, 1702–1719. [Google Scholar] [CrossRef]
- Fenni, S.; Hammou, H.; Astier, J.; Bonnet, L.; Karkeni, E.; Couturier, C.; Tourniaire, F.; Landrier, J.F. Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders. Mol. Nutr. Food Res. 2017, 61, 1601083. [Google Scholar] [CrossRef] [PubMed]
- Alda, L.M.; Gogoaşă, I.; Gogoaşă, D.M.; Gergen, I.; Alda, S.; Moldovan, C.; Niţă, L. Lycopene content of tomatoes and tomato products. J. Agroaliment. Process. Technol. 2009, 15, 540–542. [Google Scholar]
- Perez-Esteve, E.; Salata, A.; Barat, J.M.; Stepniowska, A.; Lopez-Galarza, S.; NurzynskaWierdak, R. Polyphenolic composition of Spanish cultivars of globe artichoke (Cynara cardunculus L. var. Scolymus (L.) Fiori. Acta Sci. Pol. Hortorum Cultus 2018, 17, 177–184. [Google Scholar] [CrossRef]
- Kantoğlu, K.Y.; Iҫ, E.; Özmen, D.; Bulut, F.S.; Ergun, E.; Kantoğlu, Ö.; Özcoban, M. Gamma rays induced enhancement in the phytonutrient capacities of tomato (Solanum lycopersicum L.). Front. Hort. 2023, 2, 1190145. [Google Scholar] [CrossRef]
- Augspole, I.; Rakcejeva, T.; Dukalska, L. Content of Sugars, Dietary Fibre and Vitamin C in Hybrids of ‘Nante’ Carrots Cultivated in Latvia. In Annual 18th International Scientific Conference Proceedings “Research for Rural Development”; LLU: Jelgava, Latvia, 2012; Volume 1, pp. 137–142. [Google Scholar]
- Soare, R.; Dinu, M.; Apahidean, A.I.; Soare, M. The evolution of some nutritional parameters of the tomato fruit during the harvesting stages. Hort. Sci. 2019, 3, 132–137. [Google Scholar] [CrossRef]
- Valsikova, M.; Komár, P.; Rehušs, M. The effect of varieties and degree of ripeness to vitamin C content in tomato fruits. Acta Hort. Regiot. 2017, 2, 44–48. [Google Scholar]
- Dūma, M.; Alsiņa, I.; Dubova, L.; Erdberga, I. Bioactive compounds in tomatoes at different stages of maturity. Proc. Latv. Acad. Sci. Sect. B 2018, 72, 85–90. [Google Scholar] [CrossRef]
- Duma, M.; Alsina, I.; Dubova, L.; Augspole, I.; Erdberga, I. Suggestions for Consumers about Suitability of Differently Coloured Tomatoes in Nutrition. In FoodBalt 2019: 13th Baltic Conference on Food Science and Technology “Food. Nutrition. Well-Being”: Conference Proceedings; LLU: Jelgava, Latvia, 2019; pp. 261–264. [Google Scholar]
- Matejkova, J.; Petrikova, K. Variation in Content of Carotenoids and Vitamin C in Carrots. Not. Sci. Biol. 2010, 2, 88–91. [Google Scholar] [CrossRef]
- Rodriguez–Concepcion, M.; Stange, C. Biosynthesis of carotenoids in carrot: An underground story comes to light. Arch. Biochem. Biophys. 2013, 539, 110–116. [Google Scholar] [CrossRef]
- Fikselová, M.; Mareĉek, J.; Mellen, M. Carotenes content in carrot roots (Daucus Carota L.) as affected by cultivation and storage. J. Fruit Ornam. Plant Res. 2010, 73, 47–54. [Google Scholar] [CrossRef]
- Duckena, L.; Alksnis, R.; Erdberga, I.; Alsiņa, I.; Dubova, L.; Duma, M. Non-Destructive Quality Evaluation of 80 Tomato Varieties Using Vis-NIR Spectroscopy. Foods 2023, 12, 1990. [Google Scholar] [CrossRef]
- Mendelová, A.; Fikselová, M.; Mendel, Ľ. Carotenoids and lycopene content in fresh and dried tomato fruits and tomato juice. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 1329–1337. [Google Scholar] [CrossRef]
- Biesiada, A.; Tomczak, A. Biotic and abiotic factors affecting the content of the chosen antioxidant compounds in vegetables. J. Fruit Ornam. Plant Res. 2012, 76, 55–78. [Google Scholar] [CrossRef]
- Bramley, P.M. Is lycopene beneficial to human health? Phytochemistry 2000, 54, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Fraser, P.D.; Bramley, P.M. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 2004, 43, 228–265. [Google Scholar] [CrossRef]
