Spatiotemporal Variations of Land Use/Cover Changes in Inner Mongolia (China) during 1980–2015
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.3. Intensity Analysis
3. Results
3.1. Land Use Distribution and Its Changes in Inner Mongolia during 1980–2015
3.2. Intensity Analysis Results of Land Use/Cover Changes in Inner Mongolia
3.3. Characteristics of Land Use/Cover Changes in Each Region
4. Discussion
5. Conclusions
- (1)
- There are spatially distributed woodland, grassland, and desert from the northeast to west, and cropland mainly distributed in the southeast and mid-west of Inner Mongolia; according to the area ratio, the land use types basically have a characteristic of grassland > woodland > unused land > sandy land > cropland > water > built-up, and grassland accounts for more than 45% of the total area.
- (2)
- For the whole region, woodland, unused land, high-coverage grassland, and moderate-coverage grassland decreased and the other land types increased during 1980–2015, and the changes had great differences in spatial distribution; the area of grassland had the largest decrease, indicating that the quality of grassland has declined in Inner Mongolia; and these decreases came mainly from the typical animal husbandry regions like Hulunbuir, Xing’an, Tongliao, Chifeng and Xilingol.
- (3)
- It is obvious that the changes were different before and after 2000. Generally, the areas of woodland, low-coverage grassland, and built-up increased and the other types decreased after 2000 in Inner Mongolia.
- (4)
- The results of the intensity analysis show that the variation rate of land use in 1980–1990 was faster than the rates in 1990–2000 and 2000–2015. The gains of cropland were large in 1980–1990 and 1990–2000, whereas the losses were large in 2000–2015 and were both active; the losses of woodland were large in 1980–1990 and 1990–2000, and the losses were large in 2000–2015; the losses of high-coverage grassland were larger than its gains and both were active in the three periods; the losses of moderate-coverage grassland were active and larger than the gains in 1990–2000 and 2000–2015; the gains of low-coverage grassland were active in 1990–2000 and 2000–2015; the area of gains in water and sandy land were large in 1990–2000, whereas the losses were large in 2000–2015.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mooney, H.A.; Duraiappah, A.; Larigauderie, A. Evolution of natural and social science interactions in global change research programs. Proc. Natl. Acad. Sci. USA 2013, 110, 3665–3672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2013, 3, 385–390. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Liu, M.; Sun, G.; Chappelka, A. Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the southern United States. Ecosystems 2012, 15, 674–694. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F.; Erb, K.H.; Hertel, T.W. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [Google Scholar] [CrossRef]
- Lambin, E.F.; Baulies, X.; Bockstael, N. Land-Use and Land-Cover Change: Implementation Strategy; IGBP Report No.48/IHDP Report No.10; IGBP: Stockholm, Sweden, 1999. [Google Scholar]
- IGBP Secretariat. GLP Science Plan and Implementation Strategy; IGBP Report No. 53/IHDP Report No.19; IGBP: Stockholm, Sweden, 2005. [Google Scholar]
