Effects of Chronic Alcohol Intake on the Composition of the Ensemble of Drug-Metabolizing Enzymes and Transporters in the Human Liver
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Human Liver Microsomes
2.3. Trypsin Digestion and Sample Preparation for Proteomics Analysis
2.4. LC-MS Data Acquisition
2.5. Proteomics Data Analysis
2.6. Non-Parametric Statistical Analysis and Data Visualization
2.7. Analysis of Correlations of Protein Abundances with the Level of Alcohol Consumption
3. Results
3.1. Effects of Alcohol Consumption and Tobacco Smoke on Global Proteome
3.2. Effects of Alcohol Intake on DMET Proteome Abundance and Composition
3.3. Establishing a Provisional Index of Alcohol Exposure and Its Use for In-Depth Analysis of the Alcohol Effects on HLM Proteome
3.4. Effects of Tobacco Smoke on DMET Abundance
3.5. Effects of Sex on DMET Abundance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Substance Abuse and Mental Health Services Administration; Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration (SAMHSA). Key Substance Use and Mental Health Indicators in the United States: Results from the 2021 National Survey on Drug Use and Health (HHS Publication No. PEP22-07-01-005, NSDUH Series H-57). 2022. Available online: https://www.samhsa.gov/data/report/2021-nsduh-annual-national-report (accessed on 8 February 2023).
- Reitsma, M.B.; Kendrick, P.J.; Ababneh, E.; Abbafati, C.; Abbasi-Kangevari, M.; Abdoli, A.; Abedi, A.; Abhilash, E.S.; Abila, D.B.; Aboyans, V.; et al. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990–2019: A systematic analysis from the Global Burden of Disease Study 2019. Lancet 2021, 397, 2337–2360. [Google Scholar] [CrossRef] [PubMed]
- Shield, K.; Manthey, J.; Rylett, M.; Probst, C.; Wettlaufer, A.; Parry, C.D.; Rehm, J. National, regional, and global burdens of disease from 2000 to 2016 attributable to alcohol use: A comparative risk assessment study. Lancet Public Health 2020, 5, e51–e61. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.N.; Anderson, G.D. Pharmacokinetic and Pharmacodynamic Drug Interactions with Ethanol (Alcohol). Clin. Pharmacokinet. 2014, 53, 1115–1136. [Google Scholar] [CrossRef] [PubMed]
- Tom, W.-C. Alcohol-related drug interactions. Pharm. Lett./Prescr. Lett. 2008, 24, 240106. [Google Scholar]
- Djordjević, D.; Nikolić, J.; Stefanović, V. Ethanol interactions with other cytochrome P450 substrates including drugs, xenobiotics, and carcinogens. Pathol. Biol. 1998, 46, 760–770. [Google Scholar] [PubMed]
- Meskar, A.; Plee-Gautier, E.; Amet, Y.; Berthou, F.; Lucas, D. Alcohol-xenobiotics interactions. Role of cytochrome P450 2E1. Pathol. Biol. 2001, 49, 696–702. [Google Scholar] [CrossRef]
- Weathermon, R.; Crabb, D.W. Alcohol and medication interactions. Alcohol Res. Health 1999, 23, 40–54. [Google Scholar]
- Tanaka, E. Toxicological interactions involving psychiatric drugs and alcohol: An update. J. Clin. Pharm. Ther. 2003, 28, 81–95. [Google Scholar] [CrossRef]
