Splash Basins in the Operating Room: Clean or Contaminated? A Study on Bacterial Contamination in Splash Basins Used to Rinse Surgical Instruments During Surgery
Abstract
:1. Introduction
Objective
- When splash basins are used for rinsing instruments during surgery, do they become contaminated with bacteria? If so, what kinds of bacteria are most present, and are they pathogenic?
- Do ventilation systems, frequency of door openings, number of instruments in the splash basin, number of people in the operating room, and length of surgery have an influence on the contamination of splash basins?
2. Materials and Methods
2.1. Design
2.2. Setting
2.3. Sample Size and Inclusion and Exclusion Criteria
2.4. Sampling
2.5. Data Collection and Variables
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Do Splash Basins Become Contaminated During Surgery?
4.2. Do the Different Ventilation Systems Have Influence on Bacterial Contamination of Splash Basins?
4.3. Can Bacteria Detected from Splash Basins Lead to Infection?
4.4. Is the Degree of Bacterial Contamination of Splash Basins Influenced by the Frequency of Door Openings, the Number of Instruments in the Splash Basin, the Number of People in the Operating Room, and the Length of Surgery?
4.5. Strengths and Limitations
4.6. Suggestions to Prevent Splash Basins from Transmitting Bacteria to Sterile Instruments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Public Involvement Statement
Guidelines and Standards Statement
Use of Artificial Intelligence
Acknowledgments
Conflicts of Interest
References
- Bashaw, M.A.; Keister, K.J. Perioperative Strategies for Surgical Site Infection Prevention. AORN J. 2018, 109, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Seidelman, J.L.; Mantyh, C.R.; Anderson, D.J. Surgical Site Infection Prevention: A Review. JAMA 2023, 329, 244–252. [Google Scholar] [CrossRef]
- Huys, J. Rengjøring, Desinfeksjon og Sterilisering av Medisinsk Utstyr; Norsk forening for Sterilforsyning: Fredrikstad, Norway, 2014. [Google Scholar]
- Anto, B.; McCabe, J.; Kelly, S.; Morris, S.; Rynn, L.; Corbettfeeney, G. Splash basin bacterial contamination during elective arthroplasty. J. Infect. 2006, 52, 231–232. [Google Scholar] [CrossRef]
- Christensen, M.; Sundstrup, M.; Larsen, H.R.; Olesen, B.; Ryge, C. Vaskefade bliver kontaminerede selv under operationer på en flowstue. Ugeskr. Læger 2014, 176, 455–457. [Google Scholar]
- Glait, S.A.; Schwarzkopf, R.; Gould, S.; Bosco, J.; Slover, J. Is repetitive intraoperative splash basin use a source of bacterial contamination in total joint replacement? Orthopedics 2011, 34, e546–e549. [Google Scholar] [CrossRef]
- Lindgren, K.E.; Pelt, C.E.; Anderson, M.B.; Peters, C.L.; Spivak, E.S.; Gililland, J.M. A Chlorhexidine Solution Reduces Aerobic Organism Growth in Operative Splash Basins in a Randomized Controlled Trial. J. Arthroplast. 2018, 33, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Nazal, M.R.; Galloway, J.L.; Dhaliwal, K.K.; Nishiyama, S.K.; Shields, J.S. Dilute Povidone-Iodine Solution Prevents Intraoperative Contamination of Sterile Water Basins During Total Joint Arthroplasty. J. Arthroplast. 2019, 35, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Baird, R.A.; Nickel, F.R.; Thrupp, L.D.; Rucker, S.; Hawkins, B.B. Splash Basin Contamination in Orthopaedic Surgery. Clin. Orthop. Relat. Res. 1984, 187, 129–133. [Google Scholar] [CrossRef]
- Andersson, B.M.; Lidgren, L.; Schalén, C.; Steen, A. Contamination of Irrigation Solutions in an Operating Theatre. Infect. Control Hosp. Epidemiol. 1984, 5, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, E.O.; Johannesdottir, H.; Robertsson, O.; Mogensen, B. Bacterial contamination of the wound during primary total hip and knee replacement. Acta Orthop. 2014, 85, 159–164. [Google Scholar] [CrossRef]
- Rezzadeh, K.; Parikh, H.; Guanche, I.; Debbi, E.; Rajaee, S.; Schwarzkopf, R.; Paiement, G. Clean or Dirty? A Systematic Review of Splash Basin Use and Its Infectious Potential in Orthopaedic Surgery. Iowa Orthop. J. 2022, 42, 82–89. [Google Scholar]
- Knudsen, R.; Knudsen, S.; Nymark, T.; Anstensrud, T.; Jensen, E.; Malekzadeh, M.L.M.; Overgaard, S. Laminar airflow decreases microbial air contamination compared with turbulent ventilated operating theatres during live total joint arthroplasty: A nationwide survey. J. Hosp. Infect. 2021, 113, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Risstad, H.; Evensen, L.H.; Movik, E.; Lerner, M. Operating Room Ventilation—A Health Technology Assessment—Revised Edition. 2022. Available online: https://www.fhi.no/en/publ/2022/Operating-room-ventilation-revised-edition/ (accessed on 4 June 2024).
