Terrestrial Ecotoxic Impacts Stemming from Emissions of Cd, Cu, Ni, Pb and Zn from Manure: A Spatially Differentiated Assessment in Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Assessment Methodology
2.2. Countries Considered
2.3. Grid-Specific Emission Inventories
2.4. Grid-Specific Comparative Toxicity Potentials
3. Results and Discussion
3.1. Grid-Specific Comparative Toxicity Potentials
3.2. Country-Specific Impact Scores
3.3. Uncertainties
3.3.1. Uncertainties in the CTPs
3.3.2. Uncertainties in the Impact Scores
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Emissions and Terrestrial Ecotoxicity Impact Scores
Emitted Mass (in kg) | Impact Score (in m3pore water·Day) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Country | Cd | Cu | Ni | Pb | Zn | Cd | Cu | Ni | Pb | Zn |
FRA | 9.5 × 103 | 1.2 × 106 | 1.5 × 105 | 1.2 × 105 | 5.7 × 106 | 8.8 × 107 | 4.4 × 109 (1.5 × 109–1.3 × 1010) | 4.0 × 108 (3.3 × 108–4.8 × 108) | 4.4 × 109 (8.3 × 108–2.3 × 1010) | 1.1 × 1011 (5.5 × 1010–2.2 × 1011) |
DEU | 6.2 × 103 | 1.1 × 106 | 1.1 × 105 | 7.7 × 104 | 5.3 × 106 | 3.4 × 107 | 5.7 × 109 | 3.0 × 108 | 4.5 × 109 | 8.7 × 1010 |
ESP | 4.6 × 103 | 1.1 × 106 | 9.0 × 104 | 5.7 × 104 | 5.0 × 106 | 8.5 × 107 | 2.5 × 109 | 2.3 × 108 | 7.4 × 108 | 1.8 × 1011 |
POL | 4.6 × 103 | 1.0 × 106 | 7.2 × 104 | 4.8 × 104 | 4.4 × 106 | 1.7 × 107 | 4.5 × 109 | 1.9 × 108 | 2.0 × 109 | 5.6 × 1010 |
ITA | 3.8 × 103 | 5.5 × 105 | 6.6 × 104 | 4.8 × 104 | 2.7 × 106 | 3.4 × 107 | 2.0 × 109 (7.1 × 108–5.6 × 109) | 1.8 × 108 (1.5 × 108–2.1 × 108) | 1.6 × 109 (3.1 × 108–8.1 × 109) | 5.3 × 1010 (2.7 × 1010–1.0 × 1011) |
IRL | 2.8 × 103 | 2.8 × 105 | 4.5 × 104 | 3.8 × 104 | 1.4 × 106 | 1.1 × 107 | 9.8 × 108 | 1.2 × 108 | 1.3 × 109 | 1.9 × 1010 |
NLD | 2.1 × 103 | 4.1 × 105 | 4.1 × 104 | 2.7 × 104 | 2.1 × 106 | 3.1 × 107 | 1.5 × 109 | 9.7 × 107 | 1.4 × 109 | 5.5 × 1010 |
ROU | 2.1 × 103 | 3.5 × 105 | 4.4 × 104 | 3.3 × 104 | 1.7 × 106 | 3.0 × 107 | 6.6 × 108 | 1.1 × 108 | 2.5 × 108 | 5.4 × 1010 |
BLR | 2.1 × 103 | 2.7 × 105 | 3.3 × 104 | 2.5 × 104 | 1.3 × 106 | 5.1 × 106 | 1.2 × 109 | 9.7 × 107 | 1.0 × 109 | 1.3 × 1010 |
BEL | 1.2 × 103 | 2.2 × 105 | 2.2 × 104 | 1.5 × 104 | 1.1 × 106 | 5.7 × 106 | 1.3 × 109 | 6.2 × 107 | 8.4 × 108 | 1.6 × 1010 |
DNK | 1.0 × 103 | 2.9 × 105 | 2.2 × 104 | 1.2 × 104 | 1.4 × 106 | 4.9 × 106 | 1.4 × 109 | 5.2 × 107 | 7.0 × 108 | 1.9 × 1010 |
AUT | 1.0 × 103 | 1.7 × 105 | 1.7 × 104 | 1.2 × 104 | 7.8 × 105 | 8.1 × 106 | 8.7 × 108 | 4.6 × 107 | 7.1 × 108 | 1.6 × 1010 |
GRC | 7.4 × 102 | 1.1 × 105 | 1.6 × 104 | 1.3 × 104 | 5.0 × 105 | 7.6 × 106 | 3.5 × 108 (1.3 × 108–9.6 × 108) | 4.4 × 107 (3.7 × 107–5.2 × 107) | 3.6 × 108 (7.4 × 107–1.8 × 109) | 9.6 × 109 (4.9 × 109–1.9 × 1010) |
HUN | 7.3 × 102 | 1.3 × 105 | 1.4 × 104 | 9.2 × 103 | 6.3 × 105 | 6.4 × 106 | 2.9 × 108 | 3.9 × 107 | 9.6 × 107 | 1.5 × 1010 |
SRB | 7.2 × 102 | 1.5 × 105 | 1.3 × 104 | 8.9 × 103 | 6.9 × 105 | 5.5 × 106 | 6.0 × 108 | 3.7 × 107 | 3.1 × 108 | 1.4 × 1010 |
CZE | 6.7 × 102 | 9.5 × 104 | 1.1 × 104 | 8.4 × 103 | 4.7 × 105 | 3.8 × 106 | 4.9 × 108 | 3.4 × 107 | 3.3 × 108 | 8.2 × 109 |
CHE | 6.7 × 102 | 8.5 × 104 | 1.1 × 104 | 8.8 × 103 | 4.2 × 105 | 4.5 × 106 | 3.2 × 108 | 3.0 × 107 | 3.1 × 108 | 8.0 × 109 |
BGR | 4.3 × 102 | 5.8 × 104 | 8.2 × 103 | 6.5 × 103 | 2.8 × 105 | 4.2 × 106 | 1.2 × 108 | 2.1 × 107 | 7.4 × 107 | 7.2 × 109 |
LTU | 3.9 × 102 | 5.6 × 104 | 6.3 × 103 | 4.8 × 103 | 2.7 × 105 | 1.8 × 106 | 9.8 × 107 | 1.5 × 107 | 6.4 × 107 | 3.7 × 109 |
