Risk Assessment Arising from the Exposure of Terrestrial Vertebrates to Soil Contamination: Learning from Field Lizards of the Podarcis Genus
Abstract
:1. Introduction
2. Literature Review
3. Pesticides
3.1. Environmental Exposure
3.2. Laboratory Exposure
3.2.1. Methyl Thiophanate
3.2.2. Chlorpyrifos
3.2.3. Diuron
3.2.4. Glyphosate
4. Endocrine Disrupting Compounds
4.1. Polychlorinated Biphenyls
4.2. Alkylphenols
5. Potentially Toxic Elements
5.1. Studies on the Bioaccumulation of Cadmium in Podarcis Tissues
5.2. Cadmium Toxicity Studies on Podarcis Tissues
5.3. Cadmium Toxicity Studies on Podarcis Embryos
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol. 2015, 32, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Mentha, S.S.; Misra, Y.; Dwivedi, N. Emerging pollutants of severe environmental concern in water and wastewater: A comprehensive review on current developments and future research. Water-Energy Nexus 2023, 6, 74–95. [Google Scholar] [CrossRef]
- Jan, S.; Mishra, A.K.; Bhat, M.A.; Bhat, M.A.; Jan, A.T. Pollutants in aquatic system: A frontier perspective of emerging threat and strategies to solve the crisis for safe drinking water. Environ. Sci. Pollut. Res. Int. 2023, 30, 113242–113279. [Google Scholar] [CrossRef]
- De Haan, F.A. Soil quality in relation to soil pollution. Ciba Found. Symp. 1993, 175, 118–123. [Google Scholar]
- Pullagurala, V.L.R.; Rawat, S.; Adisa, I.O.; Hernandez-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Plant uptake and translocation of contaminants of emerging concern in soil. Sci. Total Environ. 2018, 636, 1585–1596. [Google Scholar] [CrossRef]
- Wei, Z.; Van Le, Q.; Peng, W.; Yang, Y.; Yang, H.; Gu, H.; Lam, S.S.; Sonne, C. A review on phytoremediation of contaminants in air, water and soil. J. Hazard. Mater. 2021, 403, 123658. [Google Scholar] [CrossRef] [PubMed]
- Certini, G.; Scalenghe, R. The crucial interactions between climate and soil. Sci. Total Environ. 2023, 856, 159169. [Google Scholar] [CrossRef] [PubMed]
- Allen, V.G. Influence of dietary aluminum on nutrient utilization in ruminants. J. Anim. Sci. 1984, 59, 836–844. [Google Scholar] [CrossRef]
- Kalisińska, E. Endothermic animals as biomonitors of terrestrial environments. In Mammals and Birds as Bioindicators of Trace Element Contaminations in Terrestrial Environments: An Ecotoxicological Assessment of the Northern Hemisphere; Kalisińska, E., Ed.; Springer: Cham, Switzerland, 2019; pp. 21–53. [Google Scholar]
- Smith, P.N.; Cobb, G.P.; Godard-Codding, C.; Hoff, D.; McMurry, S.T.; Rainwater, T.R.; Reynolds, K.D. Contaminant exposure in terrestrial vertebrates. Environ. Pollut. 2007, 150, 41–64. [Google Scholar] [CrossRef]
- Ortiz-Santaliestra, M.E.; Maia, J.P.; Egea-Serrano, A.; Lopes, I. Validity of fish, birds and mammals as surrogates for amphibians and reptiles in pesticide toxicity assessment. Ecotoxicology 2018, 27, 819–833. [Google Scholar] [CrossRef]
- Ashraf, A.M.; Maah, J.M.; Yusoff, I. Soil Contamination, Risk Assessment and Remediation. In Environmental Risk Assessment of Soil Contamination; Hernandez-Soriano, M.C., Ed.; IntechOpen: London, UK, 2014. [Google Scholar]
- Meftaul, I.M.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Pesticides in the urban environment: A potential threat that knocks at the door. Sci. Total Environ. 2020, 711, 134612. [Google Scholar] [CrossRef]
- Dhiman, V.; Pantm, D. Environmental biomonitoring by snails. Biomarkers 2021, 26, 221–239. [Google Scholar]
- Kenko, D.B.N.; Ngameni, N.T.; Awo, M.E.; Njikam, N.A.; Dzemo, W.D. Does pesticide use in agriculture present a risk to the terrestrial biota? Sci. Total Environ. 2023, 861, 160715. [Google Scholar] [CrossRef] [PubMed]
- Larramendy, M.L.; Liwszyc, G. Marsupial and Placental Mammal Species in Environmental Risk Assessment Strategies; The Royal Society of Chemistry: Cambridge, UK, 2022. [Google Scholar]
- Liwszyc, G.; Larramendy, M.L. Bird and Reptile Species in Environmental Risk Assessment Strategies; The Royal Society of Chemistry: Cambridge, UK, 2023. [Google Scholar]
- Shore, R.F.; Douben, P.E. Predicting ecotoxicological impacts of environmental contaminants on terrestrial small mammals. Rev. Environ. Contam. Toxicol. 1994, 134, 49–89. [Google Scholar]
