Nanoplastic-Induced Developmental Toxicity in Ascidians: Comparative Analysis of Chorionated and Dechorionated Phallusia mammillata Embryos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Amino-Modified PS NPs (PS-NH2)
2.2. Animal and Gametes Collection
2.3. Embryotoxicity Assay
2.4. Morphometric Analysis of Larval Development
2.5. Genotoxicity Assay
2.6. Statistical Analysis
3. Results
3.1. PS-NH2 NPs Alter the Normal Larval Development
3.2. Quantitative Analysis of Phenotypes
3.3. PS-NH2 NPs Are Not Genotoxic
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrady, A.L. Microplastics in the Marine Environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Ekvall, M.T.; Lundqvist, M.; Kelpsiene, E.; Šileikis, E.; Gunnarsson, S.B.; Cedervall, T. Nanoplastics Formed during the Mechanical Breakdown of Daily-Use Polystyrene Products. Nanoscale Adv. 2019, 1, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Gigault, J.; ter Halle, A.; Baudrimont, M.; Pascal, P.-Y.; Gauffre, F.; Phi, T.-L.; El Hadri, H.; Grassl, B.; Reynaud, S. Current Opinion: What Is a Nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Lambert, S.; Wagner, M. Characterisation of Nanoplastics during the Degradation of Polystyrene. Chemosphere 2016, 145, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Jahnke, A.; Arp, H.P.H.; Escher, B.I.; Gewert, B.; Gorokhova, E.; Kühnel, D.; Ogonowski, M.; Potthoff, A.; Rummel, C.; Schmitt-Jansen, M.; et al. Reducing Uncertainty and Confronting Ignorance about the Possible Impacts of Weathering Plastic in the Marine Environment. Environ. Sci. Technol. Lett. 2017, 4, 85–90. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as Contaminants in the Marine Environment: A Review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Ter Halle, A.; Jeanneau, L.; Martignac, M.; Jardé, E.; Pedrono, B.; Brach, L.; Gigault, J. Nanoplastic in the North Atlantic Subtropical Gyre. Env. Sci Technol 2017, 51, 13689–13697. [Google Scholar] [CrossRef]
- Schirinzi, G.F.; Llorca, M.; Seró, R.; Moyano, E.; Barceló, D.; Abad, E.; Farré, M. Trace Analysis of Polystyrene Microplastics in Natural Waters. Chemosphere 2019, 236, 124321. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.M.; Bebianno, M.J. Nanoplastics Impact on Marine Biota: A Review. Environ. Pollut. 2021, 273, 116426. [Google Scholar] [CrossRef]
- Shi, C.; Liu, Z.; Yu, B.; Zhang, Y.; Yang, H.; Han, Y.; Wang, B.; Liu, Z.; Zhang, H. Emergence of Nanoplastics in the Aquatic Environment and Possible Impacts on Aquatic Organisms. Sci. Total Environ. 2024, 906, 167404. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Venâncio, C.; Lopes, I.; Oliveira, M. Nanoplastics and Marine Organisms: What Has Been Studied? Environ. Toxicol. Pharmacol. 2019, 67, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Corsi, I.; Bellingeri, A.; Eliso, M.C.; Grassi, G.; Liberatori, G.; Murano, C.; Sturba, L.; Vannuccini, M.L.; Bergami, E. Eco-Interactions of Engineered Nanomaterials in the Marine Environment: Towards an Eco-Design Framework. Nanomaterials 2021, 11, 1903. [Google Scholar] [CrossRef] [PubMed]
- Della Torre, C.; Bergami, E.; Salvati, A.; Faleri, C.; Cirino, P.; Dawson, K.A.; Corsi, I. Accumulation and Embryotoxicity of Polystyrene Nanoparticles at Early Stage of Development of Sea Urchin Embryos Paracentrotus lividus. Environ. Sci. Technol. 2014, 48, 12302–12311. [Google Scholar] [CrossRef]
