Cardiotoxicity of Chemotherapy: A Multi-OMIC Perspective
Abstract
:1. Introduction
1.1. Chemotherapy-Induced Cardiac Dysfunction
A Cardiovascular risk factors In cancer survivors | ||||
| 32.1% | |||
| 26.4% | |||
| 20.8% | |||
| 13.2% | |||
| 5.7% | |||
B | Drugs | Cardiac dysfunction | Coronary events | Hypertension |
Cytostatic agents | Cisplatin, Gemcitabine, Taxanes | + | +++ | + |
EGFR inhibitors | Erlotinib | +++ | ||
Gefitinib | + | |||
Afatinib | + | |||
Trastuzumab | +++ | |||
Other Tyrosine kinase inhibitors | Dasatinib | +++ | ||
Sunitinib | + | +++ | ||
Sorafenib | + | +++ | ||
VEGF inhibitors | Bevacizumab | + | +++ | +++ |
Nintedanib | +++ | +++ | ||
Immune checkpoint inhibitors | Pembrolizumab, Nivo-lumab, Durvalumab, Atezolizumab | +++ | +++ | |
MEK/BRAF inhibitors | Trametinib | + | +++ | |
Dafrafenib | + | +++ | ||
Proteasome inhibitors | Bortezomib Carfilzomib | ++ | ++ |
1.2. Monitoring of Cardiotoxicity Strategies
1.3. Known Mechanism of Action of Cardiotoxicity
2. Main Text
2.1. OMICs Analyses for Unbiased Analysis of Cardiotoxicity
2.1.1. Transcriptomics Analyses of the Anthracyclines Signature in Cardiomyocytes
2.1.2. Transcriptomics Analysis of the Anthracyclines Cardiotoxicity Signatures in Cardiac Endothelial Cells (ECs)
2.1.3. Transcriptomics Analysis of the Sorafenib/Sunitinib Cardiotoxicity Signatures
2.1.4. Transcriptomics Analysis of the Indisulam Cardiotoxicity Signatures
2.1.5. Transcriptomics Analysis of the Trastuzumab Cardiotoxicity Signatures
2.1.6. Multi-OMICs Analysis and Targeting of the 5-Fluorouracil (5-FU) Cardiotoxicity
2.1.7. Targeting of the Paclixatel-Mediated Cardiotoxicity
2.2. Post-Translational Modifications (PTMs) Associated with Cardiotoxicity
2.2.1. Kinases Associated with Cardiotoxicity
2.2.2. Ubiquitin Ligases Associated with Cardiotoxicity
2.2.3. Ubiquitin Hydrolases Associated with Cardiotoxicity
2.3. Identification of Therapeutic Targets Using Multi-OMICs for Cardioprotection
2.3.1. Targeting the TGF-β Pathway for Cardioprotection
2.3.2. Targeting the RELA/NF-κB Pathway for Cardioprotection
2.3.3. Targeting the ADAM15/TNF Pathway for Cardioprotection
2.3.4. Targeting the EPAC1/RAP1 Pathway for Cardioprotection
2.3.5. Targeting the AMPK Pathway for Cardioprotection
2.3.6. Additional Pathways that Could Be Targeted for Cardioprotection
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaborowska-Szmit, M.; Krzakowski, M.; Kowalski, D.M.; Szmit, S. Cardiovascular Complications of Systemic Therapy in Non-Small-Cell Lung Cancer. J. Clin. Med. 2020, 9, 1268. [Google Scholar] [CrossRef]
- Dos Santos, V.M.; Dos Santos, L.A.M. Cardiac and lymphatic metastases from lung cancer. Arch. Iran. Med. 2018, 21, 82–83. [Google Scholar] [PubMed]
- Sosinska-Mielcarek, K.; Senkus-Konefka, E.; Jassem, J.; Kulczycka, J.; Jendrzejewski, J.; Jaskiewicz, K. Cardiac involvement at presentation of non-small-cell lung cancer. J. Clin. Oncol. 2008, 26, 1010–1011. [Google Scholar] [CrossRef] [PubMed]
- Ciurus, T.; Maciejewski, M.; Lelonek, M. Cardiac involvement of lung cancer mimicking myocardial infarction. Kardiol. Pol. 2013, 71, 994. [Google Scholar] [CrossRef]
- Mizutani, H.; Kume, H.; Kimura, T.; Ogawa, M.; Yoshida, N.; Yoshida, M.; Ito, Y.; Suzuki, R.; Yamaki, K. Primary lung cancer (adenocarcinoma) associated with cardiac sarcoidosis. Nihon Kokyuki Gakkai Zasshi = J. Jpn. Respir. Soc. 1999, 37, 489–494. [Google Scholar]