- Martin, T.; Thompson, H.; Thorbek, P.; Ashauer, R. Toxicokinetic-Toxicodynamic Modeling of the Effects of Pesticides on Growth of Rattus norvegicus. Chem. Res. Toxicol. 2019, 32, 2281–2294. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.F.; Chen, C.Y.; Lu, T.H.; Liao, C.M. Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice. J. Hazard. Mater. 2019, 366, 703–713. [Google Scholar] [CrossRef]
- Fairbrother, A. Lines of Evidence in Wildlife Risk Assessments. HERA J. 2023, 9, 1475–1491. [Google Scholar] [CrossRef]
- Golden, N.H.; Rattner, B.A. Ranking terrestrial vertebrate species for utility in biomonitoring and vulnerability to environmental contaminants. Rev. Environ. Contam. Toxicol. 2003, 76, 67–136. [Google Scholar]
- Verderame, M.; Scudiero, R. Health status of the lizard Podarcis siculus (Rafinesque-Schmaltz, 1810) subject to different anthropogenic pressures. CR Biol. 2019, 342, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Gil-Jiménez, E.; De Lucas, M.; Ferrer, M. Metalliferous Mining Pollution and Its Impact on Terrestrial and Semi-terrestrial Vertebrates, A Review. Rev. Environ. Contam. Toxicol. 2021, 256, 1–69. [Google Scholar]
- Psonis, N.; Antoniou, A.; Karameta, E.; Darriba, D.; Stamatakis, A.; Lymberakis, P.; Poulakakis, N. The wall lizards of the Balkan peninsula: Tackling questions at the interface of phylogenomics and population genomics. Mol. Phylogenet Evol. 2021, 159, 107121. [Google Scholar] [CrossRef]
- Burke, R.L.; Hussain, A.A.; Storey, J.M.; Storey, K.B. Freeze Tolerance and Supercooling Ability in the Italian Wall Lizard, Podarcis sicula, Introduced to Long Island, New York. Copeia 2002, 3, 836–842. [Google Scholar] [CrossRef]
- Tuniyev, B.S.; Shagarov, L.M.; Arribas, O.J. Podarcis siculus (Reptilia: Sauria: Lacertidae), a new alien species for Russian fauna. Proc. Zool. Inst. RAS 2020, 324, 364–370. [Google Scholar] [CrossRef]
- Gallozzi, F.; Corti, C.; Castiglia, R.; Avramo, V.; Senczuk, G.; Mattioni, C.; Colangelo, P. The Intriguing Biogeographic Pattern of the Italian Wall Lizard Podarcis siculus (Squamata: Lacertidae) in the Tuscan Archipelago Reveals the Existence of a New Ancient Insular Clade. Animals 2023, 13, 386. [Google Scholar] [CrossRef] [PubMed]
- Simoniello, P.; Filosa, S.; Riggio, M.; Scudiero, R.; Tammaro, S.; Trinchella, F.; Motta, C.M. Responses to cadmium intoxication in the liver of the wall lizard Podarcis sicula. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010, 151, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Filosa, S. Biological and cytological aspects of the ovarian cycle in Lacerta sicula sicula Raf. Monit. Zool. Ital. -Ital. J. Zool. 1973, 7, 151–165. [Google Scholar]
- Rosati, L.; Agnese, M.; Di Lorenzo, M.; Barra, T.; Valiante, S.; Prisco, M. Spermatogenesis and regulatory factors in the wall lizard Podarcis sicula. Gen. Comp. Endocrinol. 2020, 298, 113579. [Google Scholar] [CrossRef] [PubMed]
- Amaral, M.J.; Carretero, M.A.; Bicho, R.C.; Soares, A.M.; Mann, R.M. The use of a lacertid lizard as a model for reptile ecotoxicology studies: Part 1-field demographics and morphology. Chemosphere 2012, 87, 757–764. [Google Scholar] [CrossRef]
- Amaral, M.J.; Bicho, R.C.; Carretero, M.A.; Sanchez-Hernandez, J.C.; Faustino, A.M.; Soares, A.M.; Mann, R.M. The use of a lacertid lizard as a model for reptile ecotoxicology studies: Part 2-biomarkers of exposure and toxicity among pesticide exposed lizards. Chemosphere 2012, 87, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Mingo, V.; Lötters, S.; Wagner, N. The impact of land use intensity and associated pesticide applications on fitness and enzymatic activity in reptiles—A field study. Sci. Total Environ. 2017, 590–591, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Mingo, V.; Lötters, S.; Wagner, N. The use of buccal swabs as a minimal-invasive method for detecting effects of pesticide exposure on enzymatic activity in common wall lizards. Environ. Pollut. 2017, 220, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Simbula, G.; Moltedo, G.; Catalano, B.; Martuccio, G.; Sebbio, C.; Onorati, F.; Stellati, L.; Bissattini, A.M.; Vignoli, L. Biological responses in pesticide exposed lizards (Podarcis siculus). Ecotoxicology 2021, 30, 1017–1028. [Google Scholar] [CrossRef] [PubMed]
- Moltedo, G.; Catalano, B.; Martuccio, G.; Sesta, G.; Romanelli, G.; Lauria, A.; Berducci, M.T.; Parravano, R.; Maggi, C.; Simbula, G.; et al. Processes involved in biochemical response to pesticides by lizard Podarcis siculus (Rafinesque-Schmaltz, 1810)—A field study. Toxicol. Appl. Pharmacol. 2023, 467, 116491. [Google Scholar] [CrossRef]