ALB | 3.9 × 102 | 4.4 × 104 | 7.0 × 103 | 5.7 × 103 | 2.2 × 105 | 4.8 × 106 | 1.0 × 108 | 2.0 × 107 | 4.0 × 107 | 6.3 × 109 |
BIH | 3.3 × 102 | 5.0 × 104 | 5.8 × 103 | 4.4 × 103 | 2.3 × 105 | 2.1 × 106 | 2.8 × 108 | 1.7 × 107 | 1.9 × 108 | 4.2 × 109 |
HRV | 3.1 × 102 | 6.0 × 104 | 5.5 × 103 | 3.8 × 103 | 2.8 × 105 | 2.0 × 106 | 2.8 × 108 | 1.6 × 107 | 1.2 × 108 | 5.1 × 109 |
SVK | 2.9 × 102 | 4.5 × 104 | 5.1 × 103 | 3.8 × 103 | 2.2 × 105 | 2.5 × 106 | 1.5 × 108 | 1.4 × 107 | 8.3 × 107 | 5.0 × 109 |
MDA | 2.5 × 102 | 4.5 × 104 | 4.7 × 103 | 3.4 × 103 | 2.0 × 105 | 2.9 × 106 | 3.9 × 107 | 1.1 × 107 | 1.1 × 107 | 6.1 × 109 |
LVA | 2.5 × 102 | 3.8 × 104 | 3.9 × 103 | 2.9 × 103 | 1.7 × 105 | 7.6 × 105 | 1.1 × 108 | 1.0 × 107 | 7.8 × 107 | 2.0 × 109 |
SVN | 1.9 × 102 | 2.5 × 104 | 3.1 × 103 | 2.5 × 103 | 1.2 × 105 | 1.1 × 106 | 1.3 × 108 | 9.5 × 106 | 1.1 × 108 | 2.2 × 109 |
MKD | 1.5 × 102 | 1.8 × 104 | 2.7 × 103 | 2.2 × 103 | 8.6 × 104 | 1.5 × 106 | 7.8 × 107 | 7.5 × 106 | 6.9 × 107 | 2.0 × 109 |
EST | 1.4 × 102 | 1.8 × 104 | 2.3 × 103 | 1.8 × 103 | 9.0 × 104 | 9.7 × 105 | 3.7 × 107 | 6.4 × 106 | 3.0 × 107 | 1.7 × 109 |
LUX | 8.0 × 101 | 8.9 × 103 | 1.2 × 103 | 1.0 × 103 | 4.3 × 104 | 4.1 × 105 | 5.0 × 107 | 3.9 × 106 | 4.6 × 107 | 7.5 × 108 |
MNE | 5.5 × 101 | 5.4 × 103 | 9.3 × 102 | 7.9 × 102 | 2.8 × 104 | 4.6 × 105 | 1.9 × 107 | 2.5 × 106 | 2.0 × 107 | 6.2 × 108 |
ISL | 4.7 × 101 | 4.9 × 103 | 9.3 × 102 | 8.1 × 102 | 2.4 × 104 | 2.3 × 105 | 6.3 × 106 | 2.5 × 106 | 1.2 × 107 | 3.4 × 108 |
MLT | 1.3 × 101 | 2.7 × 103 | 2.3 × 102 | 1.5 × 102 | 1.2 × 104 | 9.6 × 104 | 5.5 × 106 | 6.3 × 105 | 7.8 × 105 | 2.9 × 108 |
LIE | 2.9 × 100 | 2.9 × 102 | 4.5 × 101 | 3.8 × 101 | 1.4 × 103 | 1.6 × 104 | 1.0 × 106 | 1.3 × 105 | 5.8 × 105 | 2.4 × 107 |
NOR | 4.7 × 102 | 6.4 × 104 | 8.5 × 103 | 6.7 × 103 | 3.1 × 105 | 3.3 × 106 (1.3 × 106–8.5 × 106) | 2.1 × 108 (7.6 × 107–5.7 × 108) | 2.3 × 107 (1.9 × 107–2.7 × 107) | 1.6 × 108 (3.4 × 107–8.0 × 108) | 5.9 × 109 (3.0 × 109–1.2 × 1010) |
SWE | 6.6 × 102 | 9.1 × 104 | 1.1 × 104 | 8.5 × 103 | 4.4 × 105 | 4.7 × 106 (1.8 × 106–1.2 × 107) | 3.0 × 108 (1.1 × 108–8.2 × 108) | 3.0 × 107 (2.5 × 107–3.5 × 107) | 2.1 × 108 (4.4 × 107–1.0 × 109) | 8.5 × 109 (4.3 × 109–1.7 × 1010) |
UKR | 3.5 × 103 | 5.7 × 105 | 5.9 × 104 | 3.9 × 104 | 3.0 × 106 | 2.6 × 107 (9.7 × 106–6.8 × 107) | 2.1 × 109 (7.5 × 108–5.9 × 109) | 1.6 × 108 (1.3 × 108–1.9 × 108) | 1.2 × 109 (2.4 × 108–6.2 × 109) | 5.8 × 1010 (2.9 × 1010–1.2 × 1011) |
PRT | 9.7 × 102 | 1.7 × 105 | 1.7 × 104 | 1.2 × 104 | 7.5 × 105 | 6.9 × 106 (2.7 × 106–1.8 × 107) | 5.7 × 108 (2.1 × 108–1.6 × 109) | 4.5 × 107 (3.8 × 107–5.3 × 107) | 3.2 × 108 (6.5 × 107–1.6 × 109) | 1.4 × 1010 (7.3 × 109–2.8 × 1010) |
CYP | 3.8 × 101 | 1.8 × 104 | 8.5 × 102 | 3.1 × 102 | 7.7 × 104 | 2.4 × 105 (9.1 × 104–6.5 × 105) | 5.5 × 107 (2.0 × 107–1.5 × 108) | 2.4 × 106 (2.0 × 106–2.8 × 106) | 4.8 × 106 (9.1 × 105–2.5 × 107) | 1.5 × 109 (7.5 × 108–2.9 × 109) |
FIN | 5.0 × 102 | 8.3 × 104 | 8.1 × 103 | 5.9 × 103 | 3.8 × 105 | 3.5 × 106 (1.4 × 106–9.1 × 106) | 1.0 × 108 (1.0 × 108–7.5 × 108) | 1.9 × 107 (1.9 × 107–2.6 × 107) | 1.4 × 108 (2.9 × 107–6.9 × 108) | 7.3 × 109 (3.8 × 109–1.4 × 1010) |
FRO | 3.0 × 100 | 2.8 × 102 | 7.6 × 101 | 7.0 × 101 | 1.3 × 103 | 1.8 × 104 (6.3 × 103–5.4 × 104) | 2.2 × 105 (2.2 × 105–2.1 × 106) | 2.2 × 105 (1.8 × 105–2.6 × 105) | 8.6 × 105 (1.5 × 105–4.9 × 106) | 2.5 × 107 (1.2 × 107–5.3 × 107) |
GBR | 5.5 × 103 | 7.3 × 105 | 9.9 × 104 | 8.1 × 104 | 3.4 × 106 | 4.1 × 107 (1.5 × 107–1.1 × 108) | 9.6 × 108 (9.6 × 108–7.6 × 109) | 2.6 × 108 (2.2 × 108–3.1 × 108) | 2.9 × 109 (5.5 × 108–1.5 × 1010) | 6.6 × 1010 (3.3 × 1010–1.3 × 1011) |