- Gowda, R.M.; Khan, I.A.; Mehta, N.J.; Gowda, M.R.; Hyde, P.; Vasavada, B.C.; Sacchi, T.J. Cardiac tamponade and superior vena cava syndrome in lung cancer—A case report. Angiology 2004, 55, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Lafaras, C.; Mandala, E.; Saratzis, A.; Platogiannis, D.; Barbetakis, N.; Papoti, S.; Christopoulou, M.; Ilonidis, G.; Bischiniotis, T. Pro-brain natriuretic peptide is a sensitive marker for detecting cardiac metastases in patients with non-small cell lung cancer. Onkologie 2009, 32, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Strauss, B.L.; Matthews, M.J.; Cohen, M.H.; Simon, R.; Tejada, F. Cardiac metastases in lung cancer. Chest 1977, 71, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Bodner, W.R.; Garg, M.; Tang, J.; Ohri, N. Cardiac Irradiation Predicts Activity Decline in Patients Receiving Concurrent Chemoradiation for Locally Advanced Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, D.; Pizzi, C.; Donal, E.; Galli, E. Cancer and Heart Failure: Dangerous Liaisons. J. Cardiovasc. Dev. Dis. 2024, 11, 263. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Amini-Adle, M.; Maucort-Boulch, D.; Robinson, P.; Thomas, L.; Dalle, S.; Courand, P.Y. Left ventricular ejection fraction decrease related to BRAF and/or MEK inhibitors in metastatic melanoma patients: A retrospective analysis. Cancer Med. 2020, 9, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Mert, L.; Bilgiç, B.; Şenol, B.K.; Zülfikar, O.B.; Durmaz, H.; Polat, G. What is the Effect of Bevacizumab on Cartilage and Synovium in a Rabbit Model of Hemophilic Arthropathy? Clin. Orthop. Relat. Res. 2023, 481, 1634–1647. [Google Scholar] [CrossRef]
- Jang, B.; Jeong, J.; Heo, K.N.; Koh, Y.; Lee, J.Y. Real-world incidence and risk factors of bortezomib-related cardiovascular adverse events in patients with multiple myeloma. Blood Res. 2024, 59, 3. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.D.; Laurie, M.; Xia, Q.; Dreyfus, B.; Jain, N.; Jain, A.; Lane, D.; Lenihan, D.J. Risk profiles and incidence of cardiovascular events across different cancer types. ESMO Open 2023, 8, 101830. [Google Scholar] [CrossRef]
- Camilli, M.; Cipolla, C.M.; Dent, S.; Minotti, G.; Cardinale, D.M. Anthracycline Cardiotoxicity in Adult Cancer Patients. JACC CardioOncol 2024, 6, 655–677. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, Y.; Dong, Y.; Lin, S.; Guan, W.; Song, J. Resveratrol as a cardioprotective adjuvant for 5-fluorouracil in the treatment of gastric cancer cells. Braz. J. Med. Biol. Res. 2024, 57, e13537. [Google Scholar] [CrossRef]
- Daher, I.N.; Daigle, T.R.; Bhatia, N.; Durand, J.B. The prevention of cardiovascular disease in cancer survivors. Tex. Heart Inst. J. 2012, 39, 190–198. [Google Scholar]
- Orphanos, G.S.; Ioannidis, G.N.; Ardavanis, A.G. (2009). Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol. 2009, 48, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Di Lisi, D.; Leggio, G.; Vitale, G.; Arrotti, S.; Iacona, R.; Inciardi, R.M.; Nobile, D.; Bonura, F.; Novo, G.; Russo, A.; et al. Chemotherapy cardiotoxicity: Cardioprotective drugs and early identification of cardiac dysfunction. J. Cardiovasc. Med. 2016, 17, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Ekram, J.; Rathore, A.; Avila, C.; Hussein, R.; Alomar, M. Unveiling the Cardiotoxicity Conundrum: Navigating the Seas of Tyrosine Kinase Inhibitor Therapies. Cancer Control 2024, 31, 10732748241285755. [Google Scholar] [CrossRef] [PubMed]