- Mingo, V.; Leeb, C.; Fahl, A.K.; Lötters, S.; Brühl, C.; Wagner, N. Validating buccal swabbing as a minimal-invasive method to detect pesticide exposure in squamate reptiles. Chemosphere 2019, 229, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Bicho, R.C.; Amaral, M.J.; Faustino, A.M.; Power, D.M.; Rêma, A.; Carretero, M.A.; Soares, A.M.; Mann, R.M. Thyroid disruption in the lizard Podarcis bocagei exposed to a mixture of herbicides: A field study. Ecotoxicology 2013, 22, 156–165. [Google Scholar] [CrossRef]
- Cardone, A.; Comitato, R.; Angelini, F. Spermatogenesis, epididymis morphology and plasma sex steroid secretion in the male lizard Podarcis sicula exposed to diuron. Environ. Res. 2008, 108, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Verderame, M.; Scudiero, R. How Glyphosate Impairs Liver Condition in the Field Lizard Podarcis siculus (Rafinesque-Schmaltz, 1810): Histological and Molecular Evidence. Biomed. Res. Int. 2019, 2019, 4746283. [Google Scholar] [CrossRef] [PubMed]
- Verderame, M.; Chianese, T.; Rosati, L.; Scudiero, R. Molecular and Histological Effects of Glyphosate on Testicular Tissue of the Lizard Podarcis siculus. Int. J. Mol. Sci. 2022, 23, 4850. [Google Scholar] [CrossRef] [PubMed]
- Rosati, L.; Chianese, T.; De Gregorio, V.; Verderame, M.; Raggio, A.; Motta, C.M.; Scudiero, R. Glyphosate Interference in Follicular Organization in the Wall Lizard Podarcis siculus. Int. J. Mol. Sci. 2023, 24, 7363. [Google Scholar] [CrossRef]
- Buono, S.; Cristiano, L.; D’Angelo, B.; Cimini, A.; Putti, R. PPARalpha mediates the effects of the pesticide methyl thiophanate on liver of the lizard Podarcis sicula. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007, 145, 306–314. [Google Scholar] [CrossRef] [PubMed]
- De Falco, M.; Sciarrillo, R.; Capaldo, A.; Russo, T.; Gay, F.; Valiante, S.; Varano, L.; Laforgia, V. The effects of the fungicide methyl thiophanate on adrenal gland morphophysiology of the lizard, Podarcis sicula. Arch. Environ. Contam. Toxicol. 2007, 53, 241–248. [Google Scholar] [CrossRef]
- Sciarrillo, R.; De Falco, M.; Virgilio, F.; Laforgia, V.; Capaldo, A.; Gay, F.; Valiante, S.; Varano, L. Morphological and functional changes in the thyroid gland of methyl thiophanate-injected lizards, Podarcis sicula. Arch. Environ. Contam. Toxicol. 2008, 55, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Capriglione, T.; De Iorio, S.; Gay, F.; Capaldo, A.; Vaccaro, M.C.; Morescalchi, M.A.; Laforgia, V. Genotoxic effects of the fungicide thiophanate-methyl on Podarcis sicula assessed by micronucleus test, comet assay and chromosome analysis. Ecotoxicology 2011, 20, 885–8891. [Google Scholar] [CrossRef]
- Cardone, A. Testicular toxicity of methyl thiophanate in the Italian wall lizard (Podarcis sicula): Morphological and molecular evaluation. Ecotoxicology 2012, 21, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Amaral, M.J.; Sanchez-Hernandez, J.C.; Bicho, R.C.; Carretero, M.A.; Valente, R.; Faustino, A.M.; Soares, A.M.; Mann, R.M. Biomarkers of exposure and effect in a lacertid lizard (Podarcis bocagei Seoane) exposed to chlorpyrifos. Environ. Toxicol. Chem. 2012, 31, 2345–2353. [Google Scholar] [CrossRef]
- Cardone, A. Imidacloprid induces morphological and molecular damages on testis of lizard (Podarcis sicula). Ecotoxicology 2015, 24, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Verderame, M.; Prisco, M.; Andreuccetti, P.; Aniello, F.; Limatola, E. Experimentally nonylphenol-polluted diet induces the expression of silent genes VTG and ERα in the liver of male lizard Podarcis sicula. Environ. Pollut. 2011, 159, 1101–1107. [Google Scholar] [CrossRef]
- Verderame, M.; Limatola, E. Interferences of an environmental pollutant with estrogen-like action in the male reproductive system of the terrestrial vertebrate Podarcis sicula. Gen. Comp. Endocrinol. 2015, 213, 9–15. [Google Scholar] [CrossRef]
- De Falco, M.; Sellitti, A.; Sciarrillo, R.; Capaldo, A.; Valiante, S.; Iachetta, G.; Forte, M.; Laforgia, V. Nonylphenol effects on the HPA axis of the bioindicator vertebrate, Podarcis sicula lizard. Chemosphere 2014, 104, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, M.; Sciarrillo, R.; Rosati, L.; Sellitti, A.; Barra, T.; De Luca, A.; Laforgia, V.; De Falco, M. Effects of alkylphenols mixture on the adrenal gland of the lizard Podarcis sicula. Chemosphere 2020, 258, 127239. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, M.; Mileo, A.; Laforgia, V.; De Falco, M.; Rosati, L. Alkyphenol Exposure Alters Steroidogenesis in Male Lizard Podarcis siculus. Animals 2021, 11, 1003. [Google Scholar] [CrossRef]