- Gomes, T.; Juurlink, D.N.; Mamdani, M.M.; Paterson, J.M.; van den Brink, W. Prevalence and characteristics of opioid-related deaths involving alcohol in Ontario, Canada. Drug Alcohol Depend. 2017, 179, 416–423. [Google Scholar] [CrossRef]
- Koski, A.; Ojanperä, I.; Vuori, E. Interaction of alcohol and drugs in fatal poisonings. Hum. Exp. Toxicol. 2003, 22, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Koski, A.; Vuori, E.; Ojanperä, I. Relation of postmortem blood alcohol and drug concentrations in fatal poisonings involving amitriptyline, propoxyphene and promazine. Hum. Exp. Toxicol. 2005, 24, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Cederbaum, A.I. Ethanol-related cytotoxicity catalyzed by CYP2E1-dependent generation of reactive oxygen intermediates in transduced HepG2 cells. Biofactors 1998, 8, 93–96. [Google Scholar] [CrossRef]
- Cederbaum, A.I. CYP2E1—Biochemical and toxicological aspects and role in alcohol-induced liver injury. Mt. Sinai J. Med. 2006, 73, 657–672. [Google Scholar] [PubMed]
- Jang, G.R.; Harris, R.Z. Drug interactions involving ethanol and alcoholic beverages. Expert Opin. Drug Metab. Toxicol. 2007, 3, 719–731. [Google Scholar] [CrossRef]
- Lieber, C.S. Microsomal ethanol-oxidizing system (MEOS): The first 30 years (1968–1998)—A review. Alcohol.-Clin. Exp. Res. 1999, 23, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- Neuvonen, P.J.; Penttilä, O.; Roos, M.; Tirkkonen, J. Effect of long-term alcohol consumption on the half-life of tetracycline and doxycycline in man. Int. J. Clin. Pharm. Biopharm. 1976, 14, 303–307. [Google Scholar]
- Sellman, R.; Kanto, J.; Raijola, E.; Pekkarinen, A. Human and animal study of elimination from plasma and metabolism of diazepam after chronic alcohol intake. Acta Pharmacol. Toxicol. 1975, 36, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Sandor, P.; Sellers, E.M.; Dumbrell, M.; Khouw, V. Effect of short-term and long-term alcohol-use on phenytoin kinetics in chronic-alcoholics. Clin. Pharmacol. Ther. 1981, 30, 390–397. [Google Scholar] [CrossRef]
- Kater, R.M.; Roggin, G.; Tobon, F.; Zieve, P.; Iber, F.L. Increased rate of clearance of drugs from circulation of alcoholics. Am. J. Med. Sci. 1969, 258, 35–39. [Google Scholar] [CrossRef]
- Dangi, B.; Davydova, N.Y.; Maldonado, M.A.; Abbasi, A.; Vavilov, N.E.; Zgoda, V.G.; Davydov, D.R. Effects of alcohol-induced increase in CYP2E1 content in human liver microsomes on the activity and cooperativity of CYP3A4. Arch. Biochem. Biophys. 2021, 698, 108677. [Google Scholar] [CrossRef]