- Paterek, A.; Oknińska, M.; Pilch, Z.; Sosnowska, A.; Ramji, K.; Mackiewicz, U.; Golab, J.; Nowis, D.; Mączewski, M. Arginase Inhibition Mitigates Bortezomib-Exacerbated Cardiotoxicity in Multiple Myeloma. Cancers 2023, 15, 2191. [Google Scholar] [CrossRef] [PubMed]
- Ramji, K.; Grzywa, T.M.; Sosnowska, A.; Paterek, A.; Okninska, M.; Pilch, Z.; Barankiewicz, J.; Garbicz, F.; Borg, K.; Bany-Laszewicz, U.; et al. Targeting arginase-1 exerts antitumor effects in multiple myeloma and mitigates bortezomib-induced cardiotoxicity. Sci. Rep. 2022, 12, 19660. [Google Scholar] [CrossRef] [PubMed]
- Krüger, D.N.; Bosman, M.; Van Craenenbroeck, E.M.; De Meyer, G.R.Y.; Franssen, C.; Guns, P.J. Dexrazoxane prevents vascular toxicity in doxorubicin-treated mice. Cardiooncology 2024, 10, 65. [Google Scholar] [CrossRef]
- Ivanisevic, T.; Sewduth, R.N. Multi-Omics Integration for the Design of Novel Therapies and the Identification of Novel Biomarkers. Proteomes 2023, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef]
- Avraham, S.; Abu-Sharki, S.; Shofti, R.; Haas, T.; Korin, B.; Kalfon, R.; Friedman, T.; Shiran, A.; Saliba, W.; Shaked, Y.; et al. Early Cardiac Remodeling Promotes Tumor Growth and Metastasis. Circulation 2020, 142, 670–683. [Google Scholar] [CrossRef]
- Davie, J.R.; He, S.; Li, L.; Sekhavat, A.; Espino, P.; Drobic, B.; Dunn, K.L.; Sun, J.M.; Chen, H.Y.; Yu, J.; et al. Nuclear organization and chromatin dynamics—Sp1, Sp3 and histone deacetylases. Adv. Enzym. Regul. 2008, 48, 189–208. [Google Scholar] [CrossRef] [PubMed]
- Faber, J.G.; Asensio, J.O.; Caiment, F.; van den Beucken, T. Knock-down of FOXO3, GATA2, NFE2L2 and AHR promotes doxorubicin-induced cardiotoxicity in human cardiomyocytes. Toxicology 2024, 509, 153977. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, M.; Yang, X.; Shou, H.; Chen, Z.; Zhu, Q.; Luo, T.; Mou, X.; Chen, X. Cynaroside regulates the AMPK/SIRT3/Nrf2 pathway to inhibit doxorubicin-induced cardiomyocyte pyroptosis. J. Zhejiang Univ. Sci. B 2024, 25, 756–772. [Google Scholar] [CrossRef]
- Fogarassy, G.; Vathy-Fogarassy, Á.; Kenessey, I.; Veress, G.; Polgár, C.; Forster, T. Preventing cancer therapy-related heart failure: The need for novel studies. J. Cardiovasc. Med. 2021, 22, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Adao, D.M.T.; Ching, C.; Fish, J.E.; Simmons, C.A.; Billia, F. Endothelial cell-cardiomyocyte cross-talk: Understanding bidirectional paracrine signaling in cardiovascular homeostasis and disease. Clin. Sci. 2024, 138, 1395–1419. [Google Scholar] [CrossRef] [PubMed]
- Antoniak, S.; Phungphong, S.; Cheng, Z.; Jensen, B.C. Novel Mechanisms of Anthracycline-Induced Cardiovascular Toxicity: A Focus on Thrombosis, Cardiac Atrophy, and Programmed Cell Death. Front. Cardiovasc. Med. 2021, 8, 817977. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Xu, T.; Zang, F.; Luo, Y.; Pan, D. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms, Clinical Management and Innovative Treatment. Drug Des. Devel Ther. 2024, 18, 4089–4116. