Synergistic Passivation of Fly Ash and TMT on Heavy Metals in Sewage Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of the Materials
2.2. Analytical Methods
2.2.1. Determination of the Physico-Chemical Properties
2.2.2. Extraction and Determination Methods for the Heavy Metals
2.3. Immobilization Treatment of the Sewage Sludge
2.4. Ryegrass Planting Experiment
3. Results and Discussion
3.1. Characteristics of the Sewage Sludge, Fly Ash, and Brown Soil
3.2. Immobilization of the Fly Ash on the Heavy Metals in the Sewage Sludge
3.3. Immobilization of the TMT on the Heavy Metals in the Sewage Sludge
3.4. Synergistic Passivation of the Fly Ash and TMT
3.4.1. Synergistic Passivation Effect on the Heavy Metals
3.4.2. Effect of the Sewage Sludge on the Ryegrass Growth
3.5. Passivation Mechanism of the Fly Ash and TMT on the Heavy Metals
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, H.B.; Xu, L.Q.; Zhang, Y.C.; Cao, B.; Liu, W.J.; Fu, Y.L. A case project for sewage sludge and food waste co-digestion. China Water Wastewater 2018, 34, 79–84. [Google Scholar]
- Li, J.; Luo, G.; Gao, J.; Yuan, S.; Du, J.; Wang, Z. Quantitative evaluation of potential ecological risk of heavy metals in sewage sludge from three wastewater treatment plants in main urban area of Wuxi, China. Chem. Ecol. 2015, 31, 235–251. [Google Scholar] [CrossRef]
- Leng, L.; Yuan, X.; Huang, H.; Jiang, H.; Chen, X.; Zeng, G. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 2014, 167, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Latare, A.M.; Kumar, O.; Singh, S.K.; Gupta, A. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice-wheat system. Ecol. Eng. 2014, 69, 17–24. [Google Scholar] [CrossRef]
- Sieciechowicz, A.; Sadecka, Z.; Myszograj, S.; Włodarczyk-Makuła, M.; Wiśniowska, E.; Turek, A. Occurrence of heavy metals and PAHs in soil and plants after application of sewage sludge to soil. Desalin. Water Treat. 2014, 52, 4014–4026. [Google Scholar] [CrossRef]
- Przemysław, K.; Magdalena, K.; Bogusław, B. Immobilization of selected heavy metals in sewage sludge by natural zeolites. Bioresour. Technol. 2008, 99, 5972–5976. [Google Scholar] [CrossRef]
- Singh, J.W.; Kalamdhad, A.S. Reduction of heavy metals during composting—A review. Int. J. Environ. Protect. 2012, 2, 36–43. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.Q.; Wang, D.F. Immobilization of heavy metals in sewage sludge during land application process in China: A review. Sustainability 2017, 9, 2020. [Google Scholar] [CrossRef]
- Xu, G.; Shi, X.M. Characteristics and applications of fly ash as a sustainable construction material: A state-of-the art review. Resour. Conserv. Recycl. 2018, 136, 95–109. [Google Scholar] [CrossRef]
- Liu, X.J.; Wang, H.; Liu, L.L. Development and utilization of fly ash resources. Inorg. Chem. Ind. 2018, 50, 12–14. [Google Scholar]
- Zhuang, X.Y.; Chen, L.; Komarneni, S.; Zhou, C.H.; Tong, D.S.; Yang, H.M.; Yu, W.H.; Wang, H. Fly ash-based geopolymer: Clean production, properties and applications. J. Clean. Prod. 2016, 125, 253–267. [Google Scholar] [CrossRef]
- Rodrigues, P.; Silvestre, J.D.; Flores-Colen, I.; Viegas, C.A.; de Brito, J.; Kurad, R.; Demertzi, M. Methodology for the assessment of the ecotoxicological potential of construction materials. Materials 2017, 10, 649. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Aroujalian, A.; Raisi, A.; Dabir, B.; Fathizadeh, M. Preparation and characterization of nano-NaX zeolite by microwave assisted hydrothermal method. Adv. Powder Technol. 2014, 25, 722–727. [Google Scholar] [CrossRef]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.Q.; Xia, M.S.; Xi, Y.Q. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Ram, L.C.; Masto, R.E. Fly ash for soil amelioration: A review on the influence of ash blending with inorganic and organic amendments. Earth-Sci. Rev. 2014, 128, 52–74. [Google Scholar] [CrossRef]