- Sciarrillo, R.; Di Lorenzo, M.; Valiante, S.; Rosati, L.; De Falco, M. OctylPhenol (OP) Alone and in Combination with NonylPhenol (NP) Alters the Structure and the Function of Thyroid Gland of the Lizard Podarcis siculus. Arch. Environ. Contam. Toxicol. 2021, 80, 567–578. [Google Scholar] [CrossRef]
- Sciarrillo, R.; Falzarano, A.; Gallicchio, V.; Mileo, A.; De Falco, M. Toxic Effects on Thyroid Gland of Male Adult Lizards (Podarcis Siculus) in Contact with PolyChlorinated Biphenyls (PCBs)-Contaminated Soil. Int. J. Mol. Sci. 2022, 23, 4790. [Google Scholar] [CrossRef]
- Trinchella, F.; Riggio, M.; Filosa, S.; Volpe, M.G.; Parisi, E.; Scudiero, R. Cadmium distribution and metallothionein expression in lizard tissues following acute and chronic cadmium intoxication. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 144, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.M.; Serra, E.A.; Soares, A.M. Assimilation of cadmium in a european lacertid lizard: Is trophic transfer important? Environ. Toxicol. Chem. 2006, 25, 3199–3203. [Google Scholar] [CrossRef]
- Mann, R.M.; Sánchez-Hernández, J.C.; Serra, E.A.; Soares, A.M. Bioaccumulation of Cd by a European lacertid lizard after chronic exposure to Cd-contaminated food. Chemosphere 2007, 68, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Ferrandino, I.; Favorito, R.; Annunziata, M.; Grimaldi, M.C. Cadmium induces apoptosis in the pituitary gland of Podarcis sicula. Ann. N. Y. Acad. Sci. 2009, 1163, 386–388. [Google Scholar] [CrossRef] [PubMed]
- Ferrandino, I.; Favorito, R.; Grimaldi, M.C. Cadmium induces changes on ACTH and PRL cells in Podarcis sicula lizard pituitary gland. Eur. J. Histochem. 2010, 54, e45. [Google Scholar] [CrossRef] [PubMed]
- Simoniello, P.; Trinchella, F.; Scudiero, R.; Filosa, S.; Motta, C.M. Cadmium in Podarcis sicula disrupts prefollicular oocyte recruitment by mimicking FSH action. Open Zool. J. 2010, 3, 37–41. [Google Scholar] [CrossRef]
- Simoniello, P.; Filosa, S.; Scudiero, R.; Trinchella, F.; Motta, C.M. Cadmium impairment of reproduction in the female wall lizard Podarcis sicula. Environ. Toxicol. 2013, 28, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Favorito, R.; Monaco, A.; Grimaldi, M.C.; Ferrandino, I. Effects of cadmium on the glial architecture in lizard brain. Eur. J. Histochem. 2017, 61, 2734. [Google Scholar] [CrossRef] [PubMed]
- Simoniello, P.; Motta, C.M.; Scudiero, R.; Trinchella, F.; Filosa, S. Spatiotemporal changes in metallothionein gene expression during embryogenesis in the wall lizard Podarcis sicula. J. Exp. Zool. A Ecol. Genet. Physiol. 2010, 313, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Simoniello, P.; Motta, C.M.; Scudiero, R.; Trinchella, F.; Filosa, S. Cadmium-induced teratogenicity in lizard embryos: Correlation with metallothionein gene expression. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 153, 119–127. [Google Scholar] [CrossRef]
- Simoniello, P.; Trinchella, F.; Filosa, S.; Scudiero, R.; Magnani, D.; Theil, T.; Motta, C.M. Cadmium contaminated soil affects retinogenesis in lizard embryos. J. Exp. Zool. A Ecol. Genet. Physiol. 2014, 321, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Trinchella, F.; Cannetiello, M.; Simoniello, P.; Filosa, S.; Scudiero, R. Differential gene expression profiles in embryos of the lizard Podarcis sicula under in ovo exposure to cadmium. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010, 151, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Marco, A.; Hidalgo-Vila, J.; Díaz-Paniagua, C. Toxic effects of ammonium nitrate fertilizer on flexible-shelled lizard eggs. Bull. Environ. Contam. Toxicol. 2004, 73, 125–131. [Google Scholar] [CrossRef]
- Weir, S.M.; Suski, J.G.; Salice, C.J. Ecological risk of anthropogenic pollutants to reptiles: Evaluating assumptions of sensitivity and exposure. Environ. Pollut. 2010, 158, 3596–3606. [Google Scholar] [CrossRef]
- Weir, S.M.; Talent, L.G.; Anderson, T.A.; Salice, C.J. Insights into reptile dermal contaminant exposure: Reptile skin permeability to pesticides. Chemosphere 2016, 154, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Galán, P. Structure of a population of the lizard Podarcis bocagei in northwest Spain: Variations in age distribution, size distribution and sex ratio. Anim. Biol. 2004, 54, 57–75. [Google Scholar] [CrossRef]