- Moneruzzaman, K.M.; Hossain, A.B.M.S.; Sani, W.; Saifuddin, M. Effect of stages of maturity and ripening conditions on the biochemical characteristics of tomato. Am. J. Biochem. Biotechnol. 2008, 4, 329–335. [Google Scholar]
- Vinha, A.F.; Barreira, S.V.P.; Castro, A.; Costa, A.; Oliveira, B.P.P. Influence of the storage conditions on the physicochemical properties, antioxidant activity and microbial flora of different tomato (Lycopersicon esculentum L.) cultivars. J. Agric. Sci. 2013, 5, 118–128. [Google Scholar] [CrossRef]
- Gajewski, M.; Szymczak, P.; Radzanowska, J. Sensory Quality of Orange, Purple and Yellow Carrots Stored under Controlled Atmosphere. Not. Bot. Horti Agrobot. 2010, 38, 169–176. [Google Scholar]
- Rashidi, M. Modeling of carrot firmness based on water content and total soluble solids of carrot. J. Agric. Biol. Sci. 2011, 6, 62–65. [Google Scholar]
- Atallah, M.M. Physical and mechanical properties of tomato plant to Designa harvest machine. Egypt. J. Agric. Sci. 2012, 63, 8–18. [Google Scholar] [CrossRef]
- Mahmoud, W.A.; Elwakeel, A.E. Study on some Properties of Tomato Fruits for Natural Sun Drying. J. Soil Sci. Agric. Eng. 2021, 12, 763–767. [Google Scholar]
- Li, H.; Hou, X.; Bertin, N.; Ding, R.; Du, T. Quantitative responses of tomato yield, fruit quality and water use efficiency to soil salinity under different water regimes in Northwest China. Agric. Water Manag. 2023, 277, 108134. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Saltveit, M.E. Inhibition or promotion of tomato fruit ripening by acetaldehyde and ethanol is concentration dependent and varies with initial fruit maturity. J. Am. Soc. Hort. Sci. 1997, 122, 392–398. [Google Scholar] [CrossRef]
- Suzuki, Y.; Nuata, Y. Postharvest ethanol vapor treatment of tomato fruit stimulates gene expression of ethylene biosynthetic enzymes and ripening related transcription factors, although it suppresses ripening. Postharvest Biol. Technol. 2019, 152, 118–126. [Google Scholar] [CrossRef]
- Tripodi, P.; Figas, M.R.; Leteo, F.; Soler, S.; Diez, M.J.; Campanelli, G.; Cardi, T.; Prohens, J. Genotypic and Environmental Effects on Morpho-Physiological and Agronomic Performances of a Tomato Diversity Panel in Relation to Nitrogen and Water Stress Under Organic Farming. Front. Plant Sci. 2022, 13, 936596. [Google Scholar] [CrossRef]
Parameters | Spirulina platensis | Dunaliella salina | Chlorella vulgaris |
---|---|---|---|
Organoleptic properties | Dark brown, homogeneous suspension, turbidity and sediment are acceptable, with characteristic smell and taste. | Orange, homogenous suspension, turbidity and sediment are acceptable. With a characteristic smell and taste. | Greenish-brown, homogeneous suspension, turbidity and precipitates are acceptable. The smell and taste were appropriate for the species. |
Physico-chemical properties: density at 20 °C, g cm−3 Ethanol concentration, % pH, 20 °C Content of the non-volatile part, % | 0.974 25 6.8 1.7 | 1.058 25 5.6 27 | 0.971 25 6.4 1.3 |
Microbiological agents: total number of microorganisms, CFU, 1 mL (1 g) Yeast, CFU, 1 mL (1 g) Salmonella sp., 25 g Coliforms, 1 mL (1 g) | <104 <50 No present No present | <104 <50 No present No present | <104 <50 No present No present |
Storage conditions and shelf-life | 8–25 °C, 36 months | 8–25 °C, 36 months | 8–25 °C, 36 months |
Type of Extract | Concentration, % | Vitamin C, mg 100 g−1 FW | * Titratable Acidity, g 100 g−1 FW | pH |
