Assessing Impacts of Soil Management Measures on Ecosystem Services
Abstract
:1. Introduction
2. Materials and Methods
2.1. Developing a Practical Methodology to Assess ES
2.2. RECARE ES Assessment Methodology
3. Results
3.1. Changes in Properties and their Impact on ES
3.1.1. Measured and Estimated Properties of Natural Capital
3.1.2. Comparison of Measured Values and Appraisal of Magnitude for Selected Properties
3.2. Measured Impact on ES
3.3. Final ES Change
3.4. 10-Year Scenarios
4. Discussion
4.1. Soil Management and ES
4.1.1. Changes in ES due to Soil Management
4.1.2. Valuation of ES by Stakeholders
4.2. Methodological Challenges and Critical Reflections
4.2.1. Measurements vs. Estimations
4.2.2. Assignment of Magnitudes and Impact Dependence
4.2.3. Assignment of Weights to Explain ES
4.2.4. Working towards a Holistic Appraisal of ES
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Baveye, P.C.; Baveye, J.; Gowdy, J. Soil “Ecosystem” Services and Natural Capital: Critical Appraisal of Research on Uncertain Ground. Front. Environ. Sci. 2016, 4, 41. [Google Scholar] [CrossRef]
- Schwilch, G.; Bernet, L.; Fleskens, L.; Giannakis, E.; Leventon, J.; Marañón, T.; Mills, J.; Short, C.; Stolte, J.; van Delden, H.; Verzandvoort, S. Operationalizing ecosystem services for the mitigation of soil threats: A proposed framework. Ecol. Indic. 2016, 67, 586–597. [Google Scholar] [CrossRef] [Green Version]
- Rutgers, M.; van Wijnen, H.J.; Schouten, A.J.; Mulder, C.; Kuiten, A.M.P.; Brussaard, L.; Breure, A.M. A method to assess ecosystem services developed from soil attributes with stakeholders and data of four arable farms. Sci. of The Total Environ. 2012, 415, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Schulte, R.P.O.; Creamer, R.E.; Donnellan, T.; Farrelly, N.; Fealy, R.; O’Donoghue, C.; O’hUallachain, D. Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environ. Sci. Policy 2014, 38, 45–58. [Google Scholar] [CrossRef]
- Dominati, E.; Mackay, A.; Green, S.; Patterson, M. A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: A case study of pastoral agriculture in New Zealand. Ecol. Econ. 2014, 100, 119–129. [Google Scholar] [CrossRef]
- van Oudenhoven, A.P.E.; Petz, K.; Alkemade, R.; Hein, L.; de Groot, R.S. Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol. Indic. 2012, 21, 110–122. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. Proposal for a Common International Classification of Ecosystem Goods and Services (CICES) for Integrated Environmental and Economic Accounting. Report to the European Environment Agency; The University of Nottingham: Nottingham, UK, 2010. [Google Scholar]
- RECARE—Preventing and Remediating degradation of soils in Europe through Land Care. Available online: https://cordis.europa.eu/project/rcn/110887_en.html (accessed on 24 November 2018).
- Chan, K.M.A.; Satterfield, T.; Goldstein, J. Rethinking ecosystem services to better address and navigate cultural values. Ecol. Econ. 2012, 74, 8–18. [Google Scholar] [CrossRef]
- CATENA Special Issue “Quantifying the Effectiveness of Stakeholder-Selected Measures against Individual and Combined Soil Threats”. Available online: https://www.sciencedirect.com/journal/catena/special-issue/1063L2HD49J (accessed on 24 November 2018).