- Nayak, A.K.; Raja, R.; Rao, K.S.; Shukla, A.K.; Mohanty, S.; Shahid, M.; Tripathi, R.; Panda, B.B.; Bhattacharyya, P.; Kumar, A.; et al. Effect of fly ash application on soil microbial response and heavy metal accumulation in soil and rice plant. Ecotoxicol. Environ. Saf. 2015, 114, 257–262. [Google Scholar] [CrossRef]
- Skousen, J.; Yang, J.E.; Lee, J.; Ziemkiewicz, P. Review of fly ash as a soil amendment. Geosyst. Eng. 2013, 16, 249–256. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Hooda, P.S.; Tsadilas, C.D. Opportunities and challenges in the use of coal fly ash for soil improvements—A review. J. Environ. Manag. 2014, 145, 249–267. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agro-Chemistrical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2007; pp. 30–34, 39–58, 71–83. ISBN 9787109066441. [Google Scholar]
- Veschetti, E.; Maresca, D.; Santarsiero, A.; Ottaviani, M. Sewage sludge microwave digestion procedure optimized by temperature and pressure analysis. Microchem. J. 1998, 59, 246–257. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–850. [Google Scholar] [CrossRef]
- Rauret, G.; López-Sánchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monitor. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- Ciba, J.; Zolotajkin, M.; Kluczka, J.; Loska, K.; Cebula, J. Comparison of methods for leaching heavy metals from composts. Waste Manag. 2003, 23, 897–905. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Wang, F.F.; Meng, F.P.; Jiang, L.; Li, G.J.; Zhou, R.G. Assessment of metal contamination in estuarine surface sediments from Dongying City, China: Use of a modified ecological risk index. Mar. Pollut. Bull. 2018, 126, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Yi, Y.J.; Zeng, G.M. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. J. Environ. Manag. 2016, 178, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, B.; Bolan, N.S.; Choppala, G.; Kunhikrishnan, A.; Sanderson, P.; Wang, H.; Currie, L.D.; Tsang, D.; OK, Y.S.; Kim, K. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil. Chemosphere 2017, 184, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.; Ruiz, E.; Alonso-Azcárate, J.; Rincón, J. Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J. Environ. Manag. 2008, 90, 1106–1116. [Google Scholar] [CrossRef]
- He, X.; Zhang, Y.X.; Shen, M.C.; Zeng, G.M.; Zhou, M.C.; Li, M.R. Effect of vermicomposting on concentration and speciation of heavy metals in sewage sludge with additive materials. Bioresour. Technol. 2016, 218, 867–873. [Google Scholar] [CrossRef]
- Yuan, X.Z.; Huang, H.J.; Zeng, G.M.; Li, H.; Wang, J.Y.; Zhou, C.F.; Zhu, H.N.; Pei, H.K.; Liu, Z.F.; Liu, Z.T. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresour. Technol. 2014, 102, 4104–4110. [Google Scholar] [CrossRef]
- Luan, J.D.; Chai, M.Y.; Liu, Y.W.; Ke, X. Heavy-metal speciation redistribution in solid phase and potential environmental risk assessment during the conversion of MSW incineration fly ash into molten slag. Environ. Sci. Pollut. Res. 2018, 25, 3793–3801. [Google Scholar] [CrossRef] [PubMed]
- Poykio, R.; Nurmesniemi, H.; Dahl, O.; Makela, M. Chemical fractionation method for characterization of biomass-based bottom and fly ash fractions from large-sized power plant of an integrated pulp and paper mill complex. Trans. Nonferrous Met. Soc. China 2014, 24, 588–596. [Google Scholar] [CrossRef]
- Nurmesniemi, H.; Pöykiö, R.; Watkins, G.; Dahl, O. Total and extractable heavy metal phosphorous and sulfur concentrations in slaker grits from the causticizing process of a pulp mill for use as a soil amendment. Chem. Speciat. Bioavailab. 2010, 22, 87–97. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Kundu, G.K. Heavy metals in the industrial sludge and their ecological risk: A case study for a developing country. J. Geochem. Explor. 2017, 172, 41–49. [Google Scholar] [CrossRef]