- Turner, B.L., II; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rindfuss, R.; Walsh, S.; Turner, B.L.; Fox, J.; Mishra, V. Developing a science of land change: Challenges and methodological issues. Proc. Natl. Acad. Sci. USA 2004, 101, 13976–13981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutman, G.; Janetos, A.C.; Justice, C.O.; Moran, E.F.; Mustard, J.F.; Rindfuss, R.R. Land change science. Int. Encycl. Hum. Geogr. 2004, 6, 107–111. [Google Scholar]
- He, C.Y.; Shi, P.J.; Chen, J.; Zhou, Y.Y. A study on land use/cover change in Beijing area. Geogr. Res. 2001, 20, 679–687. [Google Scholar]
- Pontius, R.G., Jr.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 100, 251–268. [Google Scholar] [CrossRef]
- Takada, T.; Miyamoto, A.; Hasegawa, S.F. Derivation of a yearly transition probability matrix for land-use dynamics and its applications. Landsc. Ecol. 2010, 25, 561–572. [Google Scholar] [CrossRef]
- Romero-Ruiz, M.H.; Flantua, S.G.A.; Tansey, K.; Berrio, J.C. Landscape transformations in savannas of northern South America: Land use/cover changes since 1987 in the Llanos Orientale’s of Colombia. Appl. Geogr. 2012, 32, 766–776. [Google Scholar] [CrossRef]
- Liu, R.; Zhu, D.L. Methods for detecting land use changes based on the land use transition matrix. Resour. Sci. 2010, 32, 1544–1550. [Google Scholar]
- Qiao, W.; Sheng, Y.; Fang, B.; Wang, Y. Land use change information mining in highly urbanized area based on transfer matrix: A case study of Suzhou, Jiangsu Province. Geogr. Res. 2013, 32, 1497–1507. [Google Scholar]
- Pontius, R.G.; Boersma, W.; Castella, J.C.; Clarke, K.; Nijs, T.D.; Dietzel, C. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- Krajewski, P.; Solecka, I.; Mastalska-Cetera, B. Landscape change index as a tool for spatial analysis. J. IOP Mater. Sci. Eng. 2017, 245, 072014. [Google Scholar] [CrossRef]
- Solecka, I.; Raszka, B.; Krajewski, P. Landscape analysis for sustainable land use policy: A case study in the municipality of Popielów, Poland. Land Use Policy 2018, 75, 116–126. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, G.F.; Liu, J.P. The dynamic changes and hot spots of land use in Fushun city from 1987 to 2012. Sci. Geogr. Sin. 2014, 34, 185–191. [Google Scholar]
- Aldwaik, S.Z.; Pontius, R.G., Jr. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Huang, J.L.; Pontius, R.G., Jr.; Li, Q.S.; Zhang, Y. Use of intensity analysis to link patterns with processes of land change from 1986 to 2007 in a coastal watershed of southeast China. Appl. Geogr. 2012, 34, 371–384. [Google Scholar] [CrossRef]
- Zhou, P.; Huang, J.; Pontius, R.G., Jr.; Hong, H. Land classification and change intensity analysis in a coastal watershed of southeast China. Sensor 2014, 14, 11640–11658. [Google Scholar] [CrossRef] [PubMed]
- Mallinis, G.; Koutsias, N.; Arianoutsou, M. Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban mountainous areas of Athens metropolitan area, Greece. Sci. Total Environ. 2014, 490, 262–278. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.N.; Wang, M.H. Study on relation and distribution between vegetative coverage and land degradation in Inner Mongolia. J. Arid Land Resour. Environ. 2008, 22, 140–144. [Google Scholar]
- Xu, G.C.; Kang, M.Y.; Li, Y. Analysis of land use change and its driving force in Xilingol league. Resour. Sci. 2011, 33, 690–697. [Google Scholar]