- Lemann, T.; Sprafke, T.; Bachmann, F.; Prasuhn, V.; Schwilch, G. The effect of the Dyker on infiltration, soil erosion, and waterlogging on conventionally farmed potato fields in the Swiss Plateau. CATENA 2019, 174, 130–141, (accepted). [Google Scholar]
- Keizer, J.J.; Silva, F.C.; Vieira, D.C.S.; González-Pelayo, O.; Campos, I.; Vieira, A.M.D.; Valente, S.; Prats, S.A. The effectiveness of two contrasting mulch application rates to reduce post-fire erosion in a Portuguese eucalypt plantation. CATENA 2018, 169, 21–30. [Google Scholar] [CrossRef]
- Zoumides, C.; Bruggeman, A.; Giannakis, E.; Camera, C.; Djuma, H.; Eliades, M.; Charalambous, K. Community-Based Rehabilitation of Mountain Terraces in Cyprus. Land Degrad. Dev. 2017, 28, 95–105. [Google Scholar] [CrossRef]
- Camera, C.; Djuma, H.; Bruggeman, A.; Zoumides, C.; Eliades, M.; Charalambous, K.; Abate, D.; Faka, M. Quantifying the effectiveness of mountain terraces on soil erosion protection with sediment traps and dry-stone wall laser scans. CATENA 2018, 171, 251–264. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Apostolakis, A.; Wagner, K.; Deligianni, A.; Koutskoudis, D.; Stamatakis, A.; Tsanis, I.K. Effectiveness of T. harzianum in soil and yield conservation of tomato crops under saline irrigation. CATENA 2018. under review. [Google Scholar] [CrossRef]
- Panagea, I.S.; Daliakopoulos, I.N.; Tsanis, I.K.; Schwilch, G. Evaluation of promising technologies for soil salinity amelioration in Timpaki (Crete): a participatory approach. Solid Earth 2016, 7, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Keesstra, S.D.; Rodrigo-Comino, J.; Novara, A.; Giménez-Morera, A.; Pulido, M.; di Prima, S.; Cerdà, A. Straw mulch as a sustainable solution to decrease runoff and erosion in glyphosate treated clementine plantations in Eastern Spain. An assessment using rainfall simulation experiments. CATENA 2019, 174, 95–103. [Google Scholar] [CrossRef]
- Krzeminska, D.; Kerkhof, T.; Skaalsveen, K.; Stolte, J. Effect of riparian vegetation on stream bank stability in small agricultural catchments. CATENA 2019, 172, 87–96. [Google Scholar] [CrossRef]
- Hlavčová, K.; Danáčová, M.; Kohnová, S.; Szolgay, J.; Valent, P.; Výleta, R. Estimating the effectiveness of crop management on reducing flood risk and sediment transport on hilly agricultural land—A Myjava case study, Slovakia. CATENA 2019, 172, 678–690. [Google Scholar] [CrossRef]
- Hlavčová, K.; Kohnová, S.; Velísková, Y.; Studvová, Z.; Sočuvka, V.; Ivan, P. Comparison of two concepts for assessment of sediment transport in small agricultural catchments. J. Hydrol. Hydromech. 2018, 66, 404–415. [Google Scholar] [CrossRef]
- Berglund, Ö.; Berglund, K.; Jordan, S.; Norberg, L. Carbon capture efficiency, yield, nutrient uptake and trafficability of different grass species on a cultivated peat soil. CATENA 2019, 173, 175–182. [Google Scholar] [CrossRef]
- Rienks, W.A.; Leever, H. Gezond Zand—organische stof als sleutel voor een vruchtbare bodem en schoon water. ROM3D en Stichting Marke Haarlose Veld Olden Eibergen. «Gezond Zand –organic matter as a key for a fertile soil and clean water» 2014. Available online: http://hoeduurzaam.nl/wp-content/uploads/2016/03/BrochureHoeduurzaam-Definitief.pdf (accessed on 24 November 2018).