- Davydova, N.Y.; Dangi, B.; Maldonado, M.A.; Vavilov, N.E.; Zgoda, V.G.; Davydov, D.R. Toward a systems approach to cytochrome P450 ensemble: Interactions of CYP2E1 with other P450 species and their impact on CYP1A2. Biochem. J. 2019, 476, 3661–3685. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, D.; Hoffmann, I.; El-Bayoumy, K. The less harmful cigarette: A controversial issue. A tribute to Ernst L. Wynder. Chem. Res. Toxicol. 2001, 14, 767–790. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, F.; Dobaradaran, S.; De-la-Torre, G.E.; Schmidt, T.C.; Saeedi, R. Content of toxic components of cigarette, cigarette smoke vs cigarette butts: A comprehensive systematic review. Sci. Total Environ. 2022, 813, 152667. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, M.; King, A.N.; Conte, M.; Ellingrod, V.L.; Ramnath, N. Effects of cigarette smoking on metabolism and effectiveness of systemic therapy for lung cancer. J. Thorac. Oncol. 2014, 9, 917–926. [Google Scholar] [CrossRef]
- Maideen, N.M.P. Tobacco smoking and its drug interactions with comedications involving CYP and UGT enzymes and nicotine. World J. Pharmacol. 2019, 8, 14–25. [Google Scholar] [CrossRef]
- Bhatt, D.K.; Basit, A.; Zhang, H.; Gaedigk, A.; Lee, S.B.; Claw, K.G.; Mehrotra, A.; Chaudhry, A.S.; Pearce, R.E.; Gaedigk, R.; et al. Hepatic Abundance and Activity of Androgen- and Drug-Metabolizing Enzyme UGT2B17 Are Associated with Genotype, Age, and Sex. Drug Metab. Dispos. 2018, 46, 888–896. [Google Scholar] [CrossRef]
- Pedersen, K.W.; Hansen, J.; Banner, J.; Hasselstrøm, J.B.; Jornil, J.R. Sex- and Lifestyle-Related Factors are Associated with Altered Hepatic CYP Protein Levels in People Diagnosed with Mental Disorders. Drug Metab. Dispos. 2023, 51, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Wegler, C.; Wiśniewski, J.R.; Robertsen, I.; Christensen, H.; Kristoffer Hertel, J.; Hjelmesæth, J.; Jansson-Löfmark, R.; Åsberg, A.; Andersson, T.B.; Artursson, P. Drug Disposition Protein Quantification in Matched Human Jejunum and Liver from Donors with Obesity. Clin. Pharmacol. Ther. 2022, 111, 1142–1154. [Google Scholar] [CrossRef]
- Jones, N.R.; Sun, D.; Freeman, W.M.; Lazarus, P. Quantification of Hepatic UDP glucuronosyltransferase 1A splice variant expression and correlation of UDP glucuronosyltransferase 1A1 variant expression with glucuronidation activity. J. Pharmacol. Exp. Ther. 2012, 342, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.C.; Huang, W.; Moody, D.E. Variables in human liver microsome preparation: Impact on the kinetics of l-alpha-acetylmethadol (LAAM) n-demethylation and dextromethorphan O-demethylation. Drug Metab. Dispos. 2001, 29, 319–325. [Google Scholar]
- Sharma, S.; Singh, D.K.; Mettu, V.S.; Yue, G.; Ahire, D.; Basit, A.; Heyward, S.; Prasad, B. Quantitative Characterization of Clinically Relevant Drug-Metabolizing Enzymes and Transporters in Rat Liver and Intestinal Segments for Applications in PBPK Modeling. Mol. Pharm. 2023, 20, 1737–1749. [Google Scholar] [CrossRef]
- Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 2020, 17, 41–44. [Google Scholar] [CrossRef]
- Wiśniewski, J.R.; Rakus, D. Multi-enzyme digestion FASP and the ‘Total Protein Approach’-based absolute quantification of the Escherichia coli proteome. J. Proteom. 2014, 109, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed]