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, L.; Ge, T.; Liu, J.; Wang, C.; Yu, Q. Understanding Sorafenib-Induced Cardiovascular Toxicity: Mechanisms and Treatment Implications. Drug Des. Devel Ther. 2024, 18, 829–843. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sheehan, R.P.; Palmer, A.C.; Everley, R.A.; Boswell, S.A.; Ron-Harel, N.; Ringel, A.E.; Holton, K.M.; Jacobson, C.A.; Erickson, A.R.; et al. Adaptation of Human iPSC-Derived Cardiomyocytes to Tyrosine Kinase Inhibitors Reduces Acute Cardiotoxicity via Metabolic Reprogramming. Cell Syst. 2019, 8, 412–426.e7. [Google Scholar] [CrossRef] [PubMed]
- Bouitbir, J.; Alshaikhali, A.; Panajatovic, M.V.; Abegg, V.F.; Paech, F.; Krähenbühl, S. Mitochondrial oxidative stress plays a critical role in the cardiotoxicity of sunitinib: Running title: Sunitinib and oxidative stress in hearts. Toxicology 2019, 426, 152281. [Google Scholar] [CrossRef]
- Liu, C.; Shen, M.; Liu, Y.; Manhas, A.; Zhao, S.R.; Zhang, M.; Belbachir, N.; Ren, L.; Zhang, J.Z.; Caudal, A.; et al. CRISPRi/a screens in human iPSC-cardiomyocytes identify glycolytic activation as a druggable target for doxorubicin-induced cardiotoxicity. Cell Stem Cell 2024, 31, 1760–1776.e9. [Google Scholar] [CrossRef]
- Austin, D.; Maier, R.H.; Akhter, N.; Sayari, M.; Ogundimu, E.; Maddox, J.M.; Vahabi, S.; Humphreys, A.C.; Graham, J.; Oxenham, H.; et al. Preventing Cardiac Damage in Patients Treated for Breast Cancer and Lymphoma: The PROACT Clinical Trial. JACC CardioOncol 2024, 6, 684–696. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Song, C.; Zhang, J.; Zhao, X. Resveratrol alleviated 5-FU-induced cardiotoxicity by attenuating GPX4 dependent ferroptosis. J. Nutr. Biochem. 2023, 112, 109241. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.; Elkady, M. A Prospective Study to Evaluate the Effect of Paclitaxel on Cardiac Ejection Fraction. Breast Care 2017, 12, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Altin, C.; Sade, L.E.; Demirtas, S.; Karacaglar, E.; Kanyilmaz, S.; Simsek, V.; Ayhan, A.; Muderrisoglu, H. Effects of Paclitaxel and Carboplatin combination on mechanical myocardial and microvascular functions: A transthoracic Doppler echocardiography and two-dimensional strain imaging study. Echocardiography 2015, 32, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.T.; Wang, Y.P.; Chen, Y.H.; Lin, C.T.; Li, W.S.; Wu, H.C. Liposomal paclitaxel induces fewer hematopoietic and cardiovascular complications than bioequivalent doses of Taxol. Int. J. Oncol. 2018, 53, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Poels, K.; Vos, W.G.; Lutgens, E.; Seijkens, T.T.P. E3 Ubiquitin Ligases as Immunotherapeutic Target in Atherosclerotic Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 106. [Google Scholar] [CrossRef]
- Chen, H.; Moreno-Moral, A.; Pesce, F.; Devapragash, N.; Mancini, M.; Heng, E.L.; Rotival, M.; Srivastava, P.K.; Harmston, N.; Shkura, K.; et al. WWP2 regulates pathological cardiac fibrosis by modulating SMAD2 signaling. Nat. Commun. 2019, 10, 3616. [Google Scholar] [CrossRef] [PubMed]
- Otaki, Y.; Takahashi, H.; Watanabe, T.; Funayama, A.; Netsu, S.; Honda, Y.; Narumi, T.; Kadowaki, S.; Hasegawa, H.; Honda, S.; et al. HECT-Type Ubiquitin E3 Ligase ITCH Interacts With Thioredoxin-Interacting Protein and Ameliorates Reactive Oxygen Species-Induced Cardiotoxicity. J. Am. Heart Assoc. 2016, 5, e002485. [Google Scholar] [CrossRef]