ISO | Country Name | ISO | Country Name |
---|---|---|---|
ALB | Albania | ISL | Iceland |
AUT | Austria | ITA | Italy |
BEL | Belgium | LIE | Liechtenstein |
BGR | Bulgaria | LTU | Lithuania |
BIH | Bosnia and Herzegovina | LUX | Luxembourg |
BLR | Belarus | LVA | Latvia |
CHE | Switzerland | MDA | Moldova |
CYP | Cyprus | MKD | Macedonia |
CZE | Czech Republic | MLT | Malta |
DEU | Germany | MNE | Montenegro |
DNK | Denmark | NLD | The Netherlands |
ESP | Spain | NOR | Norway |
EST | Estonia | POL | Poland |
FIN | Finland | PRT | Portugal |
FRA | France | ROU | Romania |
FRO | Faroe Islands | SRB | Serbia |
GBR | Great Britain | SVK | Slovakia |
GRC | Greece | SVN | Slovenia |
HRV | Croatia | SWE | Sweden |
HUN | Hungary | UKR | Ukraine |
IRL | Ireland |
Appendix A.2. Accessibility Factors
Metal | freactive (kgreactive/kgtotal) | ACF (kgreactive/kgtotal) | Source |
---|---|---|---|
Cd | 0.47 (0.32–0.85) | 0.47 | Nakhone and Young [42] |
Sterckeman et al. [43] | |||
Ahnstrom and Parker [44] | |||
Huang et al. [45] | |||
Ayoub et al. [46] | |||
Gray et al. [47] | |||
Stanhope et al. [48] | |||
Gray et al. [49] | |||
Cu | 0.19 (0.051–0.42) | 0.19 | Smolders et al. [39] |
Biasioli et al. [50] | |||
Nolan et al. [51] | |||
Ni | 0.064 (0.006–0.35) | 0.064 | Sivry et al. [52] |
Nolan et al. [53] | |||
Massoura et al. [54] | |||
Pb | 0.12 (0.10–0.13) | 0.12 | Huang et al. [45] |
Atkinson et al. [55] | |||
Zn | 0.45 (0.22–0.71) | 0.45 | Ayoub et al. [46] |
Sanders and El Kherbawy [56] | |||
Diesing et al. [57] |
Appendix A.3. Analysis of CTP Values
Metal | Regression | R2adj | rmse |
---|---|---|---|
Cd | 0.97 | 0.1 | |
Cu | 0.93 | 0.12 | |
Ni | 0.32 | 0.11 | |
Pb | 0.99 | 0.099 | |
Zn | 0.93 | 0.1 |
Metal | Regression | R2adj | rmse |
---|---|---|---|
Cd | 0.997 | 0.025 | |
Cu | 0.97 | 0.048 | |
Ni | 0.98 | 0.41 | |
Pb | 0.94 | 0.087 | |
Zn | 0.999 | 0.018 |
Metal | Regression | R2adj | rmse |
---|---|---|---|
Cd | 0.94 | 0.11 | |
Cu | 0.99 | 0.11 | |
Ni | 0.93 | 0.11 | |
Pb | 0.99 | 0.11 | |
Zn | 0.94 | 0.11 |
Metal | Regression | R2adj | rmse |
---|---|---|---|
Cu | 0.94 | 0.099 | |
Ni | 0.66 | 0.05 |
Cd | FF | 1.07 |
BF | 0.88 | |
EF | 1.03 | |
CTP | 1.41 | |
Cu | FF | 0.64 |
BF | 1.47 | |
EF | 0.73 | |
CTP | 0.97 | |
Ni | FF | 0.75 |
BF | 1.03 | |
EF | 0.17 | |
CTP | 0.37 | |
Pb | FF | 0.65 |
BF | 1.64 | |
EF | 0 | |
CTP | 1.39 | |
Zn | FF | 1.05 |
BF | 0.91 | |
EF | 0.77 | |
CTP | 0.87 | |
CV (across metals) | CTP | 1.33 (0.62–2.1) |
Appendix A.4. Prediction of Terrestrial Ecotoxicity Impact Scores
Metal | Regression | n | R2adj | se | p |
---|---|---|---|---|---|
Cd | 33 | 0.94 | 0.2 | <2.2 × 10−16 | |
Cu | 30 | 0.94 | 0.21 | <2.2 × 10−16 | |
Ni | 30 | 0.998 | 0.035 | <2.2 × 10−16 | |
Pb | 30 | 0.87 | 0.33 | 4.6 × 10−14 | |
Zn | 30 | 0.97 | 0.14 | <2.2 × 10−16 |
References
- Kumar, R.R.; Park, B.J.; Cho, J.Y. Application and environmental risks of livestock manure. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 497–503. [Google Scholar] [CrossRef]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 2010. [Google Scholar] [CrossRef] [PubMed]
- Kuczyński, T.; Dämmgen, U.; Webb, J.; Myczko, A. Emissions from European Agriculture; Wageningen Academic Pub: Wageningen, The Netherlands, 2005. [Google Scholar]
- FAOSTAT Manure Applied to Soil. Available online: http://faostat3.fao.org/download/G1/GU/E (accessed on 19 June 2016).