- Canesi, L.; Ciacci, C.; Fabbri, R.; Balbi, T.; Salis, A.; Damonte, G.; Cortese, K.; Caratto, V.; Monopoli, M.P.; Dawson, K.; et al. Interactions of Cationic Polystyrene Nanoparticles with Marine Bivalve Hemocytes in a Physiological Environment: Role of Soluble Hemolymph Proteins. Environ. Res. 2016, 150, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Balbi, T.; Camisassi, G.; Montagna, M.; Fabbri, R.; Franzellitti, S.; Carbone, C.; Dawson, K.; Canesi, L. Impact of Cationic Polystyrene Nanoparticles (PS-NH2) on Early Embryo Development of Mytilus galloprovincialis: Effects on Shell Formation. Chemosphere 2017, 186, 1–9. [Google Scholar] [CrossRef]
- Auguste, M.; Balbi, T.; Ciacci, C.; Canonico, B.; Papa, S.; Borello, A.; Vezzulli, L.; Canesi, L. Shift in Immune Parameters After Repeated Exposure to Nanoplastics in the Marine Bivalve Mytilus. Front. Immunol. 2020, 11, 426. [Google Scholar] [CrossRef] [PubMed]
- Auguste, M.; Lasa, A.; Balbi, T.; Pallavicini, A.; Vezzulli, L.; Canesi, L. Impact of Nanoplastics on Hemolymph Immune Parameters and Microbiota Composition in Mytilus galloprovincialis. Mar. Environ. Res. 2020, 159, 105017. [Google Scholar] [CrossRef] [PubMed]
- Eliso, M.C.; Bergami, E.; Manfra, L.; Spagnuolo, A.; Corsi, I. Toxicity of Nanoplastics during the Embryogenesis of the Ascidian Ciona robusta (Phylum Chordata). Nanotoxicology 2020, 14, 1415–1431. [Google Scholar] [CrossRef] [PubMed]
- Eliso, M.C.; Bergami, E.; Bonciani, L.; Riccio, R.; Belli, G.; Belli, M.; Corsi, I.; Spagnuolo, A. Application of Transcriptome Profiling to Inquire into the Mechanism of Nanoplastics Toxicity during Ciona robusta Embryogenesis. Environ. Pollut. 2023, 318, 120892. [Google Scholar] [CrossRef] [PubMed]
- Geremia, E.; Muscari Tomajoli, M.T.; Murano, C.; Petito, A.; Fasciolo, G. The Impact of Micro- and Nanoplastics on Aquatic Organisms: Mechanisms of Oxidative Stress and Implications for Human Health—A Review. Environments 2023, 10, 161. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Pérez, E.; Jiang, Q.; Chen, Q.; Jiao, Y.; Huang, Y.; Yang, Y.; Zhao, Y. Polystyrene Nanoplastic Induces Oxidative Stress, Immune Defense, and Glycometabolism Change in Daphnia Pulex: Application of Transcriptome Profiling in Risk Assessment of Nanoplastics. J. Hazard. Mater. 2021, 402, 123778. [Google Scholar] [CrossRef]
- Contino, M.; Ferruggia, G.; Indelicato, S.; Pecoraro, R.; Scalisi, E.M.; Salvaggio, A.; Brundo, M.V. Sublethal Effects of Polystyrene Nanoplastics on the Embryonic Development of Artemia salina (Linnaeus, 1758). Animals 2023, 13, 3152. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.-K.; Chu, W.-L.; Kok, Y.-Y.; Lee, C.-S. Distribution of Microplastics and Nanoplastics in Aquatic Ecosystems and Their Impacts on Aquatic Organisms, with Emphasis on Microalgae. In Reviews of Environmental Contamination and Toxicology; De Voogt, P., Ed.; Reviews of Environmental Contamination and Toxicology; Springer International Publishing: Cham, Swizterland, 2018; Volume 246, pp. 133–158. ISBN 978-3-319-97739-3. [Google Scholar]