- Alijanipour, P.; Karam, J.; Llinás, A.; Vince, K.G.; Zalavras, C.; Austin, M.; Garrigues, G.; Heller, S.; Huddleston, J.; Brian, K.; et al. Operative Environment. J. Orthop. Res. 2014, 32, S60–S80. [Google Scholar] [CrossRef] [PubMed]
- Cahn, J. Clinical Issues-January 2021. AORN J. 2021, 113, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Ogrinc, G.; Davies, L.; Goodman, D.; Batalden, P.; Davidoff, F.; Stevens, D. SQUIRE 2.0, Standards for Quality Improvement Reporting Excellence): Revised Publication Guidelines from a Detailed Consensus Process. 2015. Available online: https://www.equator-network.org/reporting-guidelines/squire/ (accessed on 4 June 2024).
- Labolytic. Filterkopper 100 mL Sterile Med Membranfilter. 2023. Available online: https://labolytic.no/produkter/tilbehor/filterkopper-100ml-sterile-med-membranfilter (accessed on 6 April 2021).
- Croxatto, A.; Prod’Hom, G.; Greub, G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol. Rev. 2012, 36, 380–407. [Google Scholar] [CrossRef] [PubMed]
- Wennberg, A.; Hultman, M. Hurtigmetoder for Online Deteksjon av Mikrobiell Forurensning i Vann 2018. Available online: https://niva.brage.unit.no/niva-xmlui/handle/11250/2565650 (accessed on 6 April 2021).
- Bischoff, P.; Kubilay, N.Z.; Allegranzi, B.; Egger, M.; Gastmeier, P. Effect of laminar airflow ventilation on surgical site infections: A systematic review and meta-analysis. Lancet Infect. Dis. 2017, 17, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.E.; Petzold, M.; Bergh, I.; Karlsson, J.; Eriksson, B.I.; Nilsson, K. Comparison between mixed and laminar airflow systems in operating rooms and the influence of human factors: Experiences from a Swedish orthopedic center. Am. J. Infect. Control 2014, 42, 665–669. [Google Scholar] [CrossRef] [PubMed]
- Dalstrom, D.J.; Venkatarayappa, I.; Manternach, A.L.; Palcic, M.S.; Heyse, B.A.; Prayson, M.J. Time-Dependent Contamination of Opened Sterile Operating-Room Trays. J. Bone Jt. Surg. 2008, 90, 1022–1025. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.N.; Grice, S.S.; Schnell, B.M.; Salisbury, S.R. Operating room traffic: Is there any role of monitoring it? J. Pediatr. Orthop. 2010, 30, 617–623. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcus epidermidis—The ‘accidental’ pathogen. Nat. Rev. Microbiol. 2009, 7, 555–567. [Google Scholar] [CrossRef]
- Wickham Laboratories. Fact Sheet, Microccus luteus. 2019. Available online: https://wickhammicro.co.uk/Content/Downloads/FACT-SHEET-M-Luteus.pdf (accessed on 1 August 2024).