- Provolo, G.; Manuli, G.; Finzi, A.; Lucchini, G.; Riva, E.; Sacchi, G.A. Effect of pig and cattle slurry application on heavy metal composition of maize grown on different soils. Sustainability 2018, 10, 2684. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Lugato, E.; Jones, A.; Borrelli, P.; Scarpa, S.; Orgiazzi, A.; Montanarella, L. Potential sources of anthropogenic copper inputs to European agricultural soils. Sustainability 2018, 10, 2380. [Google Scholar] [CrossRef]
- Leclerc, A.; Laurent, A. Framework for estimating toxic releases from the application of manure on agricultural soil: National release inventories for heavy metals in 2000–2014. Sci. Total Environ. 2017, 590–591, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox-the UNEP-SETAC toxicity model: Recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2008, 13, 532–546. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Huijbregts, M.A.J. Life Cycle Impact Assessment; LCA Compendium—The Complete World of Life Cycle Assessment; Springer: Dordrecht, The Netherlands, 2015; ISBN 9789401797443. [Google Scholar]
- Hauschild, M.Z. Assessing environmental impacts in a life-cycle perspective. Environ. Sci. Technol. 2005, 39, 81A–88A. [Google Scholar] [CrossRef] [PubMed]
- Owsianiak, M.; Rosenbaum, R.K.; Huijbregts, M.A.J.; Hauschild, M.Z. Addressing geographic variability in the comparative toxicity potential of copper and nickel in soils. Environ. Sci. Technol. 2013, 47, 3241–3250. [Google Scholar] [CrossRef] [PubMed]
- Pizzol, M.; Christensen, P.; Schmidt, J.; Thomsen, M. Eco-toxicological impact of “metals” on the aquatic and terrestrial ecosystem: A comparison between eight different methodologies for Life Cycle Impact Assessment (LCIA). J. Clean. Prod. 2011, 19, 687–698. [Google Scholar] [CrossRef]
- Owsianiak, M.; Holm, P.E.; Fantke, P.; Christiansen, K.S.; Borggaard, O.K.; Hauschild, M.Z. Assessing comparative terrestrial ecotoxicity of Cd, Co, Cu, Ni, Pb, and Zn: The influence of aging and emission source. Environ. Pollut. 2015, 206, 400–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owsianiak, M.; Laurent, A.; Bjørn, A.; Hauschild, M.Z. IMPACT 2002+, ReCiPe 2008 and ILCD’s recommended practice for characterization modelling in life cycle impact assessment: A case study-based comparison. Int. J. Life Cycle Assess. 2014, 19. [Google Scholar] [CrossRef]
- Plouffe, G.; Bulle, C.; Deschênes, L. Characterization factors for zinc terrestrial ecotoxicity including speciation. Int. J. Life Cycle Assess. 2016, 21, 523–535. [Google Scholar] [CrossRef]
- Aziz, L.; Deschênes, L.; Karim, R.-A.; Patouillard, L.; Bulle, C. Including metal atmospheric fate and speciation in soils for terrestrial eco-toxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 2017. Accepted. [Google Scholar]
- Santos, I.V.; Bulle, C.; Levasseur, A.; Deschênes, L. Regionalized terrestrial ecotoxicity assessment of copper-based fungicides applied in viticulture. Sustainbility 2018, 10, 2522. [Google Scholar] [CrossRef]
- Sydow, M.; Chrzanowski, Ł.; Cedergreen, N.; Owsianiak, M. Limitations of experiments performed in artificially made OECD standard soils for predicting cadmium, lead and zinc toxicity towards organisms living in natural soils. J. Environ. Manag. 2017, 198, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmonized World Soil Database; Version 1.2; FAO/IIASA/ISRIC/ISS-CAS/JRC; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012.
- Thenkabail, P.S.; Knox, J.W.; Ozdogan, M.; Gumma, M.K.; Congalton, R.G.; Wu, Z.; Milesi, C.; Finkral, A.; Marshall, M.; Mariotto, I.; et al. Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help? Photogramm. Eng. Remote Sens. 2012, 78, 773–782. [Google Scholar]