- Dedman, C.J.; Christie-Oleza, J.A.; Fernández-Juárez, V.; Echeveste, P. Cell Size Matters: Nano- and Micro-Plastics Preferentially Drive Declines of Large Marine Phytoplankton Due to Co-Aggregation. J. Hazard. Mater. 2022, 424, 127488. [Google Scholar] [CrossRef] [PubMed]
- Tallec, K.; Huvet, A.; Di Poi, C.; González-Fernández, C.; Lambert, C.; Petton, B.; Le Goïc, N.; Berchel, M.; Soudant, P.; Paul-Pont, I. Nanoplastics Impaired Oyster Free Living Stages, Gametes and Embryos. Environ. Pollut. 2018, 242, 1226–1235. [Google Scholar] [CrossRef] [PubMed]
- De Santis, R.; Jamunno, G.; Rosati, F. A Study of the Chorion and the Follicle Cells in Relation to the Sperm-Egg Interaction in the Ascidian, Ciona intestinalis. Dev. Biol. 1980, 74, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Cotelli, F.; Andronico, F.; Santis, R.; Monroy, A.; Rosati, F. Differentiation of the Vitelline Coat in the ascidianCiona intestinalis: An Ultrastructural Study. Wilhelm Roux’ Arch. 1981, 190, 252–258. [Google Scholar] [CrossRef]
- Sato, Y.; Morisawa, M. Loss of Test Cells Leads to the Formation of New Tunic Surface Cells and Abnormal Metamorphosis in Larvae of Ciona intestinalis (Chordata, Ascidiacea). Dev. Genes Evol. 1999, 209, 592–600. [Google Scholar] [CrossRef]
- Thompson, H.; Shimeld, S.M. Transmission and Scanning Electron Microscopy of the Accessory Cells and Chorion During Development of Ciona intestinalis Type B Embryos and the Impact of Their Removal on Cell Morphology. Zool. Sci. 2015, 32, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Satoh, N. A Deep Dive into the Development of Sea Squirts. Nature 2019, 571, 333–334. [Google Scholar] [CrossRef] [PubMed]
- Delsuc, F.; Brinkmann, H.; Chourrout, D.; Philippe, H. Tunicates and Not Cephalochordates Are the Closest Living Relatives of Vertebrates. Nature 2006, 439, 965–968. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Satou, Y. Ascidian Embryonic Cells with Properties of Neural-Crest Cells and Neuromesodermal Progenitors of Vertebrates. Nat. Ecol. Evol. 2024, 8, 1154–1164. [Google Scholar] [CrossRef] [PubMed]
- Rosner, A.; Rinkevich, B. Harnessing Ascidians as Model Organisms for Environmental Risk Assessment. Environments 2024, 11, 232. [Google Scholar] [CrossRef]
- Beyer, J.; Song, Y.; Lillicrap, A.; Rodríguez-Satizábal, S.; Chatzigeorgiou, M. Ciona Spp. and Ascidians as Bioindicator Organisms for Evaluating Effects of Endocrine Disrupting Chemicals: A Discussion Paper. Mar. Environ. Res. 2023, 191, 106170. [Google Scholar] [CrossRef]
- Dumollard, R.; Gazo, I.; Gomes, I.D.L.; Besnardeau, L.; McDougall, A. Ascidians: An Emerging Marine Model for Drug Discovery and Screening. Curr. Top Med. Chem. 2017, 17, 2056–2066. [Google Scholar] [CrossRef] [PubMed]
- Sladitschek, H.L.; Fiuza, U.-M.; Pavlinic, D.; Benes, V.; Hufnagel, L.; Neveu, P.A. MorphoSeq: Full Single-Cell Transcriptome Dynamics Up to Gastrulation in a Chordate. Cell 2020, 181, 922–935.e21. [Google Scholar] [CrossRef]
- Hotta, K.; Miyasaka, S.O.; Oka, K.; Shito, T.T. Staring into a Crystal Ball: Understanding Evolution and Development of in Vivo Aquatic Organismal Transparency. Front. Ecol. Evol. 2024, 12, 1428976. [Google Scholar] [CrossRef]
- Yasuo, H.; McDougall, A. Practical Guide for Ascidian Microinjection: Phallusia mammillata. In Transgenic Ascidians; Sasakura, Y., Ed.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2018; Volume 1029, pp. 15–24. ISBN 978-981-10-7544-5. [Google Scholar]