- Camarotto, C.; Dal Ferro, N.; Piccoli, I.; Polese, R.; Furlan, L.; Chiarini, F.; Morari, F. Conservation agriculture and cover crop practices to regulate water, carbon and nitrogen cycles in the low-lying Venetian plain. CATENA 2018, 167, 236–249. [Google Scholar] [CrossRef]
- Madejón, P.; Domínguez, M.T.; Gil-Martínez, M.; Navarro-Fernández, C.M.; Montiel-Rozas, M.M.; Madejón, E.; Murillo, J.M.; Cabrera, F.; Marañón, T. Evaluation of amendment addition and tree planting as measures to remediate contaminated soils: The Guadiamar case study (SW Spain). CATENA 2018, 166, 34–43. [Google Scholar] [CrossRef]
- Vrînceanu, N.O.; Motelică, D.M.; Dumitru, M.; Calciu, I.; Tănase, V.; Preda, M. Assessment of Using Bentonite, Dolomite, Natural Zeolite and Manure for the Immobilization of Heavy Metals in a Contaminated Soil: The Copșa Mică Case Study (Romania). CATENA 2018. under review. [Google Scholar]
- Tibbett, M.; Gil-Martínez, M.; Fraser, T.; Green, I.D.; Duddigan, S.; De Oliveira, V.; Raulund-Rasmussen, K.; Sizmur, T.; Diaz, A. Experimental acidification of pasture: Effects of long-term pH adjustment on soil biodiversity, fertility and function in comparison to heathland and acidic grassland. CATENA 2018. under review. [Google Scholar]
- Turner, K.G.; Anderson, S.; Gonzales-Chang, M.; Costanza, R.; Courville, S.; Dalgaard, T.; Dominati, E.; Kubiszewski, I.; Ogilvy, S.; Porfirio, L.; et al. A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecol. Model. 2016, 319, 190–207. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthrop, R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 2013, 5, 27–39. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Jackson, B.; Pagella, T.; Sinclair, F.; Orellana, B.; Henshaw, A.; Reynolds, B.; Mcintyre, N.; Wheater, H.; Eycott, A. Polyscape: A GIS mapping framework providing efficient and spatially explicit landscape-scale valuation of multiple ecosystem services. Landsc. Urban Plan. 2013, 112, 74–88. [Google Scholar] [CrossRef]
- Peh, K.S.-H.; Balmford, A.; Bradbury, R.B.; Brown, C.; Butchart, S.H.M.; Hughes, F.M.R.; Stattersfield, A.; Thomas, D.H.L.; Walpole, M.; Bayliss, J.; et al. TESSA: A toolkit for rapid assessment of ecosystem services at sites of biodiversity conservation importance. Ecosyst. Serv. 2013, 5, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Ghaley, B.B.; Vesterdal, L.; Porter, J.R. Quantification and valuation of ecosystem services in diverse production systems for informed decision-making. Environ. Sci. Policy 2014, 39, 139–149. [Google Scholar] [CrossRef]
- Volchko, Y.; Norrman, J.; Rosén, L.; Bergknut, M.; Josefsson, S.; Söderqvist, T.; Norberg, T.; Wiberg, K.; Tysklind, M. Using soil function evaluation in multi-criteria decision analysis for sustainability appraisal of remediation alternatives. Sci. Total Environ. 2014, 485–486, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Volchko, Y.; Norrman, J.; Rosén, L.; Norberg, T. SF Box—A tool for evaluating the effects on soil functions in remediation projects. Integr. Environ. Assess. Manag. 2014. [Google Scholar] [CrossRef] [PubMed]
- Schwilch, G.; Mills, J.; Verzandvoort, S. The RECARE Ecosystem services framework and its operationalization for soil management decision making. In Proceedings of the Global Soil Week, Berlin, Germany, 19–23 April 2015. [Google Scholar]
- Schwilch, G.; Bernet, L.; Fleskens, L.; Mills, J.; Stolte, J.; van Delden, H.; Verzandvoort, S. A proposed framework to operationalize ESS for the mitigation of soil threats. In Proceedings of the EGU General Assembly 2015, Vienna, Austria, 12–17 April 2015; Volume 17. [Google Scholar]
- Schwilch, G.; Verzandvoort, S.; van Delden, H.; Fleskens, L.; Giannakis, E.; Marañón, T.; Mills, J.; Short, C.; Stolte, J. Operationalizing ecosystem services for the mitigation of soil threats. In Proceedings of the European Ecosystem Services Conference, Antwerp, Belgium, 19 September 2016. [Google Scholar]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.-E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Mapping and Assessment of Ecosystems and Their Services (MAES). Available online: https://biodiversity.europa.eu/maes (accessed on 24 November 2018).