- Burton, C.; Martinez, J. Contrasting the management of livestock manures in Europe with the practice in Asia: What lessons can be learnt? Outlook Agric. 2008, 37, 195–201. [Google Scholar] [CrossRef]
- Araji, A.; Abdo, Z.; Joyse, P. Efficient use of animal manure on cropland-economic analysis. Bioresour. Technol. 2001, 79.2, 179–191. [Google Scholar] [CrossRef]
- Pickard, B.R.; Daniel, J.; Mehaffey, M.; Jackson, L.E.; Neale, A. EnviroAtlas: A new geospatial tool to foster ecosystem services science and resource management. Ecosyst. Serv. 2015, 14, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Latham, J.; Cumani, R.; Rosati, I.; Bloise, M. FAO Global Land Cover (GLC-SHARE); Database Beta-Release Version 1.0; FAO: Rome, Italy, 2014; 40p. [Google Scholar]
- Owsianiak, M.; Huijbregts, M.; Hauschild, M.Z. Improved comparative toxicity potentials of 23 metallic elements in soils: Addressing solid- and liquid-phase speciation in environmental fate, exposure, and effects. In Proceedings of the SETAC Europe 27th Annual Meeeting, Brussels, Belgium, 7–11 May 2017. [Google Scholar]
- Pennington, D.W.; Payet, J.; Hauschild, M. Aquatic ecotoxicological indicators in life-cycle assessment. Environ. Toxicol. Chem. 2004, 23, 1796–1807. [Google Scholar] [CrossRef] [PubMed]
- Henderson, A.; Hauschild, M.; van de Meent, D.; Huijbregts, M.; Larsen, H.; Margni, M.; McKone, T.; Payet, J.; Rosenbaum, R.; Jolliet, O. USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: Sensitivity to key chemical properties. Int. J. Life Cycle Assess. 2011, 16, 701–709. [Google Scholar] [CrossRef]
- Fantke, P.; Bijster, M.; Guignard, C.; Hauschild, M.; Huijbregts, M.; Jolliet, O.; Kounina, A.; Magaud, V.; Margni, M.; McKone, T.; et al. USEtox®® 2.0; Documentation Version 1; USEtox® Team: Kgs. Lyngby, Denmark, 2017; ISBN 978-87-998335-0-4. [Google Scholar]
- Hauschild, M.Z.; Huijbregts, M.; Jolliet, O.; MacLeod, M.; Margni, M.; van de Meent, D.V; Rosenbaum, R.K.; McKone, T.E. Building a model based on scientific consensus for life cycle impact assessment of chemicals: The search for harmony and parsimony. Environ. Sci. Technol. 2008, 42, 7032–7037. [Google Scholar] [CrossRef] [PubMed]
- Heijungs, R. Harmonization of methods for impact assessment. Environ. Sci. Pollut. Res. Int. 1995, 2, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zeng, S.; Chen, S.; Ma, Y. Change of the extractability of cadmium added to different soils: Aging effect and modeling. Sustainbility 2018, 10, 885. [Google Scholar] [CrossRef]
- Zhang, A.; Cortes, V.; Phelps, B.; van Ryswyk, H.; Srebotnjak, T. Experimental analysis of soil and mandarin orange plants treated with heavy metals found in Oilfield-Produced wastewater. Sustainbility 2018, 10, 1493. [Google Scholar] [CrossRef]
- Fantke, P.; Aurisano, N.; Bare, J.; Backhaus, T.; Bulle, C.; Chapman, P.M.; De Zwart, D.; Dwyer, R.; Ernstoff, A.; Golsteijn, L.; et al. Toward Harmonizing Ecotoxicity Characterization in Life Cycle Impact Assessment. Environ. Toxicol. Chem. 2018. [Google Scholar] [CrossRef] [PubMed]
- Groenenberg, J.E.; Dijkstra, J.J.; Bonten, L.T.C.; de Vries, W.; Comans, R.N.J. Evaluation of the performance and limitations of empirical partition-relations and process based multisurface models to predict trace element solubility in soils. Environ. Pollut. 2012, 166, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Groenenberg, J.E.; Römkens, P.F.A.M.; Comans, R.N.J.; Luster, J.; Pampura, T.; Shotbolt, L.; Tipping, E.; De Vries, W. Transfer functions for solid-solution partitioning of cadmium, copper, nickel, lead and zinc in soils: Derivation of relationships for free metal ion activities and validation with independent data. Eur. J. Soil Sci. 2010, 61, 58–73. [Google Scholar] [CrossRef]