- Pennati, R.; Groppelli, S.; Zega, G.; Biggiogero, M.; De Bernardi, F.; Sotgia, C. Toxic Effects of Two Pesticides, Imazalil and Triadimefon, on the Early Development of the Ascidian Phallusia mammillata (Chordata, Ascidiacea). Aquat. Toxicol. 2006, 79, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Messinetti, S.; Mercurio, S.; Pennati, R. Effects of Bisphenol A on the Development of Pigmented Organs in the Ascidian Phallusia mammillata. Invertebr. Biol. 2018, 137, 329–338. [Google Scholar] [CrossRef]
- Groppelli, S.; Zega, G.; Biggiogero, M.; De Bernardi, F.; Sotgia, C.; Pennati, R. Fluconazole Induces Teratogenic Effects in the Tunicate Phallusia mammillata. Environ. Toxicol. Pharmacol. 2007, 23, 265–271. [Google Scholar] [CrossRef]
- Gomes, I.D.L.; Gazo, I.; Besnardeau, L.; Hebras, C.; McDougall, A.; Dumollard, R. Potential Roles of Nuclear Receptors in Mediating Neurodevelopmental Toxicity of Known Endocrine-disrupting Chemicals in Ascidian Embryos. Mol. Reprod. Dev. 2019, 86, 1333–1347. [Google Scholar] [CrossRef]
- Gazo, I.; Gomes, I.D.L.; Savy, T.; Besnardeau, L.; Hebras, C.; Benaicha, S.; Brunet, M.; Shaliutina, O.; McDougall, A.; Peyrieras, N.; et al. High-Content Analysis of Larval Phenotypes for the Screening of Xenobiotic Toxicity Using Phallusia mammillata Embryos. Aquat. Toxicol. 2021, 232, 105768. [Google Scholar] [CrossRef]
- Lambert, C.C.; Brandt, C.L. The Effect Of Light On The Spawning Of Ciona intestinalis. Biol Bull 1967, 132, 222–228. [Google Scholar] [CrossRef]
- Gomes, I.D.L.; Gazo, I.; Nabi, D.; Besnardeau, L.; Hebras, C.; McDougall, A.; Dumollard, R. Bisphenols Disrupt Differentiation of the Pigmented Cells during Larval Brain Formation in the Ascidian. Aquat. Toxicol. 2019, 216, 105314. [Google Scholar] [CrossRef]
- Krasowski, M.D.; Ni, A.; Hagey, L.R.; Ekins, S. Evolution of Promiscuous Nuclear Hormone Receptors: LXR, FXR, VDR, PXR, and CAR. Mol. Cell. Endocrinol. 2011, 334, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Webster, F.; Gagné, M.; Patlewicz, G.; Pradeep, P.; Trefiak, N.; Judson, R.S.; Barton-Maclaren, T.S. Predicting Estrogen Receptor Activation by a Group of Substituted Phenols: An Integrated Approach to Testing and Assessment Case Study. Regul. Toxicol. Pharmacol. 2019, 106, 278–291. [Google Scholar] [CrossRef]
- Richter, I.; Fidler, A.E. Tunicate Pregnane X Receptor (PXR) Orthologs: Transcript Characterization and Natural Variation. Mar. Genom. 2015, 23, 99–108. [Google Scholar] [CrossRef]
- Sun, X.; Wang, X.; Booth, A.M.; Zhu, L.; Sui, Q.; Chen, B.; Qu, K.; Xia, B. New Insights into the Impact of Polystyrene Micro/Nanoplastics on the Nutritional Quality of Marine Jacopever (Sebastes schlegelii). Sci. Total Environ. 2023, 903, 166560. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, H.; Wang, Y.; Duan, Z.; Cui, W.; Shi, Y.; Qin, L. Influence of Functional Group Modification on the Toxicity of Nanoplastics. Front. Mar. Sci. 2022, 8, 800782. [Google Scholar] [CrossRef]
Treatment | N | Oc/Ot Area, μm2, Mean ± S.E. | Oc/Ot Area % Compared to the Control | Oc/Ot Distance, μm, Mean ± S.E. | Oc/Ot Distance % Compared to the Control | % Elongated Palps, Means ± S.E. | Elongated Palps % Compared to the Control | Trunk L/W Ratio, Means ± S.E. | Trunk L/W % Compared to the Control | Tail Length, μm, Means ± S.E. | Tail Length % Compared to the Control |