- Heberle, H.; Meirelles, G.V.; da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef] [PubMed]
- Arthurs, T.D. Algorithm 176: Least squares surface fit. Commun. ACM 1963, 6, 313. [Google Scholar]
- Miles, M.F. Alcohol’s effects on gene expression. Alcohol Health Res. World 1995, 19, 237–243. [Google Scholar] [PubMed]
- Tunici, P.; Schiaffonati, L.; Rabellotti, E.; Tiberio, L.; Perin, A.; Sessa, A. In vivo modulation of 73 kDa heat shock cognate and 78 kDa glucose-regulating protein gene expression in rat liver and brain by ethanol. Alcohol. Clin. Exp. Res. 1999, 23, 1861–1867. [Google Scholar] [CrossRef]
- Rahman, S.; Miles, M.F. Identification of novel ethanol-sensitive genes by expression profiling. Pharmacol. Ther. 2001, 92, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Ahire, D.; Kruger, L.; Sharma, S.; Mettu, V.S.; Basit, A.; Prasad, B.; France, C. Quantitative Proteomics in Translational Absorption, Distribution, Metabolism, and Excretion and Precision Medicine. Pharmacol. Rev. 2022, 74, 769–796. [Google Scholar] [CrossRef]
- Basit, A.; Fan, P.W.; Khojasteh, S.C.; Murray, B.P.; Smith, B.J.; Heyward, S.; Prasad, B. Comparison of Tissue Abundance of Non-Cytochrome P450 Drug-Metabolizing Enzymes by Quantitative Proteomics between Humans and Laboratory Animal Species. Drug Metab. Dispos. 2022, 50, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Neuhoff, S.; Harwood, M.D.; Rostami-Hodjegan, A.; Achour, B. Application of proteomic data in the translation of in vitro observations to associated clinical outcomes. Drug Discov. Today Technol. 2021, 39, 13–22. [Google Scholar] [CrossRef]
- Dupont, I.; Lucas, D.; Clot, P.; Ménez, C.; Albano, E. Cytochrome P4502E1 inducibility and hydroxyethyl radical formation among alcoholics. J. Hepatol. 1998, 28, 564–571. [Google Scholar]
- Kater, R.M.; Tobon, F.; Iber, F.L. Increased rate of tolbutamide metabolism in alcoholic patients. J. Am. Med. Assoc. 1969, 207, 363–365. [Google Scholar]
- Feierman, D.E.; Melinkov, Z.; Nanji, A.A. Induction of CYP3A by ethanol in multiple in vitro and in vivo models. Alcohol.-Clin. Exp. Res. 2003, 27, 981–988. [Google Scholar] [CrossRef]
- Lu, Y.; Zhuge, J.; Wu, D.; Cederbaum, A.I. Ethanol Induction of CYP2A5: Permissive Role for CYP2E1. Drug Metab. Dispos. 2011, 39, 330–336. [Google Scholar]
- Lu, Y.; Zhang, X.H.; Cederbaum, A.I. Ethanol Induction of CYP2A5: Role of CYP2E1-ROS-Nrf2 Pathway. Toxicol. Sci. 2012, 128, 427–438. [Google Scholar]
- Perret, A.; Pompon, D. Electron shuttle between membrane-bound cytochrome P450 3A4 and b5 rules uncoupling mechanisms. Biochemistry 1998, 37, 11412–11424. [Google Scholar] [PubMed]
- Pompon, D. Rabbit liver cytochrome-P-450 LM2: Roles of substrates, inhibitors, and cytochrome-b5 in modulating the partition between productive and abortive mechanisms. Biochemistry 1987, 26, 6429–6435. [Google Scholar] [CrossRef] [PubMed]