- Mäkelä, M.; Watkins, G.; Pöykiö, R.; Nurmesniemi, H.; Dahl, O. Utilization of steel, pulp and paper industry solid residues in forest soil amendment: Relevant physicochemical properties and heavy metal availability. J. Hazard. Mater. 2012, 207–208, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Y.; Peng, P.G.; Song, J.Z.; Liu, C.S.; Peng, Y.; Lu, P.X. Improved BCR method to analyze the chemical forms of heavy metals in national soil reference materials. J. Ecol. Environ. 2012, 21, 1881–1884. [Google Scholar]
- Moćko, A.; Wacławek, W. Three-step extraction procedure for determination of heavy metals availability to vegetables. Anal. Bioanal. Chem. 2004, 380, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, R.J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006, 89, 27–41. [Google Scholar] [CrossRef]
- Rakesh, M.; Gabriela, M.; Benjamin, L.; Stephanie, L. Development of a standardized methodology for quantifying total chlorophyll and carotenoids from foliage of hardwood and conifer tree species. Can. J. For. Res. 2009, 39, 849–861. [Google Scholar] [CrossRef]
- Su, D.C.; Wong, J.W.C. Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge. Environ. Int. 2003, 29, 895–900. [Google Scholar] [CrossRef]
- Xu, J.Q.; Yu, R.L.; Dong, X.Y.; Hu, G.R.; Shang, X.S.; Wang, Q.; Li, H.W. Effects of municipal sewage sludge stabilized by fly ash on the growth of Manilagrass and transfer of heavy metals. J. Hazard. Mater. 2012, 217–218, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Peña, A.; Mingorance, M.D.; Rossini-Oliva, S. Soil quality improvement by the establishment of a vegetative cover in a mine soil added with composted municipal sewage sludge. J. Geochem. Explor. 2015, 157, 178–183. [Google Scholar] [CrossRef]
- Grobelak, A.; Placek, A.; Grosser, A.; Singh, B.R.; Almås, A.R.; Napora, A.; Kacprzak, M. Effects of single sewage sludge application on soil phytoremediation. J. Clean. Prod. 2017, 155, 89–197. [Google Scholar] [CrossRef]
- Lopez-Ramon, M.V.; Fontecha-Camara, M.A.; Alvarez-Merino, M.A.; Moreno-Castilla, C. Removal of diuron and amitrol from water under static and amitrol from water under static and dynamic conditions using activated carbon in form of fiber, cloth and grains. Water Res. 2007, 41, 2865–2870. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.C.; Abhilash, P.C.; Upadhyay, R.N.; Tewari, D.D. Application of fly ash on the growth performance and translocation of toxic heavy metals within Cajanus cajan L.: Implication for safe utilization of fly ash for agricultural production. J. Hazard. Mater. 2009, 166, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Devi, P.; Saroha, A.K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresour. Technol. 2014, 162, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.Q.; Wang, H.R.; Zhu, T.Y.; Kuang, J.Y.; Jing, P.F. Mercury removal from coal combustion flue gas by modified fly ash. J. Environ. Sci. 2013, 25, 393–398. [Google Scholar] [CrossRef]
- Bian, J.; Wang, Y.F.; He, J.G.; Yuan, Y.X.; Liu, T.T. Passivation of copper and zinc in sludge by microwave/alkali modified fly ash. China Water Wastewater 2016, 32, 91–95. [Google Scholar]
- Matlock, M.M.; Henke, K.R.; Atwood, D.A.; Robertson, D. Aqueous leaching properties and environmental implications of cadmium, lead and zinc trimercaptotriazine (TMT) compounds. Water Res. 2001, 35, 3649–3655. [Google Scholar] [CrossRef]
- Henke, K.R.; Robertson, D.; Krepps, M.K.; Atwood, D.A. Chemistry and stability of precipitates from aqueous solutions of 2,4,6-trimercaptotriazine, trisodium salt, nonahydrate (TMT-55) and mercury (II) chloride. Water Res. 2000, 34, 3005–3013. [Google Scholar] [CrossRef]
- Decostere, B.; Hogie, J.; Dejans, P.; Van Hulle, S.W.H. Removal of heavy metals occurring in the washing water of flue gas purification. Chem. Eng. J. 2009, 150, 196–203. [Google Scholar] [CrossRef]