- Zhang, Y.; You, S.; Tian, Y.; Lu, S.; Cao, L.; Sun, Y.; Zhang, N. WWP2 regulates SIRT1-STAT3 acetylation and phosphorylation involved in hypertensive angiopathy. J. Cell. Mol. Med. 2020, 24, 9041–9054. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Xiang, C.; Zhang, D. Fasudil Protects Against Adriamycin-induced Acute Heart Injury by Inhibiting Oxidative Stress, Apoptosis, and Cellular Senescence. Curr. Pharm. Des. 2022, 28, 2426–2435. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Sala, V.; De Santis, M.C.; Cimino, J.; Cappello, P.; Pianca, N.; Di Bona, A.; Margaria, J.P.; Martini, M.; Lazzarini, E.; et al. Phosphoinositide 3-Kinase Gamma Inhibition Protects From Anthracycline Cardiotoxicity and Reduces Tumor Growth. Circulation 2018, 138, 696–711. [Google Scholar] [CrossRef] [PubMed]
- Maurea, N.; Paccone, A.; Iovine, M.; Botti, G.; Maurea, F.; Quagliariello, V. PCSK9 Inhibitor Evolocumab Reduced Cardiotoxicity of Doxorubicin and Trastuzumab Sequential Treatmential Treatmrnt Through Myd88/NFKB/Mtorc1 Pathways. J. Am. Coll. Cardiol. 2024, 77 (Suppl. S1), 3275. [Google Scholar] [CrossRef]
- Sewduth, R.N.; Carai, P.; Ivanisevic, T.; Zhang, M.; Jang, H.; Lechat, B.; Van Haver, D.; Impens, F.; Nussinov, R.; Jones, E.; et al. Spatial Mechano-Signaling Regulation of GTPases through Non-Degradative Ubiquitination. Adv. Sci. 2023, 10, e2303367. [Google Scholar] [CrossRef] [PubMed]
- Yong, D.; Green, S.R.; Ghiabi, P.; Santhakumar, V.; Vedadi, M. Discovery of Nedd4 auto-ubiquitination inhibitors. Sci. Rep. 2023, 13, 16057. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Z.; Chen, X.; Li, J.; Yao, W.; Huang, S.; Gu, A.; Lei, Q.Y.; Mao, Y.; Wen, W. A multi-lock inhibitory mechanism for fine-tuning enzyme activities of the HECT family E3 ligases. Nat. Commun. 2019, 10, 3162. [Google Scholar] [CrossRef] [PubMed]
- Brenke, J.K.; Popowicz, G.M.; Schorpp, K.; Rothenaigner, I.; Roesner, M.; Meininger, I.; Kalinski, C.; Ringelstetter, L.; R’kyek, O.; Jürjens, G.; et al. Targeting TRAF6 E3 ligase activity with a small-molecule inhibitor combats autoimmunity. J. Biol. Chem. 2018, 293, 13191–13203. [Google Scholar] [CrossRef]
- Sewduth, R.N.; Pandolfi, S.; Steklov, M.; Sheryazdanova, A.; Zhao, P.; Criem, N.; Baietti, M.F.; Lechat, B.; Quarck, R.; Impens, F.; et al. The Noonan Syndrome Gene. Circ. Res. 2020, 126, 1379–1393. [Google Scholar] [CrossRef] [PubMed]
- Sewduth, R.N.; Jaspard-Vinassa, B.; Peghaire, C.; Guillabert, A.; Franzl, N.; Larrieu-Lahargue, F.; Moreau, C.; Fruttiger, M.; Dufourcq, P.; Couffinhal, T.; et al. The ubiquitin ligase PDZRN3 is required for vascular morphogenesis through Wnt/planar cell polarity signalling. Nat. Commun. 2014, 5, 4832. [Google Scholar] [CrossRef]
- Sewduth, R.N.; Kovacic, H.; Jaspard-Vinassa, B.; Jecko, V.; Wavasseur, T.; Fritsch, N.; Pernot, M.; Jeaningros, S.; Roux, E.; Dufourcq, P.; et al. PDZRN3 destabilizes endothelial cell-cell junctions through a PKCζ-containing polarity complex to increase vascular permeability. Sci. Signal 2017, 10, eaag3209. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, H.; Ni, Y.; Wang, X.; Chen, Y.; Chen, J.; Wang, Y.; Lin, J.; Xu, Y.; Zhao, J.Y.; et al. Tripartite motif 25 ameliorates doxorubicin-induced cardiotoxicity by degrading p85α. Cell Death Dis. 2022, 13, 643. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Hernández, O.; García-Salazar, L.A.; García-González, V.G.; Díaz-Molina, R.; Vique-Sánchez, J.L. Potential Inhibitors of The OTUB1 Catalytic Site to Develop an Anti-Cancer Drug Using. Rep. Biochem. Mol. Biol. 2023, 11, 684–693. [Google Scholar] [CrossRef]