- Schenkman, J.B.; Jansson, I. Interactions between cytochrome P450 and cytochrome b5. Drug Metab. Rev. 1999, 31, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Hugbart, C.; Verres, Y.; Le Daré, B.; Bucher, S.; Vène, E.; Bodin, A.; Lagente, V.; Fromenty, B.; Bouvet, R.; Morel, I.; et al. Non-oxidative ethanol metabolism in human hepatic cells in vitro: Involvement of uridine diphospho-glucuronosyltransferase 1A9 in ethylglucuronide production. Toxicol. In Vitr. 2020, 66, 104842. [Google Scholar] [CrossRef]
- Wang, J.; Feng, Y.; Liu, B.; Xie, W. Estrogen sulfotransferase and sulfatase in steroid homeostasis, metabolic disease, and cancer. Steroids 2024, 201, 109335. [Google Scholar] [CrossRef]
- Mathur, B.; Arif, W.; Patton, M.E.; Faiyaz, R.; Liu, J.; Yeh, J.; Harpavat, S.; Schoonjans, K.; Kalsotra, A.; Wheatley, A.M.; et al. Transcriptomic analysis across liver diseases reveals disease-modulating activation of constitutive androstane receptor in cholestasis. JHEP Rep. 2020, 2, 100140. [Google Scholar]
- McIntyre, L.M.; Lopiano, K.K.; Morse, A.M.; Amin, V.; Oberg, A.L.; Young, L.J.; Nuzhdin, S.V. RNA-seq: Technical variability and sampling. BMC Genom. 2011, 12, 293. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, M.L.; Ramani, K.; Ryoo, M.; Cossu, C.; Floris, A.; Murray, B.J.; Iglesias-Ara, A.; Spissu, Y.; Mavila, N. SUMOylation regulates cytochrome P450 2E1 expression and activity in alcoholic liver disease. FASEB J. 2018, 32, 3278–3288. [Google Scholar] [CrossRef]
Females | Males | |
---|---|---|
N = 94 | 33 | 61 |
Median Donor Age (Years) | 62 (18–81) | 68 (28–84) |
Alcohol History | ||
Non-drinkers | 13 (39%) | 23 (38%) |
Light Intake | 2 (6%) | 8 (13%) |
Social Intake | 12 (36%) | 16 (26%) |
Moderate Intake | 5 (15%) | 8 (13%) |
Heavy Intake | 1 (3%) | 6 (10%) |
Smoking Status | ||
Never Smokers | 13 (39%) | 15 (25%) |
History of Smoking | 12 (36%) | 29 (47%) |
Light smoking (<1 PPD) | 2 (6%) | 3 (5%) |
Moderate Smoking (1–2 PPD) | 5 (15%) | 9 (15%) |
Heavy Smoking (>2 PPD) | 1 (3%) | 5 (8%) |
Race/Ethnicity | ||
White non-Hispanic | 29 (88%) | 59 (97%) |
White Hispanic | 3 (9%) | 2 (3%) |
African American | 1 (3%) | 0 |
n | Non-Drinkers | Heavy Drinkers | p-Value | Non-Smokers | Smokers > 1 ppd | p-Value | Males | Females | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
36 | 7 | 69 | 20 | 61 | 33 | ||||||||||
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||||||||||
P450 protein levels (pmol/mg protein) | |||||||||||||||
CYP1A1 | 1.0 | ±0.9 | 0.6 | ±0.1 | 0.013 | 0.7 | ±0.6 | 1.3 | ±1.7 | 0.10 | 0.9 | ±1.1 | 0.7 | ±0.6 | 0.43 |
CYP1A2 | 31.6 | ±13.2 | 13.5 | ±7.1 | 4.5 × 10−5 | 27.1 | ±13.0 | 39.3 | ±22.3 | 0.02 | 32.4 | ±17.4 | 24.0 | ±12.1 | 0.007 |
CYP2A6 | 67.8 | ±32.5 | 50.5 | ±26.1 | 0.15 | 66.8 | ±28.2 | 58.9 | ±30.5 | 0.28 | 59.5 | ±27.1 | 73.5 | ±29.4 | 0.03 |
CYP2B6 | 13.8 | ±9.4 | 32.7 | ±30.3 | 0.15 | 14.0 | ±8.5 | 18.6 | ±19.3 | 0.25 | 14.7 | ±13.9 | 14.6 | ±5.5 | 0.96 |
CYP2C8 | 25.5 | ±6.1 | 20.5 | ±13.9 | 0.39 | 24.6 | ±6.3 | 25.8 | ±9.0 | 0.77 | 24.2 | ±7.1 | 25.4 | ±6.5 | 0.44 |