- Thakali, S.; Allen, H.E.; Di Toro, D.M.; Ponizovsky, A.A.; Rooney, C.P.; Zhao, F.-J.; McGrath, S.P.; Criel, P.; Van Eeckhout, H.; Janssen, C.R.; et al. Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil. Environ. Sci. Technol. 2006, 40, 7094–7100. [Google Scholar] [CrossRef] [PubMed]
- Szilágyi, A. Evaluation of Spatial Variability in the Comparative Toxicity Potential of Copper in Soils for Application in Life Cycle Assessment; University of Miskolc: Miskolc, Hungary, 2013. [Google Scholar]
- Smolders, E.; Oorts, K.; Lombi, E.; Schoeters, I.; Ma, Y.; Zrna, S.; McLaughlin, M.J. The Availability of Copper in Soils Historically Amended with Sewage Sludge, Manure, and Compost. J. Environ. Qual. 2012, 41, 506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakali, S.; Allen, H.E.; Di Toro, D.M.; Ponizovsky, A.A.; Rooney, C.P.; Zhao, F.-J.; McGrath, S.P. A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environ. Sci. Technol. 2006, 40, 7085–7093. [Google Scholar] [CrossRef] [PubMed]
- Leip, A.; Marchi, G.; Koeble, R.; Kempen, M.; Britz, W.; Li, C. Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe. Biogeosciences 2008. [Google Scholar] [CrossRef]
- Nakhone, L.N.; Young, S.D. The significance of (radio-) labile cadmium pools in soil. Environ. Pollut. 1993, 82, 73–77. [Google Scholar] [CrossRef]
- Sterckeman, T.; Carignan, J.; Srayeddin, I.; Baize, D.; Cloquet, C. Availability of soil cadmium using stable and radioactive isotope dilution. Geoderma 2009, 153, 372–378. [Google Scholar] [CrossRef]
- Ahnstrom, Z.A.S.; Parker, D.R. Cadmium reactivity in metal-contaminated soils using a coupled stable isotope dilution-sequential extraction procedure. Environ. Sci. Technol. 2001, 35, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.Y.; Chen, T.; Yu, J.; Zeng, X.C.; Huang, Y.F. Labile Cd and Pb in vegetable-growing soils estimated with isotope dilution and chemical extractants. Geoderma 2011, 160, 400–407. [Google Scholar] [CrossRef]
- Ayoub, A.S.; McGaw, B.A.; Shand, C.A.; Midwood, A.J. Phytoavailability of Cd and Zn in soil estimated by stable isotope exchange and chemical extraction. Plant Soil 2003, 252, 291–300. [Google Scholar] [CrossRef]
- Gray, C.W.; McLaren, R.G.; Günther, D.; Sinaj, S. An Assessment of Cadmium Availability in Cadmium-Contaminated Soils using Isotope Exchange Kinetics. Soil Sci. Soc. Am. J. 2004, 68, 1210. [Google Scholar] [CrossRef] [Green Version]
- Stanhope, K.G.; Young, S.D.; Hutchinson, J.J.; Kamath, R. Use of isotopic dilution techniques to assess the mobilization of nonlabile Cd by chelating agents in phytoremediation. Environ. Sci. Technol. 2000, 34, 4123–4127. [Google Scholar] [CrossRef]
- Gray, C.W.; McLaren, R.G.; Shiowatana, J. The determination of labile cadmium in some biosolids-amended soils by isotope dilution plasma mass spectrometry. Aust. J. Soil Res. 2003, 41, 589–597. [Google Scholar] [CrossRef]
- Biasioli, M.; Kirby, J.K.; Hettiarachchi, G.M.; Ajmone-Marsan, F.; McLaughlin, M.J. Copper lability in soils subjected to intermittent submergence. J. Environ. Qual. 2007, 39, 2047–2053. [Google Scholar] [CrossRef]