- Xu, F.; Chen, H.; Zhou, C.; Zang, T.; Wang, R.; Shen, S.; Li, C.; Yu, Y.; Pei, Z.; Shen, L.; et al. Targeting deubiquitinase OTUB1 protects vascular smooth muscle cells in atherosclerosis by modulating PDGFRβ. Front. Med. 2024, 18, 465–483. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zang, T.; Chen, H.; Zhou, C.; Wang, R.; Yu, Y.; Shen, L.; Qian, J.; Ge, J. Deubiquitinase OTUB1 regulates doxorubicin-induced cardiotoxicity via deubiquitinating c-MYC. Cell Signal 2024, 113, 110937. [Google Scholar] [CrossRef]
- Li, S.; Yang, M.; Zhao, Y.; Zhai, Y.; Sun, C.; Guo, Y.; Zhang, X.; Zhang, L.; Tian, T.; Yang, Y.; et al. Deletion of ASPP1 in myofibroblasts alleviates myocardial fibrosis by reducing p53 degradation. Nat. Commun. 2024, 15, 8425. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, Z.; Kan, J.; Jiang, X.; Pan, C.; You, S.; Chang, R.; Zhang, J.; Yang, H.; Zhu, L.; et al. USP36-mediated PARP1 deubiquitination in doxorubicin-induced cardiomyopathy. Cell Signal 2024, 117, 111070. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Du, Y.; Zhao, Y.; Zhang, Y.; Liu, C. The Interaction of OTUB1 and TRAF3 Mediates NLRP3 Inflammasome Activity to Regulate TGF-β1-induced BEAS-2B Cell Injury. Appl. Biochem. Biotechnol. 2023, 195, 7060–7074. [Google Scholar] [CrossRef]
- Gordon, J.W.; Shaw, J.A.; Kirshenbaum, L.A. Multiple facets of NF-κB in the heart: To be or not to NF-κB. Circ. Res. 2011, 108, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Volkova, Y.L.; Jucht, A.E.; Oechsler, N.; Krishnankutty, R.; von Kriegsheim, A.; Wenger, R.H.; Scholz, C.C. Selective Hypoxia-Sensitive Oxomer Formation by FIH Prevents Binding of the NF-κB Inhibitor IκBβ to NF-κB Subunits. Mol. Cell Biol. 2024, 44, 138–148. [Google Scholar] [CrossRef]
- Xie, L.; Xue, F.; Cheng, C.; Sui, W.; Zhang, J.; Meng, L.; Lu, Y.; Xiong, W.; Bu, P.; Xu, F.; et al. Cardiomyocyte-specific knockout of ADAM17 alleviates doxorubicin-induced cardiomyopathy via inhibiting TNFα-TRAF3-TAK1-MAPK axis. Signal Transduct. Target. Ther. 2024, 9, 273. [Google Scholar] [CrossRef]
- Xie, L.; Zang, D.; Yang, J.; Xue, F.; Sui, W.; Zhang, Y. Combination of ADAM17 knockdown with eplerenone is more effective than single therapy in ameliorating diabetic cardiomyopathy. Front. Pharmacol. 2024, 15, 1364827. [Google Scholar] [CrossRef]
- Boccella, N.; Paolillo, R.; Perrino, C. Epac1 inhibition as a novel cardioprotective strategy: Lights and shadows on GRK5 canonical and non-canonical functions. Cardiovasc. Res. 2019, 115, 1684–1686. [Google Scholar] [CrossRef]
- Mazevet, M.; Belhadef, A.; Ribeiro, M.; Dayde, D.; Llach, A.; Laudette, M.; Belleville, T.; Mateo, P.; Gressette, M.; Lefebvre, F.; et al. EPAC1 inhibition protects the heart from doxorubicin-induced toxicity. eLife 2023, 12, e83831. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Tian, Z.; Sun, M.; Dong, D. Nrf2: A dark horse in doxorubicin-induced cardiotoxicity. Cell Death Discov. 2023, 9, 261. [Google Scholar] [CrossRef]