CYP2C9 | 91.0 | ±25.0 | 60.9 | ±20.0 | 0.006 | 89.7 | ±23.1 | 85.5 | ±22.8 | 0.28 | 89.8 | ±22.9 | 84.1 | ±23.5 | 0.27 |
CYP2C18 | 4.8 | ±2.6 | 3.5 | ±2.5 | 0.18 | 4.7 | ±2.4 | 4.5 | ±1.8 | 0.55 | 4.6 | ±2.2 | 5.1 | ±2.3 | 0.27 |
CYP2C19 | 5.3 | ±3.8 | 4.2 | ±3.4 | 0.47 | 5.6 | ±3.8 | 6.2 | ±4.1 | 0.66 | 5.1 | ±3.4 | 6.8 | ±4.4 | 0.054 |
CYP2D6 | 28.8 | ±17.9 | 19.7 | ±11.2 | 0.10 | 27.3 | ±15.2 | 26.5 | ±19.7 | 0.79 | 25.7 | ±13.8 | 30.2 | ±19.5 | 0.24 |
CYP2E1 | 64.0 | ±17.2 | 108.0 | ±45.0 | 0.02 | 68.5 | ±25.3 | 63.6 | ±19.0 | 0.72 | 67.9 | ±25.5 | 65.7 | ±19.5 | 0.65 |
CYP3A4 | 67.0 | ±27.9 | 84.2 | ±62.2 | 0.25 | 68.5 | ±28.6 | 65.3 | ±45.6 | 0.79 | 62.8 | ±33.3 | 74.1 | ±30.8 | 0.10 |
CYP3A5 | 7.6 | ±14.3 | 10.0 | ±15.3 | 0.36 | 8.1 | ±13.4 | 9.6 | ±14.0 | 0.75 | 8.8 | ±13.1 | 9.0 | ±14.5 | 0.95 |
CYP3A7 | 0.9 | ±1.6 | 2.4 | ±4.3 | 0.21 | 0.9 | ±1.8 | 1.4 | ±2.1 | 0.21 | 1.1 | ±1.9 | 0.9 | ±1.5 | 0.57 |
CYP4A11 | 52.2 | ±13.7 | 31.4 | ±8.1 | 8.6 × 10−5 | 49.9 | ±14.5 | 47.1 | ±12.6 | 0.25 | 47.9 | ±13.5 | 51.0 | ±14.5 | 0.31 |
CYP4F2 | 33.7 | ±10.3 | 28.5 | ±10.3 | 0.25 | 32.7 | ±9.8 | 33.1 | ±9.0 | 0.97 | 32.4 | ±9.8 | 33.7 | ±8.6 | 0.49 |
UGT protein levels (pmol/mg protein) | |||||||||||||||
UGT1A1 | 28.2 | ±11.1 | 42.3 | ±19.4 | 0.054 | 27.1 | ±11.5 | 34.6 | ±17.4 | 0.08 | 28.7 | ±14.3 | 29.5 | ±10.9 | 0.76 |
UGT1A3 | 5.8 | ±3.7 | 4.4 | ±1.4 | 0.12 | 5.3 | ±3.9 | 5.9 | ±4.6 | 0.57 | 5.7 | ±4.4 | 4.6 | ±3.0 | 0.15 |
UGT1A4 | 74.1 | ±19.3 | 56.0 | ±14.1 | 0.014 | 69.3 | ±20.4 | 75.1 | ±20.4 | 0.32 | 71.0 | ±20.1 | 67.8 | ±21.4 | 0.48 |
UGT1A6 | 98.7 | ±24.5 | 147.4 | ±45.9 | 0.015 | 96.6 | ±29.0 | 117.7 | ±27.1 | 0.0013 | 106.5 | ±29.2 | 96.0 | ±38.1 | 0.17 |
UGT1A9 | 14.3 | ±3.8 | 19.6 | ±3.4 | 0.005 | 14.6 | ±4.4 | 15.7 | ±4.2 | 0.22 | 15.3 | ±4.3 | 15.5 | ±6.6 | 0.85 |
UGT2A1 | 1.7 | ±1.7 | 2.2 | ±1.8 | 0.51 | 1.2 | ±1.5 | 2.0 | ±1.7 | 0.054 | 1.4 | ±1.5 | 1.4 | ±1.6 | 0.80 |
UGT2A3 | 6.8 | ±3.0 | 8.2 | ±2.9 | 0.27 | 7.0 | ±3.1 | 6.9 | ±2.9 | 0.97 | 6.3 | ±2.7 | 8.6 | ±3.2 | 0.0010 |
UGT2B4 | 45.7 | ±10.5 | 45.0 | ±9.6 | 0.87 | 42.3 | ±9.0 | 49.8 | ±11.4 | 0.010 | 42.8 | ±9.1 | 46.1 | ±10.9 | 0.15 |
UGT2B7 | 205.2 | ±55.5 | 128.9 | ±31.8 | 0.0002 | 199.8 | ±54.2 | 195.6 | ±64.7 | 0.62 | 209.6 | ±56.2 | 177.7 | ±48.4 | 0.005 |
UGT2B10 | 15.8 | ±5.1 | 10.8 | ±4.9 | 0.037 | 15.7 | ±4.8 | 14.7 | ±7.0 | 0.47 | 15.3 | ±5.6 | 15.2 | ±5.3 | 0.95 |
UGT2B15 | 108.4 | ±30.6 | 75.9 | ±17.0 | 0.0006 | 107.4 | ±35.3 | 105.0 | ±43.3 | 0.67 | 118.7 | ±37.2 | 86.0 | ±21.6 | 5.7 × 10−7 |
UGT2B17 | 4.1 | ±5.8 | 4.9 | ±6.1 | 0.75 | 4.7 | ±5.6 | 5.2 | ±5.3 | 0.74 | 6.6 | ±6.0 | 1.8 | ±2.3 | 2.8 × 10−7 |
non-P450, non-UGT enzymes (pmol/mg protein) | |||||||||||||||
AADAC | 31.4 | ±8.0 | 21.6 | ±3.8 | 7.3 × 10−5 | 30.3 | ±7.5 | 28.6 | ±7.9 | 0.30 | 27.9 | ±6.0 | 33.4 | ±8.9 | 0.003 |
CES1 | 344.0 | ±65.9 | 368.6 | ±96.4 | 0.54 | 335.7 | ±66.6 | 363.0 | ±74.4 | 0.16 | 338.8 | ±64.3 | 345.5 | ±74.9 | 0.67 |