---|---|---|---|---|---|---|---|---|---|---|---|
Ctrl | 143 | 276.4 ± 60.9 | - | 18.8 ± 6.7 | - | 100.0 ± 0.0 | - | 1.9 ± 0.2 | - | 589.7 ± 98.7 | - |
2 µg mL−1 PS-NH2 | 85 | 271.0 ± 64.4 | 98.0 | 19.1 ± 6.3 | 101.3 | 86.7 ± 8.2 | 86.7 | 1.9 ± 0.2 | 104.1 | 553.5 ± 94.0 | 93.9 |
5 µg mL−1 PS-NH2 | 110 | 274.5± 65.0 | 99.3 | 18.3 ± 8.8 | 97.0 | 61.8 ± 17.2 | 61.8 | 2.0 ± 0.2 | 105.2 | 524.4 ± 92.6 *** | 88.9 |
7.5 µg mL−1 PS-NH2 | 134 | 267.9 ± 64.6 | 96.9 | 14.4 ± 10.0 ** | 76.3 | 33.5 ± 17.9 | 33.5 | 1.7 ± 0.4 *** | 90.5 | 461.4 ± 104.7 *** | 78.2 |
10 µg mL−1 PS-NH2 | 105 | 268.8 ± 56.9 | 97.3 | 11.6 ± 10.4 *** | 61.7 | 23.2 ± 15.9 * | 23.2 | 1.6 ± 0.3 *** | 85.8 | 436.6 ± 93.5 *** | 74.0 |
15 µg mL−1 PS-NH2 | 58 | 264.9 ± 67.1 | 95.8 | 6.9 ± 9.5 *** | 36.9 | 1.8 ± 3.7 *** | 1.8 | 1.4 ± 0.3 *** | 75.3 | 343.6 ± 120.5 *** | 58.3 |
Treatment | N | Oc/Ot Area, μm2, Mean ± S.E. | Oc/Ot Area % Compared to the Control | Oc/Ot Distance, μm, Mean ± S.E. | Oc/Ot Distance % Compared to the Control | % Elongated Palps, Means ± S.E. | Elongated Palps % Compared to the Control | Trunk L/W Ratio, Means ± S.E. | Trunk L/W % Compared to the Control | Tail Length, μm, Means ± S.E. | Tail Length % Compared to the Control |
---|---|---|---|---|---|---|---|---|---|---|---|
Ctrl | 137 | 294.9.0 ± 64.0 | - | 23.6 ± 7.7 | - | 96.3 ± 3.1 | - | 1.8 ± 0.3 | - | 577.2 ± 94.6 | - |
2 µg mL−1 PS-NH2 | 122 | 256.2 ± 107.4 | 86.9 | 17.2 ± 10.5 *** | 72.9 | 79.5 ± 19.4 | 82.6 | 1.6 ± 0.2 | 92.9 | 566.0 ± 65.2 | 98.1 |
3.5 µg mL−1 PS-NH2 | 56 | 254.5 ± 56.9 ** | 86.3 | 12.7 ± 9.8 *** | 53.8 | 11.6 ± 11.5 | 12.0 | 1.3 ± 0.1 *** | 76.0 | 537.8 ± 58.5 ** | 93.2 |
5 µg mL−1 PS-NH2 | 167 | 273.6 ± 83.7 | 92.8 | 8.6 ± 10.8 *** | 36.4 | 24.7 ± 11.2 | 25.7 | 1.3 ± 0.2 *** | 75.3 | 452.7 ± 113.4 * | 78.4 |
7.5 µg mL−1 PS-NH2 | 141 | 259.0 ± 100.6 | 87.8 | 7.8 ± 9.7 *** | 33.2 | 4.4 ± 4.3 *** | 4.6 | 1.3 ± 0.2 *** | 72.9 | 433.0 ± 97.0 * | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eliso, M.C.; Corsi, I.; Spagnuolo, A.; Dumollard, R. Nanoplastic-Induced Developmental Toxicity in Ascidians: Comparative Analysis of Chorionated and Dechorionated Phallusia mammillata Embryos. J. Xenobiot. 2025, 15, 10. https://doi.org/10.3390/jox15010010
Eliso MC, Corsi I, Spagnuolo A, Dumollard R. Nanoplastic-Induced Developmental Toxicity in Ascidians: Comparative Analysis of Chorionated and Dechorionated Phallusia mammillata Embryos. Journal of Xenobiotics. 2025; 15(1):10. https://doi.org/10.3390/jox15010010
Chicago/Turabian StyleEliso, Maria Concetta, Ilaria Corsi, Antonietta Spagnuolo, and Rémi Dumollard. 2025. "Nanoplastic-Induced Developmental Toxicity in Ascidians: Comparative Analysis of Chorionated and Dechorionated Phallusia mammillata Embryos" Journal of Xenobiotics 15, no. 1: 10. https://doi.org/10.3390/jox15010010
APA StyleEliso, M. C., Corsi, I., Spagnuolo, A., & Dumollard, R. (2025). Nanoplastic-Induced Developmental Toxicity in Ascidians: Comparative Analysis of Chorionated and Dechorionated Phallusia mammillata Embryos. Journal of Xenobiotics, 15(1), 10. https://doi.org/10.3390/jox15010010