- Crnobrnja-Isailovic, J.; Aleksic, I.; Bejakovic, D. Fluctuating asymmetry in Podarcis muralis populations from Southern Montenegro: Detection of environmental stress in insular populations. Amphib. Reptil. 2005, 26, 149–158. [Google Scholar] [CrossRef]
- Chen, L.; Diao, J.; Zhang, W.; Zhang, L.; Wang, Z.; Li, Y.; Deng, Y.; Zhou, Z. Effects of beta-cypermethrin and myclobutanil on some enzymes and changes of biomarkers between internal tissues and saliva in reptiles (Eremias argus). Chemosphere 2018, 216, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.G.; Thake, D.C.; Heydens, W.E.; Brewster, D.W.; Hotz, K.J. Mode of action of thyroid tumor formation in the male Long-Evans rat administered high doses of alachlor. Fundam. Appl. Toxicol. 1996, 33, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Goldner, W.S.; Sandler, D.P.; Yu, F.; Shostrom, V.; Hoppin, J.A.; Kamel, F.; LeVan, T.D. Hypothyroidism and pesticide use among male private pesticide applicators in the agricultural health study. J. Occup. Environ. Med. 2013, 55, 1171–1178. [Google Scholar] [CrossRef]
- Li, F.J.; Komura, R.; Nakashima, C.; Shimizu, M.; Kageyama, K.; Suga, H. Molecular Diagnosis of Thiophanate-Methyl Resistant Strains of Fusarium fujikuroi in Japan. Plant Dis. 2022, 106, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Traina, M.E.; Fazzi, P.; Macrì, C.; Ricciardi, C.; Stazi, A.V.; Urbani, E.; Mantovani, A. In vivo studies on possible adverse effects on reproduction of the fungicide methyl thiophanate. J. Appl. Toxicol. 1998, 18, 241–248. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Arena, M.; Auteri, D.; Barmaz, S.; Bellisai, G. Peer review of the pesticide risk assessment of the active substance thiophanate-methyl. EFSA J. 2018, 16, e05133. [Google Scholar]
- Capaldo, A. The Adrenal Gland of Squamata (Reptilia): A Comparative Overview. Animals 2023, 13, 2686. [Google Scholar] [CrossRef] [PubMed]
- Yeghiazaryan, K.; Bauriedel, G.; Schild, H.H.; Golubnitschaja, O. Prediction of degeneration of native and bioprosthetic aortic valves: Issue-related particularities of diabetes mellitus. Infect. Disord. Drug Targets 2008, 8, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.Y.; Liao, J.W.; Kuo, M.L.; Wang, S.C.; Hwang, J.S.; Ueng, T.H. Endocrine disrupting activity in carbendazim-induced reproductive and developmental toxicity in rats. J. Toxicol. Environ. Health 2004, 67, 1501–1515. [Google Scholar] [CrossRef] [PubMed]
- Wołejko, E.; Łozowicka, B.; Jabłońska-Trypuć, A.; Pietruszyńska, M.; Wydro, U. Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. Int. J. Environ. Res. Public Health 2022, 19, 12209. [Google Scholar] [CrossRef] [PubMed]
- Brewer, L.W.; McQuillen, H.L., Jr.; Mayes, M.A.; Stafford, J.M.; Tank, S.L. Chlorpyrifos residue levels in avian food items following applications of a commercial EC formulation to alfalfa and citrus. Pest. Manag. Sci. 2003, 59, 1179–1190. [Google Scholar] [CrossRef]
- Liu, J. Phenylurea Herbicides. In Hayes’ Handbook of Pesticide Toxicology, 3rd ed.; Krieger, R., Ed.; Academic Press: Cambridge, MA, USA, 2010; pp. 1725–1731. [Google Scholar]
- Köck-Schulmeyer, M.; Olmos, M.; López de Alda, M.; Barceló, D. Development of a multiresidue method for analysis of pesticides in sediments based on isotope dilution and liquid chromatography-electrospray-tandem mass spectrometry. J. Chromatogr. A 2013, 1305, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Chidya, R.; Derbalah, A.; Abdel-Dayem, S.; Kaonga, C.; Tsuji, H.; Takeda, K.; Sakugawa, H. Contamination, dynamics, and health risk assessment of pesticides in seawater and marine samples from the Seto Inland Sea, Japan. Environ. Sci. Pollut. Res. 2022, 29, 67894–67907. [Google Scholar] [CrossRef]
- Fernandes, G.S.A.; Arena, A.C.; Fernandez, C.D.B.; Mercadante, A.; Barbisan, L.F.; Kempinas, W.G. Reproductive effects in male rats exposed to diuron. Reprod. Toxicol. 2007, 23, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Benbrook, C.M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 2016, 28, 1–15. [Google Scholar]
- Silva, V.; Montanarella, L.; Jones, A.; Fernández-Ugalde, O.; Mol, H.G.J.; Ritsema, C.J.; Geissen, V. Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Sci. Total Environ. 2018, 621, 1352–1359. [Google Scholar] [CrossRef] [PubMed]