- Cui, B.; Smooker, P.M.; Rouch, D.A.; Daley, A.J.; Deighton, M.A. Differences between Two Clinical Staphylococcus capitis Subspecies as Revealed by Biofilm, Antibiotic Resistance, and Pulsed-Field Gel Electrophoresis Profiling. J. Clin. Microbiol. 2013, 51, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Tevell, S.; Hellmark, B.; Nilsdotter-Augustinsson, Å.; Söderquist, B. Staphylococcus capitis isolated from prosthetic joint infections. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 36, 115–122. [Google Scholar] [CrossRef]
- Smith, E.B.; Raphael, I.J.; Maltenfort, M.G.; Honsawek, S.; Dolan, K.; Younkins, E.A. The Effect of Laminar Air Flow and Door Openings on Operating Room Contamination. J. Arthroplast. 2013, 28, 1482–1485. [Google Scholar] [CrossRef] [PubMed]
- Dancer, S.; Stewart, M.; Coulombe, C.; Gregori, A.; Virdi, M. Surgical site infections linked to contaminated surgical instruments. J. Hosp. Infect. 2012, 81, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Bosco, R.; Cevenini, G.; Gambelli, S.; Nante, N.; Messina, G. Improvement and standardization of disinfection in hospital theatre with ultraviolet-C technology. J. Hosp. Infect. 2022, 128, 19–25. [Google Scholar] [CrossRef]
Variables | All (n = 32) | LAF/UDAF Ventilation (n = 17) | COV/TMV (n = 15) | p-Value |
---|---|---|---|---|
Bacterial growth, n (%) | 14 (44) | 7 (41) | 7 (47) | 0.760 a |
Length of surgery (minutes), mean (SD) | 156 (74) | 200 (60) | 107 (57) | <0.001 b |
People present in a sterile gown, mean (IQR) | 3 (3, 4) | 4 (4, 5) | 3 (3, 3) | <0.001 c |
People circulating, mean (IQR) | 7 (6, 9) | 7 (7, 9) | 6 (6, 9) | 0.580 c |
Door openings (per operation), mean (IQR) | 46 (34, 62) | 48 (44, 64) | 32 (27, 54) | 0.023 c |
Instruments in the splash basin, mean (IQR) | 11 (15, 16) | 15 (4, 16) | 10 (5, 18) | 0.980 c |
Unadjusted Models | Fully Adjusted Model (n = 31) | ||||||
---|---|---|---|---|---|---|---|
Sources | n | OR | 95% CI | p | OR | 95% CI | p |
Sterile persons present, n | 32 | 1.04 | (0.54, 1.99) | 0.901 | 0.84 | (0.26, 2.68) | 0.763 |
Unsterile persons present, n | 32 | 1.06 | (0.79, 1.42) | 0.677 | 1.05 | (0.67, 1.67) | 0.825 |
Door openings, per 10 min | 32 | 1.12 | (0.75, 1.67) | 0.590 | 0.78 | (0.36, 1.71) | 0.530 |
Instruments in splash basin, per 10 min | 31 * | 1.19 | (0.41, 3.51) | 0.722 | 1.06 | (0.32, 3.56) | 0.922 |
Length of surgery, per 10 min | 32 | 1.03 | (0.93, 1.13) | 0.559 | 1.12 | (0.91, 1.37) | 0.268 |
COV/TMV vs. LAF/UDAF ventilation | 32 | 1.25 | (0.31, 5.07) | 0.755 | 1.71 | (0.18, 18.09) | 0.652 |
Bacteria | Samples Before Surgery | Samples After Surgery |
---|---|---|
Staphylococcus epidermidis | 7 | |
Staphylococcus hominis | 1 | 1 |
Micrococcus luteus | 2 | 5 |
Staphylococcus capitis | 4 | |
Staphylococcus haemolyticus | 1 | |
Bacillus thuringiensis/cereus/Bacillus species | 1 | |
Corynebacterium lipophiloflavum/Corynebacterium species | 1 | 1 |
No peaks found | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalsen, K.S.; Helgeland, L.H.; Dåvøy, G.M.; Reime, M.H.; Kvam, F.-I. Splash Basins in the Operating Room: Clean or Contaminated? A Study on Bacterial Contamination in Splash Basins Used to Rinse Surgical Instruments During Surgery. Nurs. Rep. 2024, 14, 4060-4069. https://doi.org/10.3390/nursrep14040296
Michalsen KS, Helgeland LH, Dåvøy GM, Reime MH, Kvam F-I. Splash Basins in the Operating Room: Clean or Contaminated? A Study on Bacterial Contamination in Splash Basins Used to Rinse Surgical Instruments During Surgery. Nursing Reports. 2024; 14(4):4060-4069. https://doi.org/10.3390/nursrep14040296
Chicago/Turabian StyleMichalsen, Karoline Stavang, Linda Helen Helgeland, Grethe Myklestul Dåvøy, Marit Hegg Reime, and Fred-Ivan Kvam. 2024. "Splash Basins in the Operating Room: Clean or Contaminated? A Study on Bacterial Contamination in Splash Basins Used to Rinse Surgical Instruments During Surgery" Nursing Reports 14, no. 4: 4060-4069. https://doi.org/10.3390/nursrep14040296
APA StyleMichalsen, K. S., Helgeland, L. H., Dåvøy, G. M., Reime, M. H., & Kvam, F.-I. (2024). Splash Basins in the Operating Room: Clean or Contaminated? A Study on Bacterial Contamination in Splash Basins Used to Rinse Surgical Instruments During Surgery. Nursing Reports, 14(4), 4060-4069. https://doi.org/10.3390/nursrep14040296