---|---|---|---|---|
Chlorella vulgaris | 10 20 | 17.47 ± 0.82 a 15.47 ± 0.83 a | 0.32 ± 0.03 a 0.28 ± 0.01 a | 4.30 ± 0.11 a 4.27 ± 0.12 a |
Dunaliella salina | 10 20 | 18.55 ± 0.73 a 17.21 ± 0.58 a | 0.28 ± 0.01 a 0.25 ± 0.02 a | 4.25 ± 0.15 a 4.25 ± 0.10 a |
Spirulina platensis | 10 20 | 16.17 ± 0.98 a 15.68 ± 0.94 a | 0.32 ± 0.02 a 0.27 ± 0.02 a | 4.23 ± 0.16 a 4.22 ± 0.10 a |
Control, ethanol | 2 | 16.32 ± 0.64 a | 0.45 ± 0.03 a | 4.24 ± 0.11 a |
4 | 15.68 ± 0.56 a | 0.31 ± 0.03 a | 4.25 ± 0.14 a | |
Control, drinking water | - | 17.96 ± 0.89 a | 0.33 ± 0.02 a | 4.21 ± 0.14 a |
Type of Extract | Concentration, % | Total Soluble Solids, °Brix | Lycopene, mg 100 g−1 FW | β-Carotene, mg 100 g−1 FW | Anthocyanins, mg 100 g−1 FW | Total Phenols, mg 100 g−1 FW |
---|---|---|---|---|---|---|
Chlorella vulgaris | 10 20 | 4.09 ± 0.02 abc 3.92 ± 0.03 a | 0.68 a 0.92 a | 2.85 a 3.48 a | 0.11 ± 0.01 a 0.12 ± 0.01 a | 145.96 ± 2.04 ab 145.49 ± 2.25 ab |
Dunaliella salina | 10 20 | 4.14 ± 0.01 bc 4.29 ± 0.01 cd | 0.65 a 0.81 a | 2.62 a 3.23 a | 0.14 ± 0.02 a 0.09 ± 0.01 a | 142.22 ± 2.02 ab 143.33 ± 1.22 ab |
Spirulina platensis | 10 20 | 4.01 ± 0.04 ab 4.17 ± 0.02 bc | 0.84 a 0.70 a | 3.39 a 2.89 a | 0.12 ± 0.02 a 0.11 ± 0.01 a | 144.21 ± 1.87 ab 142.23 ± 1.33 ab |
Control, ethanol | 2 | 3.99 ± 0.01 ab | 0.60 a | 2.62 a | 0.09 ± 0.01 a | 137.59 ± 1.34 a |
4 | 4.11 ± 0.04 abc | 0.82 a | 3.41 a | 0.07 ± 0.01 a | 142.21 ± 1.53 ab | |
Control drinking water | - | 4.4 0± 0.02 d | 0.98 a | 4.07 a | 0.42 ± 0.04 a | 166.93 ± 2.01 c |
Type of Extract | Concentration, % | Dry Matter, % | Taste Index | Tomato Fruit Mass, g | ||
---|---|---|---|---|---|---|
In Average | Minimum | Maximum | ||||
Chlorella vulgaris extract | 10 20 | 4.64 4.59 | 0.33 0.33 | 94.85 a 104.78 a | 34.7 55.27 | 188.75 195.21 |
Dunaliella salina extract | 10 20 | 4.62 4.88 | 0.37 0.39 | 129.33 a 102.52 a | 55.71 39.45 | 273.75 218.00 |
Spirulina platensis extract | 10 20 | 4.91 4.58 | 0.57 0.54 | 101.66 a 116.15 a | 39.25 40.34 | 185.73 213.28 |
Control, ethanol | 2 | 4.81 4.61 | 0.38 0.34 | 95.11 a 115.21 a | 45.08 37.89 | 170.00 325.76 |
Control, drinking water | - | 3.49 | 0.31 | 92.49 a | 43.05 | 200.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augšpole, I.; Sivicka, I.; Kampuss, K.; Semjonovs, P.; Missa, I. Biologically Active Compounds in Tomato Fruits Under the Application of Water–Ethanol Spirulina, Dunaliella and Chlorella Microalgae Extracts on Plants’ Leaves. Int. J. Plant Biol. 2024, 15, 1338-1352. https://doi.org/10.3390/ijpb15040092
Augšpole I, Sivicka I, Kampuss K, Semjonovs P, Missa I. Biologically Active Compounds in Tomato Fruits Under the Application of Water–Ethanol Spirulina, Dunaliella and Chlorella Microalgae Extracts on Plants’ Leaves. International Journal of Plant Biology. 2024; 15(4):1338-1352. https://doi.org/10.3390/ijpb15040092
Chicago/Turabian StyleAugšpole, Ingrīda, Irina Sivicka, Kaspars Kampuss, Pāvels Semjonovs, and Imants Missa. 2024. "Biologically Active Compounds in Tomato Fruits Under the Application of Water–Ethanol Spirulina, Dunaliella and Chlorella Microalgae Extracts on Plants’ Leaves" International Journal of Plant Biology 15, no. 4: 1338-1352. https://doi.org/10.3390/ijpb15040092
APA StyleAugšpole, I., Sivicka, I., Kampuss, K., Semjonovs, P., & Missa, I. (2024). Biologically Active Compounds in Tomato Fruits Under the Application of Water–Ethanol Spirulina, Dunaliella and Chlorella Microalgae Extracts on Plants’ Leaves. International Journal of Plant Biology, 15(4), 1338-1352. https://doi.org/10.3390/ijpb15040092