- Malik, J.; Barry, G.; Kishore, G. The herbicide glyphosate. Biofactors 1989, 2, 17–25. [Google Scholar] [PubMed]
- Gillezeau, C.; Van Gerwen, M.; Shaffer, R.M.; Rana, I.; Zhang, L.; Sheppar, L.; Taioli, E. The evidence of human exposure to glyphosate: A review. Environ. Health 2019, 18, 2. [Google Scholar] [CrossRef] [PubMed]
- Mensah, P.K.; Palmer, C.G.; Odume, O.N. Ecotoxicology of Glyphosate and Glyphosate-Based Herbicides-Toxicity to Wildlife and Humans. In Toxicity and Hazard of Agrochemicals; Larramendy, M.L., Soloneski, S., Eds.; IntechOpen: London, UK, 2015. [Google Scholar]
- Verderame, M.; Chianese, T.; Scudiero, R. Morphological and Molecular Evidence of Active Principal Glyphosate Toxicity on the Liver of the Field Lizard Podarcis siculus. In Bird and Reptile Species in Environmental Risk Assessment Strategies; Liwszyc, G., Larramendy, M.L., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2023; pp. 151–168. [Google Scholar]
- Chianese, T.; Cominale, R.; Scudiero, R.; Rosati, L. Could Exposure to Glyphosate Pose a Risk to the Survival of Wild Animals? A Case Study on the Field Lizard Podarcis siculus. Vet. Sci. 2023, 10, 583. [Google Scholar] [CrossRef]
- Motta, C.M.; Scanderbeg, M.L.; Filosa, S.; Andreuccetti, P. Role of pyriform cells during the growth of oocytes in the lizard Podarcis sicula. J. Exp. Zool. 1995, 273, 247–256. [Google Scholar] [CrossRef]
- Tammaro, S.; Simoniello, P.; Ristoratore, F.; Coppola, U.; Scudiero, R.; Motta, C.M. Expression of caspase 3 in ovarian follicle cells of the lizard Podarcis sicula. Cell Tissue Res. 2017, 367, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.P.; Bleak, T.C.; Calaf, G.M. Glyphosate and the key characteristics of an endocrine disruptor: A review. Chemosphere 2021, 270, 128619. [Google Scholar] [CrossRef] [PubMed]
- Rosati, L.; Chianese, T.; Simoniello, P.; Motta, C.M.; Scudiero, R. The Italian Wall Lizard Podarcis siculus as a Biological Model for Research in Male Reproductive Toxicology. Int. J. Mol. Sci. 2022, 23, 15220. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, S.; Brehm, R.; Bergmann, M.; Cooke, P.S. Role of connexin 43 in Sertoli cells of testis. Ann. N. Y Acad. Sci. 2007, 1120, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Afdhal, N.H. Liver Fibrosis Determination. Gastroenterol. Clin. N. Am. 2019, 48, 281–289. [Google Scholar] [CrossRef] [PubMed]
- EUR 17549 Report. European Workshop on the Impact of Endocrine Disrupters on Human Health and Wildlife, Weybridge 2-4/12/1996. Available online: http://www.iehconsulting.co.uk/IEH_Consulting/IEHCPubs/EndocrineDisrupters/WEYBRIDGE.pdf (accessed on 1 September 2024).
- Yilmaz, B.; Terekeci, H.; Sandal, S.; Kelestimur, F. Endocrine disrupting chemicals: Exposure, effects on human health, mechanism of action, models for testing and strategies for prevention. Rev. Endocr. Metab. Disord. 2020, 21, 127–147. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D. Endocrine Disruptors and Obesity. Curr. Obes. 2017, 6, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Kurowska, P.; Mlyczyńska, E.; Dawid, M.; Respekta, N.; Pich, K.; Serra, L.; Dupont, J.; Rak, A. Endocrine disruptor chemicals, adipokines and reproductive functions. Endocrine 2022, 78, 205–218. [Google Scholar] [CrossRef]
- Johnson, G.W.; Quensen, J.F.I.I.I.; Chiarenzelli, J.R.; Hamilton, M.C. Polychlorinated Biphenyls. In Environmental Forensics; Morrison, R.D., Murphy, B.L., Eds.; Academic Press: Cambridge, MA, USA, 1964; pp. 187–225. [Google Scholar]
- Montano, L.; Pironti, C.; Pinto, G.; Ricciardi, M.; Buono, A.; Brogna, C.; Venier, M.; Piscopo, M.; Amoresano, A.; Motta, O. Polychlorinated Biphenyls (PCBs) in the Environment: Occupational and Exposure Events, Effects on Human Health and Fertility. Toxics 2022, 10, 365. [Google Scholar] [CrossRef]
- Djordjevic, A.B.; Antonijevic, E.; Curcic, M.; Milovanovic, V.; Antonijevic, B. Endocrine-disrupting mechanisms of polychlorinated biphenyls. Curr. Opin. Toxicol. 2020, 19, 42–49. [Google Scholar] [CrossRef]
- Sciarrillo, R.; Laforgia, V.; Cavagnuolo, A.; Varano, L.; Virgilio, F. Annual variations of thyroid activity in the lizard Podarcis sicula (squamata, lacertidae). Ital. J. Zool. 2000, 67, 263–267. [Google Scholar] [CrossRef]