- Nolan, A.L.; Ma, Y.; Lombi, E.; McLaughlin, M.J. Measurement of labile Cu in soil using stable isotope dilution and isotope ratio analysis by ICP-MS. Anal. Bioanal. Chem. 2004, 380, 789–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivry, Y.; Riotte, J.; Sappin-Didier, V.; Munoz, M.; Redon, P.O.; Denaix, L.; Dupre, B. Multielementary (Cd, Cu, Pb, Zn, Ni) Stable Isotopic Exchange Kinetic (SIEK) Method to Characterize Polymetallic Contaminations. Environ. Sci. Technol. 2011, 45, 6247–6253. [Google Scholar] [CrossRef] [PubMed]
- Nolan, A.L.; Ma, Y.B.; Lombi, E.; McLaughlin, M.J. Speciation and Isotopic Exchangeability of Nickel in Soil Solution. J. Environ. Qual. 2009, 38, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Massoura, S.T.; Echevarria, G.; Becquer, T.; Ghanbaja, J.; Leclere-Cessac, E.; Morel, J.L. Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma 2006, 136, 28–37. [Google Scholar] [CrossRef]
- Atkinson, N.R.; Bailey, E.H.; Tye, A.M.; Breward, N.; Young, S.D. Fractionation of lead in soil by isotopic dilution and sequential extraction. Environ. Chem. 2011, 8, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Sanders, J.R.; El Kherbawy, M.I. The effect of pH on zinc adsorption equilibria and exchangeable zinc pools in soils. Environ. Pollut. 1987, 44, 165–176. [Google Scholar] [CrossRef]
- Diesing, W.E.; Sinaj, S.; Sarret, G.; Manceau, A.; Flura, T.; Demaria, P.; Siegenthaler, A.; Sappin-Didier, V.; Frossard, E. Zinc speciation and isotopic exchangeability in soils polluted with heavy metals. Eur. J. Soil Sci. 2008, 59, 716–729. [Google Scholar] [CrossRef] [Green Version]
Parameter | Equation | Unit | Source |
---|---|---|---|
Grid-specific distribution coefficient between total metal in the solid phase and total dissolved metal a | Lpore water/kgsolid | Total dissolved concentrations were calculated using empirical regression models of Groenenberg et al. [34] from total metal concentration and soil properties. Reactive concentrations and reactive fraction were derived for metals from organic-related emission sources (including manures) in a meta-analysis study of Owsianiak et al. [13]. Background total metal concentrations are from Kabatia-Pendias [35] | |
Grid-specific distribution coefficient between reactive metal in the solid phase and total dissolved metal a | Lpore water/kgsolid | ||
Grid-specific fate factor in agricultural soil for emission to agricultural soil b | kgtotal/kgtotal emitted to soil·day | Calculated using USEtox 2.02 [28] for infinite time horizon | |
Spatially generic, emission-source specific accessibility factor in agricultural soil c | kgreactive/kgtotal | Derived by Owsianiak et al. [13]. Because the influence of aging time on freactive,s was not consistent for five cationic metals, time-horizon independent ACFs are used. They are in practice equal to (time-independent) metal- and emission-source specific reactive fraction [13] | |
Grid-specific bioavailability factor in agricultural soil d | kgfree/kgreactive | Free ion concentrations were calculated from reactive concentration and soil properties using empirical regression models developed by Groenenberg et al. [36] | |
Grid-specific effect factor in agricultural soil e | m3pore water/kgfree | Derived using free-ion-based EC50 values using the approach of USEtox 2.02 [28]. The EC50 values were calculated using empirical regression models (Cd, Zn) and free ion activity models (Pb) developed for terrestrial earthworms and crustacea by Sydow et al. [18], and terrestrial biotic ligand models developed for various terrestrial organisms (Cu and Ni) by Thakali et al. [37] |