- Heink, U.; Hauck, J.; Jax, K.; Sukopp, U. Requirements for the selection of ecosystem service indicators—The case of MAES indicators. Ecol. Indic. 2016, 61, 18–26. [Google Scholar] [CrossRef]
- Schröder, J.J.; Schulte, R.P.O.; Creamer, R.E.; Delgado, A.; van Leeuwen, J.; Lehtinen, T.; Rutgers, M.; Spiegel, H.; Staes, J.; Tóth, G.; et al. The elusive role of soil quality in nutrient cycling: A review. Soil Use Manag. 2016, 32, 476–486. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. Common International Classification of Ecosystem Services (CICES), Version 4.3. Report to the European Environment Agency; The University of Nottingham: Nottingham, UK, 2013. [Google Scholar]
- The Economics of Ecosystem and Biodiversity (TEEB). Ecological and Economic Foundations; Earthscan: London, UK, 2010. [Google Scholar]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachmann, F.; Schwilch, G.; Lemann, T.; Schneider, F. RECARE Stakeholder Workshop 3.: Stakeholder Valuation of Ecosystem Services—Guidelines WP 4.3. 2017. Available online: http://www.recare-project.eu/downloads-by-category/other-project-reports/415-report-30-stakeholder-workshop-3-wp4-3-guidelines-bachmann-full/file (accessed on 24 November 2018).
- Bachmann, F.; Schwilch, G.; Lemann, T. Report About Stakeholder Valuation of Ecosystem Services 2018. Available online: http://www.recare-project.eu/downloads-by-category/project-deliverables-2/398-report-24-d4-2-report-about-stakeholder-valuation-of-ecosystem-services-f-bachmann-full/file (accessed on 24 November 2018).
- Egoh, B.; Reyers, B.; Rouget, M.; Richardson, D.M.; Le Maitre, D.C.; van Jaarsveld, A.S. Mapping ecosystem services for planning and management. Agric. Ecosyst. Environ. 2008, 127, 135–140. [Google Scholar] [CrossRef]
- Francesconi, W.; Srinivasan, R.; Pérez-Miñana, E.; Willcock, S.P.; Quintero, M. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. J. Hydrol. 2016, 535, 625–636. [Google Scholar] [CrossRef]
- Schwilch, G.; Liniger, H.P.; Hurni, H. Sustainable Land Management (SLM) Practices in Drylands: How Do They Address Desertification Threats? Environ. Manag. 2014, 54, 983–1004. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, S.; Burkhard, B.; Van Daele, T.; Staes, J.; Schneiders, A. ‘The Matrix Reloaded’: A review of expert knowledge use for mapping ecosystem services. Ecol. Model. 2015, 295, 21–30. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Lima, A.C.R.; Brussaard, L.; Totola, M.R.; Hoogmoed, W.B.; de Goede, R.G.M. A functional evaluation of three indicator sets for assessing soil quality. Appl. Soil Ecol. 2013, 64, 194–200. [Google Scholar] [CrossRef]
- Braat, L.C.; de Groot, R. The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef]
- Baveye, P.C. Quantification of ecosystem services: Beyond all the “guesstimates”, how do we get real data? Ecosyst. Serv. 2017, 24, 47–49. [Google Scholar] [CrossRef]
Study Site no. | Study Site Name | Country | Trialled Measure | Main Soil Threat | References |
---|---|---|---|---|---|
01 | Frienisberg | Switzerland | Dyker on potato fields (shovels digging holes into the bottom of the furrows) | Soil erosion by water | [12] |
02 | Caramulo | Portugal | Mulching—Low application rate (2.5 Mg ha−1) | Soil erosion by water | [13] |
02 | Caramulo | Portugal | Ploughing | Soil erosion by water | |
03 | Peristerona | Cyprus | Terrace rehabilitation | Soil erosion by water | [14,15] |
04 | Timpaki | Greece | Rainwater harvesting system installed in greenhouses | Soil salinization | [16,17] |