- Ying, G.G.; Williams, B.; Kookana, R. Environmental fate of alkylphenols and alkylphenol ethoxylates-a review. Environ. Int. 2002, 28, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Suen, J.L.; Hung, C.H.; Yu, H.S.; Huang, S.K. Alkylphenols--potential modulators of the allergic response. Kaohsiung J. Med. Sci. 2012, 28, S43–S48. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.T.; Holmes, P.; Humfrey, C.D. Reproductive health in humans and wildlife: Are adverse trends associated with environmental chemical exposure? Sci. Total Environ. 1997, 205, 97–106. [Google Scholar] [CrossRef]
- Huang, S.L.; Tuan, N.N.; Lee, K. Occurrence, Human Intake and Biodegradation of Estrogen-Like Nonylphenols and Octylphenols. Curr. Drug Metab. 2016, 17, 293–302. [Google Scholar] [CrossRef]
- Bechi, N.; Ietta, F.; Romagnoli, R.; Focardi, S.; Corsi, I.; Buffi, C.; Paulesu, L. Estrogen-like response to p-nonylphenol in human first trimester placenta and BeWo choriocarcinoma cells. Toxicol. Sci. 2006, 93, 75–81. [Google Scholar] [CrossRef]
- Ferrara, F.; Funari, E.; De Felip, E.; Donati, G.; Traina, M.E.; Mantovani, A. Alkylphenols: Assessment of risks for aquatic ecosystems and for human health with particular reference to endocrine effects. Ann. Ist. Super. Sanità 2001, 37, 615–625. [Google Scholar] [PubMed]
- Choi, K.; Sweet, L.I.; Meier, P.G.; Kim, P.G. Aquatic toxicity of four alkylphenols (3-tert-butylphenol, 2-isopropylphenol, 3-isopropylphenol, and 4-isopropylphenol) and their binary mixtures to microbes, invertebrates, and fish. Environ. Toxicol. 2004, 19, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.I.; Moon, J.; Kim, D.; Cui, R.; An, Y.J. Species Sensitivity Distributions for Nonylphenol to Estimate Soil Hazardous Concentration. Environ. Sci. Technol. 2017, 51, 13957–13966. [Google Scholar] [CrossRef] [PubMed]
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, distribution pathways and effects on human health—A review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef]
- Sumpter, J.P.; Jobling, S. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ. Health Perspect. 1995, 103, S173–S178. [Google Scholar]
- Verderame, M.; Scudiero, R. Estrogen-dependent, extrahepatic synthesis of vitellogenin in male vertebrates: A mini-review. CR Biol. 2017, 340, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Sciarrillo, R.; Capaldo, A.; Valiante, S.; Gay, F.; Sellitti, A.; Laforgia, V.; De Falco, M. Thyroid Hormones as Potential Early Biomarkers of Exposure to Nonylphenol in Adult Male Lizard (Podarcis sicula). Open Zool. J. 2010, 3, 17–22. [Google Scholar] [CrossRef]
- Rosati, L.; Santillo, A.; Di Fiore, M.M.; Andreuccetti, P.; Prisco, M. Testicular steroidogenic enzymes in the lizard Podarcis sicula during the spermatogenic cycle. CR Biol. 2017, 340, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Rosati, L.; Agnese, M.; Di Fiore, M.M.; Andreuccetti, P.; Prisco, M. P450 aromatase: A key enzyme in the spermatogenesis of the Italian wall lizard, Podarcis sicula. J. Exp. Biol. 2016, 219, 2402–2408. [Google Scholar] [CrossRef] [PubMed]
- Rosati, L.; Prisco, M.; Di Lorenzo, M.; De Falco, M.; Andreuccetti, P. Immunolocalization of aromatase P450 in the epididymis of Podarcis sicula and Rattus rattus. Eur. J. Histochem. 2020, 64, 3080. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Biol. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Mezzaroba, L.; Alfieri, D.F.; Colado Simão, A.N.; Vissoci Reiche, E.M. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicol 2019, 74, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Morata, I.; Sobel, M.; Tellez-Plaza, M.; Navas-Acien, A.; Howe, C.G.; Sanchez, T.R. A State-of-the-Science Review on Metal Biomarkers. Curr. Environ. Health Rep. 2023, 10, 215–249. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Järup, L.; Akesson, A. Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol. 2009, 238, 201–208. [Google Scholar] [CrossRef]
- Vesey, D.A. Transport pathways for cadmium in the intestine and kidney proximal tubule: Focus on the interaction with essential metals. Toxicol. Lett. 2010, 198, 13–19. [Google Scholar] [CrossRef]
- Eng, L.F.; Ghirnikar, R.S.; Lee, Y.L. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem. Res. 2000, 25, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- Nico, B.; Ribatti, D. Morphofunctional aspects of the blood-brain barrier. Curr. Drug Metab. 2012, 13, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Grant, D.M. Detoxification pathways in the liver. J. Inherit. Metab. Dis. 1991, 14, 421–430. [Google Scholar] [CrossRef]