- Sun, M.L.; Dong, J.M.; Liu, C.; Li, P.; Zhang, C.; Zhen, J.; Chen, W. Metformin-mediated protection against doxorubicin-induced cardiotoxicity. Biomed. Pharmacother. 2024, 180, 117535. [Google Scholar] [CrossRef]
- Alves, P.K.N.; Cruz, A.; Adams, V.; Moriscot, A.S.; Labeit, S. Small-molecule mediated MuRF1 inhibition protects from doxorubicin-induced cardiac atrophy and contractile dysfunction. Eur. J. Pharmacol. 2024, 984, 177027. [Google Scholar] [CrossRef]
- Chen, J.K.; Ramesh, S.; Islam, M.N.; Shibu, M.A.; Kuo, C.H.; Hsieh, D.J.; Lin, S.Z.; Kuo, W.W.; Huang, C.Y.; Ho, T.J. Artemisia argyi mitigates doxorubicin-induced cardiotoxicity by inhibiting mitochondrial dysfunction through the IGF-IIR/Drp1/GATA4 signaling pathway. Biotechnol. Appl. Biochem. 2024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ding, W.; Yin, Z.; Liu, S.; Zhao, M.; Xu, Y.; Liu, J.; Pan, W.; Peng, S.; Wei, C.; et al. Interleukin-12p40 deficiency attenuates myocardial ferroptosis in doxorubicin-induced chronic cardiomyopathy by inhibiting Th17 differentiation and interleukin-17A production. Cardiovasc. Res. 2024, 120, 2117–2133. [Google Scholar] [CrossRef]
Anticancer Drug | Mechanism of Action | Cardiotoxic Effects |
---|---|---|
Anthracyclines | Disrupt DNA replication and increase ROS generation | Mitochondrial dysfunction, cardiomyocyte apoptosis |
Antimetabolites (e.g., 5-FU) | Induce oxidative stress and inflammation, alter biochemical pathways | Myocytic degeneration, endothelial injury |
Alkylating Agents (e.g., Cyclophosphamide, Cisplatin) | Modify DNA, RNA, and proteins, leading to oxidative stress and inflammation | Severe oxidative stress, inflammation, cardiotoxicity |
Microtubule Inhibitors (e.g., Paclitaxel) | Inhibit mitosis by altering microtubule polymerization | Endothelial damage, cardiotoxicity |
Tyrosine Kinase Inhibitors (e.g., Imatinib, Sorafenib) | Disrupt signal transduction and angiogenesis | Cardiotoxic effects, particularly in HER2-positive breast cancer treatments |
Proteasome inhibitors | Affect protein degradation by blocking the proteasome | Causes protein aggregation, endoplasmic reticulum stress, and autophagy |
Kinases | Disease/Function | Inhibitor | Clinical Trial ID |
---|---|---|---|
ALK1 | Hemorrhages, hypertension AVMs | Lorlatinib | NCT03127618 |
BMPR2 | Pulmonary hypertension | Fostamatinib | NCT01608542 |
CAMK2 | Cardiac arrhythmias | Bosutinib | NCT02192294 |
CDK9 | Cardiac hypertrophy | Flavopiridol | NCT00045448 |
GRK4 | Hypertension | Atenolol, Metoprolol | NCT01736488, NCT04133532 |
GSK3 | Cardiac hypertrophy | NP031112 | NCT03692312 |
PKCα | Heart contractility | LY-900003, Safingol, Go6976. | NCT02826759 |
PKCδ | Ischemic-reperfusion injury | KAI-9803 | NCT00785954 |
PKCε | Cardiac ischemia | KAI-1678 | NCT01135108 |
ROCK | Hypertension | Fasudil | Approved Japan/China |
TITIN | Cardiomyopathies | Flavin Mononucleotide | NCT04179604 |
WNK1-4 | Hypertension | Hydrochlorothiazide | NCT03946514 |
Ubiquitin Ligases | Disease/Function | Inhibitor |
---|---|---|
NEDD4 | Heart development | Described in [51] |
NEDD4L | Cardiac voltage-gated Na+ channels function | |
SMURF1/2 | Cardiac remodeling/Fibrosis | |
ITCH | Cardiac inflammation | Described in [45] |
WWP1/WWP2 | Perivascular Fibrosis/endothelial damage [50] | I3C [52] |
LZTR1 | Noonan Syndrome | |
PDZRN3 | Cardiac hypertrophy | |
MIB1 | Left ventricular noncompaction | |