- Zhan, J.Y.; Deng, X.Z.; Yue, T.X.; Bao, Y.H.; Zhao, T.; Ma, S.N. Land use change and its environmental effects in the farming-pasturing interlocked areas of Inner Mongolia. Resour. Sci. 2004, 26, 80–88. [Google Scholar]
- Zhang, F.; Wang, Q.; Wang, W.J.; Shen, W.M.; Luo, H.J.; Liu, X.M. Analyzing land use change in ecotone between forest and grass in Inner Mongolia. Resour. Sci. 2006, 28, 52–58. [Google Scholar]
- Zhang, Y.H.; Luo, Y.; Liu, J.Y.; Zhuang, D.F. Land use changes and its effect on landscape ecology in Hetao irrigated areas, Inner Mongolia. Resour. Sci. 2005, 27, 141–146. [Google Scholar]
- Li, Q.F.; Hu, C.Y.; Wang, M.J. Analysis on the cause of eco-environmental deterioration in Xilinguole typical grassland region and counter measures. Acta Sci. Nat. Univ. NeiMongol 2003, 34, 166–172. [Google Scholar]
- Sun, Y.L.; Guo, P.; Yan, X.D. Dynamics of vegetation cover and its relationship with climate change and human activities in Inner Mongolia. J. Nat. Resour. 2010, 25, 407–414. [Google Scholar]
- Shi, Z.J.; Gao, J.X.; Xu, L.H. Effect of vegetation on changes of temperature and precipitation in Inner Mongolia, China. Ecol. Environ. Sci. 2011, 20, 1594–1601. [Google Scholar]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L. Spatiaotemporal characteristics, patterns and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhang, Z.X.; Xu, X.L.; Kuang, W.H.; Zhou, W.C.; Zhang, S.W.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Pontius, R.G., Jr.; Gao, Y.; Giner, N.M.; Kohyama, T.; Osaki, M.; Hirose, K. Design and interpretation of intensity analysis illustrated by land change in Central Kalimantan, Indonesia. Land 2013, 2, 351–369. [Google Scholar] [CrossRef]
- Manandhar, R.; Odeh, I.O.A.; Pontius, R.G., Jr. Analysis of twenty years of categorical land transitions in the lower Hunter of New South Wales, Australia. Agric. Ecosyst. Environ. 2010, 135, 336–346. [Google Scholar] [CrossRef]
- Gitau, M.; Bailey, N. Multi-layer assessment of land use and related changes for decision support in a coastal zone watershed. Land 2012, 1, 5–31. [Google Scholar] [CrossRef]
- Ma, J.; Ji, C.L.; Zhang, Y.K.; Li, J.J. Cluster analysis of land use change of China’s western region. China Popul. Resour. Environ. 2012, 22, 149–152. [Google Scholar]
- Yan, L.J.; Zhang, E.H. The response of theoretical stocking rate in northern farming-pastoral transitional zone to climate change-an example of Dingxi County. Pratacult. Sci. 2005, 22, 8–10. [Google Scholar]
- Mu, S.; Zhou, S.; Chen, Y.; Li, J.; Ju, W.; Odeh, I.O.A. Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in Inner Mongolian grassland, China. Glob. Planet. Chang. 2013, 108, 29–41. [Google Scholar] [CrossRef]
- Zhang, A.M. Analysis on the current status and the changes of land use in Hulunbuir, Inner Mongolia. China Land Sci. 2011, 25, 43–48. [Google Scholar]
- Chen, H.Y.; Shao, Q.Q.; An, R. Study on land use/cover changes in the Inner Mongolia Autonomous region from 1980s to 2005. J. Geo-Inf. Sci. 2013, 15, 225–232. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, H. Analysis of land use/cover change in Inner Mongolia using MODIS data. J. Arid Land Resour. Environ. 2015, 29, 31–36. [Google Scholar]
- Pelorosso, R.; Chiesa, S.D.; Tappeiner, U.; Leone, A.; Rocchini, D. Stability analysis for defining management strategies in abandoned mountain landscapes of the Mediterranean basin. Landsc. Urban Plan. 2011, 103, 335–346. [Google Scholar] [CrossRef]