Country Contribution (in %) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cd | Cu | Ni | Pb | Zn | |||||||||||||||
Emitted Mass of Metal (in kg) | Impact Score (in m3pore water·Day) | Emitted Mass of Metal (in kg) | Impact Score (in m3pore water·Day) | Emitted Mass of Metal (in kg) | Impact Score (in m3pore water·Day) | Emitted Mass of Metal (in kg) | Impact Score (in m3pore water·Day) | Emitted Mass of Metal (in kg) | Impact Score (in m3pore water·Day) | ||||||||||
FRA | 19.9 | FRA | 21.5 | DEU | 18.1 | DEU | 23.9 | DEU | 18.5 | DEU | 18.9 | DEU | 18.2 | DEU | 29.4 | DEU | 18.5 | ESP | 30.1 |
DEU | 13 | ESP | 20.9 | ESP | 18 | POL | 18.7 | ESP | 17.3 | ESP | 14.5 | ESP | 13.5 | POL | 12.9 | ESP | 17.3 | DEU | 14.3 |
ESP | 9.7 | ITA | 8.3 | POL | 16.3 | ESP | 10.6 | POL | 15.1 | POL | 11.7 | POL | 11.3 | NLD | 9.1 | POL | 15.1 | POL | 9.1 |
POL | 9.5 | DEU | 8.2 | NLD | 6.7 | NLD | 6.4 | IRL | 4.8 | IRL | 7.6 | IRL | 8.9 | IRL | 8.2 | NLD | 7.2 | NLD | 9 |
ITA | 7.9 | NLD | 7.7 | ROU | 5.7 | DNK | 6.1 | ROU | 5.8 | ROU | 6.9 | ROU | 7.8 | BLR | 6.5 | ROU | 5.8 | ROU | 8.8 |
IRL | 5.9 | ROU | 7.5 | DNK | 4.8 | BEL | 5.4 | NLD | 7.2 | NLD | 6 | NLD | 6.4 | BEL | 5.4 | IRL | 4.8 | IRL | 3.1 |
NLD | 4.5 | POL | 4.2 | IRL | 4.6 | BLR | 4.9 | BLR | 4.5 | BLR | 6 | BLR | 6 | ESP | 4.8 | DNK | 4.8 | DNK | 3.1 |
ROU | 4.4 | IRL | 2.8 | BLR | 4.4 | IRL | 4.1 | DNK | 4.8 | BEL | 3.9 | BEL | 3.4 | AUT | 4.6 | BLR | 4.5 | AUT | 2.6 |
BLR | 4.4 | AUT | 2 | BEL | 3.6 | AUT | 3.6 | BEL | 3.7 | DNK | 3.2 | AUT | 2.8 | DNK | 4.5 | BEL | 3.7 | BEL | 2.6 |
BEL | 2.5 | GRC | 1.9 | AUT | 2.7 | ROU | 2.8 | AUT | 2.7 | AUT | 2.8 | DNK | 2.8 | CZE | 2.1 | AUT | 2.7 | HUN | 2.5 |
DNK | 2.1 | HUN | 1.6 | SRB | 2.4 | SRB | 2.5 | HUN | 2.2 | HUN | 2.4 | HUN | 2.2 | CHE | 2 | SRB | 2.4 | SRB | 2.3 |
AUT | 2.1 | BEL | 1.4 | HUN | 2.1 | CZE | 2.1 | SRB | 2.4 | SRB | 2.3 | SRB | 2.1 | SRB | 2 | HUN | 2.2 | BLR | 2.1 |
GRC | 1.6 | SRB | 1.3 | CZE | 1.5 | CHE | 1.3 | CZE | 1.6 | CZE | 2.1 | CHE | 2.1 | ROU | 1.6 | CZE | 1.6 | CZE | 1.3 |
HUN | 1.5 | BLR | 1.2 | CHE | 1.4 | HUN | 1.2 | CHE | 1.5 | CHE | 1.9 | CZE | 2 | BIH | 1.3 | CHE | 1.5 | CHE | 1.3 |
SRB | 1.5 | DNK | 1.2 | BIH | 1.2 | BGR | 1.3 | BGR | 1.5 | BGR | 1.2 | ||||||||
CZE | 1.4 | ALB | 1.2 | HRV | 1.2 | ALB | 1.3 | ALB | 1.3 | ||||||||||
CHE | 1.4 | CHE | 1.1 | BIH | 1.1 | LTU | 1.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sydow, M.; Chrzanowski, Ł.; Leclerc, A.; Laurent, A.; Owsianiak, M. Terrestrial Ecotoxic Impacts Stemming from Emissions of Cd, Cu, Ni, Pb and Zn from Manure: A Spatially Differentiated Assessment in Europe. Sustainability 2018, 10, 4094. https://doi.org/10.3390/su10114094
Sydow M, Chrzanowski Ł, Leclerc A, Laurent A, Owsianiak M. Terrestrial Ecotoxic Impacts Stemming from Emissions of Cd, Cu, Ni, Pb and Zn from Manure: A Spatially Differentiated Assessment in Europe. Sustainability. 2018; 10(11):4094. https://doi.org/10.3390/su10114094
Chicago/Turabian StyleSydow, Mateusz, Łukasz Chrzanowski, Alexandra Leclerc, Alexis Laurent, and Mikołaj Owsianiak. 2018. "Terrestrial Ecotoxic Impacts Stemming from Emissions of Cd, Cu, Ni, Pb and Zn from Manure: A Spatially Differentiated Assessment in Europe" Sustainability 10, no. 11: 4094. https://doi.org/10.3390/su10114094
APA StyleSydow, M., Chrzanowski, Ł., Leclerc, A., Laurent, A., & Owsianiak, M. (2018). Terrestrial Ecotoxic Impacts Stemming from Emissions of Cd, Cu, Ni, Pb and Zn from Manure: A Spatially Differentiated Assessment in Europe. Sustainability, 10(11), 4094. https://doi.org/10.3390/su10114094