- Pan, S.W.; Qiu, K.; Sun, T.H.; Zhang, H.B.; Jia, J.P. Application of chelating agents for heavy metals removal from electroplating effluent. Mod. Chem. Ind. 2015, 35, 61–65. [Google Scholar]
- Tamrabet, L.; Bouzerzour, H.; Kribaa, M.; Makhlouf, M. The effect of sewage sludge application on durum wheat (Triticum durum). Int. J. Agric. Biol. 2009, 11, 741–745. [Google Scholar] [CrossRef]
- Cheng, H.F.; Xu, W.P.; Liu, J.L.; Zhao, Q.J.; He, Y.Q.; Chen, G. Application of composted sewage sludge (CSS) as a soil amendment for turfgrass growth. Ecol. Eng. 2007, 29, 96–104. [Google Scholar] [CrossRef]
- Bilgili, U.; Acikgoz, E. Year-round nitrogen fertilization effects on growth and quality of sports turf mixtures. J. Plant Nutr. 2005, 28, 299–307. [Google Scholar] [CrossRef]
- Zhang, H.L.; Sun, L.; Sun, T.H. Solubility of ion and trace metals from stabilized sewage sludge by fly ash and alkaline mine tailing. J. Environ. Sci. 2008, 20, 710–716. [Google Scholar] [CrossRef]
- Masto, R.E.; Sunar, K.K.; Sengupta, T.; Ram, L.C.; Rout, T.K.; Selvi, V.A.; George, J.; Sinha, A.K. Evaluation of the co-application of fly ash and sewage sludge on soil biological and biochemical quality. Environ. Technol. 2012, 33, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xu, Y.; Cui, Y.; Meng, Y.D.; Dong, Y.; Li, R.; Ma, Y.B. Variation of soil organic matter content in croplands of China over the last three decades. Acta Pedol. Sin. 2017, 54, 1047–1056. [Google Scholar] [CrossRef]
- Li, A.M.; Qu, Y.L.; Yang, Z.X.; Li, Y.D. Surface configuration and moisture transference during sewage sludge drying. J. Chem. Ind. Eng. 2004, 55, 1011–1015. [Google Scholar] [CrossRef]
Treatment | Brown Soil | Sewage Sludge | Fly Ash | TMT |
---|---|---|---|---|
Control treatment | 100% | 0 | 0 | 0 |
USS treatment | 80% | 20% | 0 | 0 |
SSS treatment | 79.50% | 16% | 4% | 0.50% |
Samples | Sewage Sludge | Brown Soil | Fly Ash |
---|---|---|---|
pH | 6.89 ± 0.13 | 6.82 ± 0.04 | 10.88 ± 0.02 |
Electricity conductivity (EC) (mS/cm) | 1.92 ± 0.064 | 0.11 ± 0.004 | 0.57 ± 0.04 |
Cationexchange capcity (CEC) (mmol/kg) | 142.52 ± 3.48 | 30.00 ± 13.00 | 79.59 ± 2.06 |
Organic matter (g/kg) | 392 ± 12 | 17.87 ± 0.46 | 3.82 ± 0.45 |
Total nitrogen (TN) (g/kg) | 19.37 ± 2.53 | 0.15 ± 0.05 | 0.007 ± 0.001 |
Total phosphorus (TP) (g/kg) | 17.14 ± 1.87 | 0.35 ± 0.04 | 1.51 ± 0.21 |
Total potassium (TK) (g/kg) | 5.23 ± 1.34 | 5.24 ± 1.06 | 7.34 ± 1.26 |
Cu (mg/kg) | 92.50 ± 13.79 | 13.88 ± 3.42 | 18.8 ± 1.45 |
Ni (mg/kg) | 50.20 ± 7.92 | 16.74 ± 1.99 | 13.83 ± 2.57 |
Pb (mg/kg) | 42.70 ± 5.37 | 7.28 ± 1.17 | 15.53 ± 3.11 |
Zn (mg/kg) | 1901.00 ± 36.00 | 76.99 ± 6.35 | 57.09 ± 5.24 |
Samples | ΔResidual Fraction | ΔExchangeable Fraction | ||||||
---|---|---|---|---|---|---|---|---|
Cu | Ni | Pb | Zn | Cu | Ni | Pb | Zn | |
F20 | 16.39 | 7.34 | 2.24 | −4.94 | 0.99 | 3.14 | 2.24 | 3.01 |
F20T0.5 | 18.95 | 9.22 | 2.64 | −3.66 | 3.17 | 12.64 | 2.64 | 3.58 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.-F.; Li, S.-H.; Wang, X.-Q.; Li, L.-X.; Zhang, X. Synergistic Passivation of Fly Ash and TMT on Heavy Metals in Sewage Sludge. Sustainability 2018, 10, 4731. https://doi.org/10.3390/su10124731
Wang D-F, Li S-H, Wang X-Q, Li L-X, Zhang X. Synergistic Passivation of Fly Ash and TMT on Heavy Metals in Sewage Sludge. Sustainability. 2018; 10(12):4731. https://doi.org/10.3390/su10124731
Chicago/Turabian StyleWang, Dong-Fang, Shi-He Li, Xian-Qing Wang, Ling-Xu Li, and Xuan Zhang. 2018. "Synergistic Passivation of Fly Ash and TMT on Heavy Metals in Sewage Sludge" Sustainability 10, no. 12: 4731. https://doi.org/10.3390/su10124731
APA StyleWang, D. -F., Li, S. -H., Wang, X. -Q., Li, L. -X., & Zhang, X. (2018). Synergistic Passivation of Fly Ash and TMT on Heavy Metals in Sewage Sludge. Sustainability, 10(12), 4731. https://doi.org/10.3390/su10124731