CES2 | 33.6 | ±8.3 | 28.6 | ±11.2 | 0.30 | 35.6 | ±10.4 | 33.8 | ±11.6 | 0.40 | 35.2 | ±8.9 | 35.4 | ±12.9 | 0.93 |
CES3 | 0.4 | ±0.2 | 0.4 | ±0.1 | 0.60 | 0.4 | ±0.2 | 0.4 | ±0.1 | 0.71 | 0.4 | ±0.2 | 0.5 | ±0.1 | 0.12 |
FMO1 | 0.4 | ±0.1 | 0.5 | ±0.1 | 0.003 | 0.4 | ±0.1 | 0.4 | ±0.2 | 0.22 | 0.3 | ±0.1 | 0.4 | ±0.1 | 0.05 |
FMO3 | 69.9 | ±18.1 | 53.9 | ±13.0 | 0.02 | 71.9 | ±16.3 | 58.7 | ±21.0 | 0.011 | 69.1 | ±17.6 | 68.1 | ±18.4 | 0.82 |
FMO4 | 2.4 | ±0.6 | 1.9 | ±0.3 | 0.002 | 2.5 | ±0.6 | 2.1 | ±0.7 | 0.007 | 2.4 | ±0.6 | 2.4 | ±0.7 | 0.72 |
FMO5 | 47.6 | ±18.4 | 19.3 | ±3.2 | 1.0 × 10−10 | 45.3 | ±15.7 | 33.3 | ±12.1 | 0.0002 | 42.1 | ±16.6 | 42.5 | ±13.6 | 0.90 |
MGST1 | 341.6 | ±97.4 | 429.2 | ±146.9 | 0.17 | 312.6 | ±86.1 | 348.6 | ±124.5 | 0.15 | 329.9 | ±100.2 | 314.0 | ±97.4 | 0.46 |
MGST2 | 129.8 | ±27.8 | 137.3 | ±37.3 | 0.63 | 125.8 | ±26.3 | 130.6 | ±32.9 | 0.52 | 125.7 | ±28.2 | 132.4 | ±28.8 | 0.28 |
STS | 0.7 | ±0.5 | 0.5 | ±0.1 | 0.006 | 0.7 | ±0.5 | 0.7 | ±0.4 | 0.56 | 0.6 | ±0.3 | 1.0 | ±0.7 | 0.002 |
Protein ID | R | Student’s t-Test p-Value | Protein Name | FC a | Cellular Location |
---|---|---|---|---|---|
HSPA5 | 0.656 | 7.2 × 10−13 | Endoplasmic reticulum chaperone BiP | 2.56 | ER lumen, cytosol |
FMO5 | −0.600 | 1.7 × 10−10 | Flavin-containing monooxygenase 5 | 0.40 | ER membrane |
POR | 0.505 | 2.1 × 10−7 | P450 reductase | 1.52 | ER membrane |
HSPA9 | 0.491 | 5.1 × 10−7 | Mortalin, Stress-70 protein | 1.32 | ER membrane |
PDIA4 | 0.478 | 1.1 × 10−6 | Protein disulfide-isomerase A4 | 1.44 | ER lumen |
VCP | 0.454 | 4.2 × 10−6 | Transitional endoplasmic reticulum ATPase | 3.01 | ER membrane |
P4HB | 0.443 | 7.9 × 10−6 | Protein disulfide-isomerase | 1.28 | ER lumen |
CYP4A11 | −0.439 | 9.7 × 10−6 | CYP4A11 | 0.57 | ER membrane |
HSP90B1 | 0.437 | 1.0 × 10−5 | Endoplasmin, Heat shock protein 90 | 1.61 | ER lumen |
CYP2C9 | −0.429 | 1.6 × 10−5 | CYP2C9 | 0.61 | ER membrane |
GSTO1 | 0.426 | 1.8 × 10−5 | Glutathione S-transferase omega-1 | 2.09 | ER membrane |
ERO1A | 0.382 | 0.0002 | ER oxidoreductase A | 3.17 | ER membrane |
UGT1A4 | −0.379 | 0.0002 | UGT1A4 | 0.70 | ER membrane |
ERMP1 | 0.365 | 0.0003 | Endoplasmic reticulum metallopeptidase 1 | 1.27 | ER membrane |
CYB5A | −0.360 | 0.0004 | Cytochrome b5 | 0.82 | ER membrane |
ATP2A2 | 0.356 | 0.0004 | Phospholipid-transporting ATPase IIA | 1.34 | ER membrane |
UGT2B7 | −0.343 | 0.0007 | UGT2B7 | 0.56 | ER membrane |
UGT1A6 | 0.339 | 0.0008 | UGT1A6 | 1.62 | ER membrane |
CYP2C8 | −0.335 | 0.0009 | CYP2C8 | 0.73 | ER membrane |
MGST1 | 0.335 | 0.0009 | Microsomal glutathione S-transferase 1 | 1.39 | ER membrane |
FMO3 | −0.333 | 0.0010 | Flavin-containing monooxygenase 3 | 0.70 | ER membrane |
HERPUD1 | 0.323 | 0.0015 | Homocysteine-responsive ER ubiquitin-like domain 1 | 1.66 | ER membrane |
CYP1A2 | −0.318 | 0.0018 | CYP1A2 | 0.41 | ER membrane |
MGST3 | −0.317 | 0.0019 | Microsomal glutathione S-transferase 3 | 0.74 | ER membrane |