MID1 | Ventral/atrial septal defects/BBB syndrome | |
TRIM13 | ER stress autophagy upon cardiac failure | |
TRAF6 | Cardiac inflammation | Described in [53] |
bTRCP/FBXW1 | Anti-angiogenic |
Cardiotoxicity Altered Pathways | Function in Heart Disease | Known Regulators—Ubiquitin Ligases | Known Regulators—Kinases |
---|---|---|---|
TGF-βsignaling | Cardiac fibrosis | WWP2, WWP1, ITCH | WNK-1/5, BMPR2, ALK |
Junctional defects/ β-catenin signaling | Decrease contractility | PDZRN3 | PKC-α/δ/ε |
Actin cytoskeleton | Decrease contractility | TITIN | |
Calcium signaling | Electrophysiology/Contractility | PKD1 | CAMK2, GRK5 |
Oxidative stress | Arrhythmia | ITCH (through TXNIP) | ASK1 |
AKT/ERK signaling | Cardiac hypertrophy | NEDD4-1, LZTR1 | MEK-1/2, ERK-5 |
PTEN signaling | Decrease contractility/apoptosis | NEDD4-1, WWP1 | GRK-4, GSK-3, B-RAF, ROCK |
Cell Cycle (Cyclins/CDK) | Cardiac hypertrophy | NEDD4-L, SMURF1/2 | CDK-9 |
Apoptosis (PARP1) | Cardiac necrosis | WWP2, MKRN1 | CK1α |
Inflammation (NFκB) | Cardiac inflammation | TRAF-6 | IκB, PCSK9 |
Chemotherapy Drugs and Cardiotoxicity | Mechanisms | OMICs Findings | Potential Interventions |
---|---|---|---|
Cytostatic Agents (Cisplatin, Taxanes, Anthracyclines) | DNA damage, oxidative stress | Increased oxidative stress and inflammation markers | Antioxidants, cardioprotective agents, Antiinflammatory therapy |
Antimetabolites (5-FU) | Induce oxidative stress and inflammation | Alterations in lipid metabolism, oxidative and inflammatory pathways | Resveratrol that blocks ferroptosis was tested |
Tyrosine Kinase Inhibitors (Sunitib, Sorafenib) | Inhibition of kinase of the EGFR pathways | Increased DNA damage and inflammation markers | Cardiac monitoring, dose adjustment |
Trastuzumab | HER2 blocking antibody | Induced pro-inflammatory responses, DNA damage response | Antiinflammatory therapy |
Paclixarel | Inhibit mitosis by altering microtubule polymerization | Not defined | Liposomal formulation causes less cardiovascular side effects, when compard to taxol |
Immune Checkpoint Inhibitors (Pembrolizumab, Nivolumab) | Immune-mediated myocarditis | Immune response gene activation, cytokine release profiles | Immunosuppressive therapy |
VEGF Inhibitors (Bevacizumab, Nintedanib) | Vascular endothelial dysfunction | Altered angiogenesis-related gene expression, endothelial cell damage markers | Vascular protective agents |
Proteasome Inhibitors (Bortezomib, Carfilzomib) | Disruption of protein homeostasis | Accumulation of ubiquitinated proteins, endoplasmic reticulum stress | Cardioprotective agents |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Grootaert, M.O.J.; Sewduth, R.N. Cardiotoxicity of Chemotherapy: A Multi-OMIC Perspective. J. Xenobiot. 2025, 15, 9. https://doi.org/10.3390/jox15010009
Ma Y, Grootaert MOJ, Sewduth RN. Cardiotoxicity of Chemotherapy: A Multi-OMIC Perspective. Journal of Xenobiotics. 2025; 15(1):9. https://doi.org/10.3390/jox15010009
Chicago/Turabian StyleMa, Yan, Mandy O. J. Grootaert, and Raj N. Sewduth. 2025. "Cardiotoxicity of Chemotherapy: A Multi-OMIC Perspective" Journal of Xenobiotics 15, no. 1: 9. https://doi.org/10.3390/jox15010009
APA StyleMa, Y., Grootaert, M. O. J., & Sewduth, R. N. (2025). Cardiotoxicity of Chemotherapy: A Multi-OMIC Perspective. Journal of Xenobiotics, 15(1), 9. https://doi.org/10.3390/jox15010009