04 | Timpaki | Greece | Application of T. harzianum in tomato rootstock for alleviation of high soil salinity effects | Soil salinization | [16,17] |
06 | Wroclaw | Poland | Regulations limiting soil sealing | Soil sealing | |
07 | Canyoles | Spain | Straw mulch | Desertification | [18] |
08 | Gunnarsholt | Iceland | Land reclamation | Desertification | |
09 | Vansjø-Hobøl | Norway | Flood retention ponds | Flooding and landslides | |
09 | Vansjø-Hobøl | Norway | Stream bank vegetation | Flooding and landslides | [19] |
10 | Myjava | Slovakia | Changes in crop and land use management | Flooding and landslides | [20,21] |
10 | Myjava | Slovakia | Small wooden check dams | Flooding and landslides | [20,21] |
10 | Myjava | Slovakia | Changes in vegetation cover | Flooding and landslides | [20,21] |
11 | Veenweidegebied | Netherlands | Submerged drains (positioned below the groundwater level) | Loss of organic matter in peat soils | |
12 | Broddbo | Sweden | Different grass crops | Loss of organic matter in peat soils | [22] |
13 | Olden Eibergen | Netherlands | Local Biomass (from e.g., tree pruning, mowing applied on/into the soil) | Loss of organic matter in mineral soils | [23] |
13 | Olden Eibergen | Netherlands | Grass undersowing of maize | Loss of organic matter in mineral soils | [23] |
14 | Veneto | Italy | Cover crops (CC) | Loss of organic matter in mineral soils | [24] |
14 | Veneto | Italy | Conservation agriculture (CA) | Loss of organic matter in mineral soils | [24] |
15 | Guadiamar | Spain | Amendment addition: biosolid compost | Soil contamination | [25] |
15 | Guadiamar | Spain | Use of tree species: plantation of Olea europaea var. sylvestris | Soil contamination | [25] |
16 | Copşa Mică | Romania | Inorganic soil amendments (bentonite, zeolite, dolomite) | Soil contamination | [26] |
16 | Copşa Mică | Romania | Organic soil amendments | Soil contamination | [26] |
17 | Isle of Purbeck | UK | Elemental sulphur treatment | Soil biodiversity | [27] |
17 | Isle of Purbeck | UK | Ferrous sulphate treatment | Soil biodiversity | [27] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwilch, G.; Lemann, T.; Berglund, Ö.; Camarotto, C.; Cerdà, A.; Daliakopoulos, I.N.; Kohnová, S.; Krzeminska, D.; Marañón, T.; Rietra, R.; et al. Assessing Impacts of Soil Management Measures on Ecosystem Services. Sustainability 2018, 10, 4416. https://doi.org/10.3390/su10124416
Schwilch G, Lemann T, Berglund Ö, Camarotto C, Cerdà A, Daliakopoulos IN, Kohnová S, Krzeminska D, Marañón T, Rietra R, et al. Assessing Impacts of Soil Management Measures on Ecosystem Services. Sustainability. 2018; 10(12):4416. https://doi.org/10.3390/su10124416
Chicago/Turabian StyleSchwilch, Gudrun, Tatenda Lemann, Örjan Berglund, Carlo Camarotto, Artemi Cerdà, Ioannis N. Daliakopoulos, Silvia Kohnová, Dominika Krzeminska, Teodoro Marañón, René Rietra, and et al. 2018. "Assessing Impacts of Soil Management Measures on Ecosystem Services" Sustainability 10, no. 12: 4416. https://doi.org/10.3390/su10124416
APA StyleSchwilch, G., Lemann, T., Berglund, Ö., Camarotto, C., Cerdà, A., Daliakopoulos, I. N., Kohnová, S., Krzeminska, D., Marañón, T., Rietra, R., Siebielec, G., Thorsson, J., Tibbett, M., Valente, S., Van Delden, H., Van den Akker, J., Verzandvoort, S., Vrînceanu, N. O., Zoumides, C., & Hessel, R. (2018). Assessing Impacts of Soil Management Measures on Ecosystem Services. Sustainability, 10(12), 4416. https://doi.org/10.3390/su10124416