- Van Furth, R. Monocyte origin of Kupffer cells. Blood Cells 1980, 6, 87–92. [Google Scholar]
- Marco, A.; López-Vicente, M.; Pérez-Mellado, V. Arsenic uptake by reptile flexible-shelled eggs from contaminated nest substrates and toxic effect on embryos. Bull. Environ. Contam. Toxicol. 2004, 72, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Scudiero, R.; Filosa, S.; Motta, C.M.; Simoniello, P.; Trinchella, F. Cadmium in the Wall Lizard Podarcis Sicula: Morphological and Molecular Effects on Embryonic and Adult Tissues. In Reptiles: Biology, Behavior and Conservation; Baker, K.J., Ed.; Nova Science Publishers: Happauge, NY, USA, 2011; pp. 147–162. [Google Scholar]
- Diacou, R.; Nandigrami, P.; Fiser, A.; Liu, W.; Ashery-Padan, R.; Ales, C. Cell fate decisions, transcription factors and signaling during early retinal development. Prog. Retin. Eye Res. 2022, 91, 101093. [Google Scholar] [CrossRef] [PubMed]
Type of Chemical | Chemical | Route of Exposure | References |
---|---|---|---|
Pesticides | Mixture | Natural occurring exposure | [32,33,34,35,36,37] |
Pesticides | Mixture | Sprayed on subjects; contaminated food | [38] |
Herbicides | Mixture | Natural occurring exposure | [39] |
Herbicide | Diuron | Sprayed on water and soil | [40] |
Herbicide | Glyphosate | Oral gavage | [41,42,43] |
Fungicide | Methyl tiophanate | Sprayed on subjects; sprayed on water, soil, and food; intraperitoneal injection | [44,45,46,47,48] |
Insecticide | Chlorpyrifos | Contaminated food | [49] |
Insecticide | Imidacloprid | Oral gavage | [50] |
Alkylphenols | Nonylphenol | Sprayed on food and water; intraperitoneal injection | [51,52,53] |
Alkylphenols | Octylphenol and Nonylphenol | Intraperitoneal injection | [54,55,56] |
Polychlorinated Biphenyls | Mixture | Contaminated soil or intraperitoneal injection | [57] |
Metal | Cadmium | Contaminated food; contaminated drinking water; intraperitoneal injection | [29,58,59,60,61,62,63,64,65] |
Metal | Cadmium | Incubation of in ovo embryos in contaminated soil | [66,67,68,69] |
Contaminant Group | Effects Found |
---|---|
Pesticides | Alteration in androgen and estrogen receptors gene expression; Alteration of steroidogenesis; Alterations in adrenal and thyroid glands morphology and functions; Altered gene expression; Apoptosis; Cytotoxicity; Genotoxicity; Hepatocytes degeneration and vacuolation; Liver fibrosis; Oxidative stress; Reduced germ cells; Reduced reproductive output. |
Endocrine Disrupting Chemicals | Alteration in androgen and estrogen receptors gene expression; Alteration of steroidogenesis; Alterations in adrenal and thyroid glands morphology and functions; Apoptosis; Cytotoxicity; Hepatocytes degeneration and vacuolation; Oxidative stress; Reduced germ cells; Reduced reproductive output; Tissue accumulation; Vitellogenin induction. |
Metals | Altered gene expression; Alterations in brain morphology; Alterations in pituitary gland morphology and functions; Alterations of liver parenchyma; Alteration in hepatocytes morphology and functions; Apoptosis; Cytotoxicity; Developmental abnormalities; Egg absorption; Maternal transfer; Oxidative stress; Reduced reproductive output; Reduced hatching success; Tissue accumulation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scudiero, R.; Chianese, T.; Cretì, P.; Rosati, L. Risk Assessment Arising from the Exposure of Terrestrial Vertebrates to Soil Contamination: Learning from Field Lizards of the Podarcis Genus. J. Xenobiot. 2025, 15, 21. https://doi.org/10.3390/jox15010021
Scudiero R, Chianese T, Cretì P, Rosati L. Risk Assessment Arising from the Exposure of Terrestrial Vertebrates to Soil Contamination: Learning from Field Lizards of the Podarcis Genus. Journal of Xenobiotics. 2025; 15(1):21. https://doi.org/10.3390/jox15010021
Chicago/Turabian StyleScudiero, Rosaria, Teresa Chianese, Patrizia Cretì, and Luigi Rosati. 2025. "Risk Assessment Arising from the Exposure of Terrestrial Vertebrates to Soil Contamination: Learning from Field Lizards of the Podarcis Genus" Journal of Xenobiotics 15, no. 1: 21. https://doi.org/10.3390/jox15010021
APA StyleScudiero, R., Chianese, T., Cretì, P., & Rosati, L. (2025). Risk Assessment Arising from the Exposure of Terrestrial Vertebrates to Soil Contamination: Learning from Field Lizards of the Podarcis Genus. Journal of Xenobiotics, 15(1), 21. https://doi.org/10.3390/jox15010021