UGT1A9 | 0.312 | 0.0022 | UGT1A9 | 1.56 | ER membrane |
PDIA5 | −0.309 | 0.0024 | Protein disulfide-isomerase A5 | 0.71 | ER lumen |
AADAC | −0.309 | 0.0024 | Arylacetamide deacetylase | 0.75 | ER membrane |
ERAP2 | 0.307 | 0.0026 | Endoplasmic reticulum aminopeptidase 2 | 1.57 | ER membrane |
CYP2J2 | 0.304 | 0.0028 | CYP2J2 | 1.46 | ER membrane |
CYP2E1 | 0.302 | 0.0031 | CYP2E1 | 1.52 | ER membrane |
CYP7B1 | −0.293 | 0.0042 | CYP7B1 | 0.81 | ER membrane |
PDIA6 | 0.286 | 0.0051 | Protein disulfide-isomerase A6 | 1.15 | ER lumen |
HMOX1 | 0.282 | 0.0058 | Heme oxygenase 1 | 1.49 | ER membrane |
UGT2B10 | −0.279 | 0.0065 | UGT2B10 | 0.57 | ER membrane |
UGT2A1 | 0.268 | 0.0090 | UGT2A1 | 2.67 | ER membrane |
CYP4F11 | −0.248 | 0.0159 | CYP4F11 | 0.91 | ER membrane |
H6PD | 0.241 | 0.0194 | GDH/6PGL endoplasmic bifunctional protein | 1.19 | ER lumen |
CYP2B6 | 0.232 | 0.0246 | CYP2B6 | 1.72 | ER membrane |
UGT2B15 | −0.227 | 0.0275 | UGT2B15 | 0.66 | ER membrane |
UGT1A3 | −0.226 | 0.0283 | UGT1A3 | 0.51 | ER membrane |
CYP1A1 | −0.223 | 0.0305 | CYP1A1 | 0.00 | ER membrane |
ERLEC1 | 0.223 | 0.0309 | Endoplasmic reticulum lectin 1 | 1.38 | ER lumen |
Protein Class | Upregulated Proteins | Downregulated Proteins |
---|---|---|
Cytochrome P450 | CYP2B6, CYP2E1, CYP2J2 | CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP4A11, CYP4F11, CYP7B1 |
Cytochrome P450 partners | POR, HMOX1 | CYB5A |
UGTs | UGT1A6, UGT1A9, UGT2A1 | UGT1A3, UGT1A4, UGT2B7, UGT2B10, UGT2B15 |
Other DMEs | GSTO1 | AADAC, FMO3, FMO5, MGST1, MGST3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaither, K.A.; Yue, G.; Singh, D.K.; Trudeau, J.; Ponraj, K.; Davydova, N.Y.; Lazarus, P.; Davydov, D.R.; Prasad, B. Effects of Chronic Alcohol Intake on the Composition of the Ensemble of Drug-Metabolizing Enzymes and Transporters in the Human Liver. J. Xenobiot. 2025, 15, 20. https://doi.org/10.3390/jox15010020
Gaither KA, Yue G, Singh DK, Trudeau J, Ponraj K, Davydova NY, Lazarus P, Davydov DR, Prasad B. Effects of Chronic Alcohol Intake on the Composition of the Ensemble of Drug-Metabolizing Enzymes and Transporters in the Human Liver. Journal of Xenobiotics. 2025; 15(1):20. https://doi.org/10.3390/jox15010020
Chicago/Turabian StyleGaither, Kari A., Guihua Yue, Dilip Kumar Singh, Julia Trudeau, Kannapiran Ponraj, Nadezhda Y. Davydova, Philip Lazarus, Dmitri R. Davydov, and Bhagwat Prasad. 2025. "Effects of Chronic Alcohol Intake on the Composition of the Ensemble of Drug-Metabolizing Enzymes and Transporters in the Human Liver" Journal of Xenobiotics 15, no. 1: 20. https://doi.org/10.3390/jox15010020
APA StyleGaither, K. A., Yue, G., Singh, D. K., Trudeau, J., Ponraj, K., Davydova, N. Y., Lazarus, P., Davydov, D. R., & Prasad, B. (2025). Effects of Chronic Alcohol Intake on the Composition of the Ensemble of Drug-Metabolizing Enzymes and Transporters in the Human Liver. Journal of Xenobiotics, 15(1), 20. https://doi.org/10.3390/jox15010020