Code | Categories | Abbreviation | Description |
---|---|---|---|
1 | Cropland | CL | Refers to dry land, generally no irrigation facilities and the population relies on natural precipitation to cultivate dry crops. |
2 | Woodland | WL | Includes wood land, shrubbery land, sparsely forested woodland, afforestation land, and slashes. |
3 | High-coverage grassland | HCG | Vegetation coverage is higher than 50%, including natural grassland, improved grassland, and mowing grassland; better water condition and the grass is dense. |
4 | Moderate-coverage grassland | MCG | Vegetation coverage ranges from 20% to 50%, including natural grassland and improved grassland; lacks water and the grass is sparse. |
5 | Low-coverage grassland | LCG | Natural grassland refers to the vegetation coverage ranging from 5% to 20%, lack of water, the grass is sparse and the utilization condition of livestock is poor. |
6 | Water | WA | Natural terrestrial water and water conservancy facilities, including river, lake, reservoir, pond, beaches, and flats. |
7 | Built-up | BU | Includes areas of cities and towns, residential quarters in rural areas, isolated industrial and mining lands. |
8 | Sandy land | SL | Includes a large amount of quicksand, widely distributed dunes, and no vegetation. |
9 | Unused land | UL | Includes bare land, exposed rock land, saline-alkali land, and wetland. |
Final Year of Time Interval | Initial Total | Gross Loss | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Land Use Type | CL | WL | HCG | MCG | LCG | WA | BU | SL | UL | |||
Initial year of time interval | CL | 96,921 | 1504 | 2212 | 2914 | 387 | 101 | 62 | 67 | 469 | 104,637 | 7716 |
105,977 | 152 | 432 | 911 | 409 | 62 | 58 | 30 | 327 | 108,359 | 2382 | ||
109,787 | 693 | 711 | 691 | 378 | 197 | 831 | 30 | 135 | 113,453 | 3666 | ||
WL | 1311 | 162,523 | 634 | 2284 | 110 | 8 | 5 | 9 | 72 | 166,957 | 4434 | |
2338 | 162,747 | 431 | 181 | 82 | 12 | 17 | 4 | 28 | 165,840 | 3093 | ||
332 | 162,211 | 389 | 188 | 124 | 63 | 106 | 30 | 80 | 163,523 | 1312 | ||
HCG | 5481 | 1149 | 237,705 | 1406 | 367 | 40 | 48 | 88 | 387 | 246,671 | 8966 | |
2674 | 284 | 235,019 | 3011 | 2253 | 147 | 53 | 240 | 475 | 244,159 | 9140 | ||
1582 | 1206 | 229,096 | 2652 | 1423 | 162 | 655 | 329 | 307 | 237,412 | 8316 | ||
MCG | 3203 | 459 | 1796 | 177,846 | 638 | 31 | 40 | 159 | 149 | 184,321 | 6475 | |
1422 | 138 | 879 | 180,513 | 1913 | 82 | 40 | 757 | 402 | 186,146 | 5633 | ||
856 | 440 | 3578 | 176,242 | 2543 | 152 | 746 | 972 | 343 | 185,972 | 9630 | ||
LCG | 589 | 88 | 1149 | 937 | 101,163 | 15 | 5 | 489 | 1361 | 105,796 | 4633 | |
319 | 115 | 249 | 517 | 100,777 | 31 | 20 | 1169 | 280 | 103,477 | 2700 | ||
459 | 217 | 1096 | 1544 | 100,997 | 91 | 460 | 1103 | 259 | 106,226 | 5229 | ||
WA | 206 | 22 | 84 | 71 | 19 | 13,459 | 4 | 15 | 229 | 14,109 | 650 | |
49 | 4 | 12 | 24 | 11 | 13,657 | 5 | 6 | 162 | 13,930 | 273 | ||
191 | 37 | 45 | 129 | 129 | 12,942 | 47 | 392 | 586 | 14,498 | 1556 | ||
BU | 26 | 15 | 29 | 27 | 3 | 4 | 10,786 | 1 | 5 | 10,896 | 110 | |
0 | 0 | 0 | 0 | 0 | 0 | 10,963 | 0 | 0 | 10,963 | 0 | ||
48 | 11 | 8 | 24 | 15 | 19 | 11,027 | 3 | 13 | 11,168 | 141 | ||
SL | 42 | 15 | 169 | 341 | 540 | 18 | 2 | 141,952 | 40 | 143,119 | 1167 | |
86 | 39 | 106 | 348 | 566 | 27 | 3 | 141,714 | 78 | 142,967 | 1253 | ||
98 | 240 | 166 | 846 | 1356 | 94 | 153 | 140,923 | 60 | 143,936 | 3013 | ||
UL | 579 | 65 | 379 | 320 | 250 | 254 | 11 | 187 | 163,659 | 165,704 | 2045 | |
588 | 44 | 284 | 367 | 215 | 480 | 9 | 16 | 164,368 | 166,371 | 2003 | ||
317 | 78 | 249 | 873 | 579 | 449 | 387 | 33 | 163,155 | 166,120 | 2965 | ||
Final | 108,359 | 165,840 | 244,157 | 181,646 | 103,477 | 13,930 | 10,963 | 142,967 | 166,371 | |||
Total | 113,453 | 163,523 | 237,412 | 185,872 | 106,226 | 14,498 | 11,168 | 143,936 | 166,120 | |||
113,670 | 165,134 | 235,338 | 183,191 | 107,545 | 14,169 | 14,412 | 143,815 | 164,938 | ||||
Gross | 11,438 | 3317 | 6452 | 8300 | 2314 | 471 | 177 | 1015 | 2712 | |||
gain | 7476 | 776 | 2393 | 5359 | 5449 | 841 | 205 | 2222 | 1752 | |||
3883 | 2923 | 6242 | 6949 | 6548 | 1227 | 3385 | 2892 | 1783 |
Land Use Types | 1980–1990 | 1990–2000 | 2000–2015 |
---|---|---|---|
Cropland | +, HCG, MCG | +, WL, HCG, MCG | -, HCG, MCG |
Woodland | -, CL, MCG | -, CL | +, CL, HCG |
High-coverage grassland | -, CL | -, CL, MCG, LCG | -, CL, MCG, LCG |
Moderate-coverage grassland | +, CL, WL, LCG | -, CL, LCG | -, HCG, LCG, BU |
Low-coverage grassland | -, HCG, MCG, UL | +, HCG, MCG | +, MCG, SL |
Water | -, UL | +, UL | -, SL, UL |
Built-up | +, UL | +, UL | +, CL, UL |
Sandy land | +, LCG, WA, UL | +, MCG, LCG | -, MCG, LCG, BU |
Unused land | +, CL, LCG | +, CL, HCG, MCG, LCG | -, MCG, LCG, WA, BU |
CL | WL | HCG | MCG | LCG | WA | BU | SL | UL | |
---|---|---|---|---|---|---|---|---|---|
Inner Mongolia | 9033 | −1823 | −11,333 | −1130 | 1749 | 60 | 3516 | 696 | −768 |
Hulunbuir | 2446 | −1080 | −2755 | −2755 | −168 | 112 | 140 | 8 | −86 |
Xing’an | 2622 | −2217 | −2013 | 1672 | 1 | −28 | 253 | −1 | −289 |
Tongliao | 5044 | 285 | −3246 | −1272 | −177 | −314 | 296 | −157 | −459 |
Chifeng | 3529 | 226 | −2791 | −836 | 414 | −124 | 339 | −300 | −457 |
Xilingol | 1492 | −140 | −2622 | −2162 | 2682 | 166 | 764 | 715 | −895 |
Ulanqab | −61 | 295 | −1001 | −888 | 770 | −30 | 967 | −9 | −43 |
Baotou | 24 | 296 | −243 | −695 | 447 | −32 | 466 | −166 | −97 |
Hohhot | 86 | 110 | −153 | −686 | 155 | 15 | 480 | −37 | 30 |
Bayannur | −515 | 381 | −216 | 78 | 482 | 60 | 293 | −530 | −33 |
Ordos | −548 | 577 | −1721 | 57 | 412 | 69 | 1240 | −245 | 159 |
Wuhai | 20 | 3 | 5 | −118 | −16 | 2 | 147 | −20 | −23 |
Alxa | 120 | −66 | −34 | 162 | −1413 | 140 | 305 | 173 | 613 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, S.; Dong, Z.; Zhang, J.; Bao, Y.; Guna, A.; Bao, Y. Spatiotemporal Variations of Land Use/Cover Changes in Inner Mongolia (China) during 1980–2015. Sustainability 2018, 10, 4730. https://doi.org/10.3390/su10124730
Tong S, Dong Z, Zhang J, Bao Y, Guna A, Bao Y. Spatiotemporal Variations of Land Use/Cover Changes in Inner Mongolia (China) during 1980–2015. Sustainability. 2018; 10(12):4730. https://doi.org/10.3390/su10124730
Chicago/Turabian StyleTong, Siqin, Zhenhua Dong, Jiquan Zhang, Yongbin Bao, Ari Guna, and Yuhai Bao. 2018. "Spatiotemporal Variations of Land Use/Cover Changes in Inner Mongolia (China) during 1980–2015" Sustainability 10, no. 12: 4730. https://doi.org/10.3390/su10124730
APA StyleTong, S., Dong, Z., Zhang, J., Bao, Y., Guna, A., & Bao, Y. (2018). Spatiotemporal Variations of Land Use/Cover Changes in Inner Mongolia (China) during 1980–2015. Sustainability, 10(12), 4730. https://doi.org/10.3390/su10124730