Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study
Abstract
:1. Introduction
2. Ozone in General Disinfection and Water Treatment
Antibacterial Properties
3. Ozone in Agriculture
4. The Use of Ozone in Animal Husbandry and Fish Farming
- -
- Reduction of the load of bacteria, viruses, protozoa and fungi pathogenic to fish;
- -
- Elimination of colloidal substances suspended in the water and removal of dissolved organic substances that can stress the fish;
- -
- Removal of ammonia and nitrites that may be toxic to fish;
- -
- Increased growth rate (faster growth of fish);
- -
- Increase in food conversion factor (food transfer factor), resulting in a decrease in the amount of food to achieve the same percentage increase;
- -
- Greater fish production achievable with the same structures (epidemics caused by a certain pathogen can cause production losses ranging from 20% to 70%);
- -
- Fish product obtained at a lower cost and therefore more competitive.
5. A Case Study in Animal Husbandry
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doppelt, B. Leading Change toward Sustainability: A Change-Management Guide for Business, Government and Civil Society; Routledge: Abingdon-on-Thames, UK, 2017. [Google Scholar]
- Benn, S.; Edwards, M.; Williams, T. Organizational Change for Corporate Sustainability; Routledge: Abingdon-on-Thames, UK, 2014. [Google Scholar]
- Smith, H.; Fingar, P. Business Process Management: The Third Wave; Meghan-Kiffer Press: Tampa, FL, USA, 2003; Volume 1. [Google Scholar]
- Schaltegger, S.; Wagner, M. Sustainable entrepreneurship and sustainability innovation: Categories and interactions. Bus. Strategy Environ. 2011, 20, 222–237. [Google Scholar] [CrossRef]
- Dangelico, R.M.; Pujari, D. Mainstreaming green product innovation: Why and how companies integrate environmental sustainability. J. Bus. Ethics 2010, 95, 471–486. [Google Scholar] [CrossRef]
- Mahmoud, A.E.D.; Stolle, A.; Stelter, M. Sustainable synthesis of high-surface-area graphite oxide via dry ball milling. ACS Sustain. Chem. Eng. 2018, 6, 6358–6369. [Google Scholar] [CrossRef]
- Millar, C.; Hind, P.; Magala, S. Sustainability and the need for change: Organisational change and transformational vision. J. Organ. Chang. Manag. 2012, 25, 489–500. [Google Scholar] [CrossRef]
- Bocci, V. How Does Ozone Act? How and Why Can We Avoid Ozone Toxicity? Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Seidler, V.; Linetskiy, I.; Hubálková, H.; Stankova, H.; Smucler, R.; Mazánek, J. Ozone and its usage in general medicine and dentistry. A review article. Prague Med. Rep. 2008, 109, 5–13. [Google Scholar] [PubMed]
- Eliasson, B.; Hirth, M.; Kogelschatz, U. Ozone synthesis from oxygen in dielectric barrier discharges. J. Phys. Appl. Phys. 1987, 20, 1421. [Google Scholar] [CrossRef]
- Garamoon, A.A.; Elakshar, F.F.; Nossair, A.M.; Kotp, E.F. Experimental study of ozone synthesis. Plasma Sources Sci. Technol. 2002, 11, 254. [Google Scholar] [CrossRef]
- Ma, H.; Qiu, Y. A study of ozone synthesis in coaxial cylinder pulse streamer corona discharge reactors. Ozone Sci. Eng. 2003, 25, 127–135. [Google Scholar] [CrossRef]
- Pietsch, G.J.; Gibalov, V.I. Dielectric barrier discharges and ozone synthesis. Pure Appl. Chem. 1998, 70, 1169–1174. [Google Scholar] [CrossRef] [Green Version]
- Bojkov, R.D. International Ozone Commission: History and Activities; IAMAS Publication Series: Bavaria, Germany, 2012. [Google Scholar]
- Bojkov, R.D. Surface ozone during the second half of the nineteenth century. J. Clim. Appl. Meteorol. 1986, 25, 343–352. [Google Scholar] [CrossRef]
- Rubin, M.B. The history of ozone. The Schönbein period, 1839–1868. Bull. Hist. Chem. 2001, 26, 40–56. [Google Scholar]
- Braslavsky, S.E.; Rubin, M.B. The history of ozone Part VIII. Photochemical formation of ozone. Photochem. Photobiol. Sci. 2011, 10, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Rubin, M.B. The History of Ozone. Part III: CD Harries and the Introduction of Ozone into Organic Chemistry. Helv. Chim. Acta 2003, 86, 930–940. [Google Scholar] [CrossRef]
- Bocci, V. Biological and clinical effects of ozone. Has ozone therapy a future in medicine? Br. J. Biomed. Sci. 1999, 56, 270. [Google Scholar]
- Kowalski, W.J.; Bahnfleth, W.P.; Whittam, T.S. Bactericidal effects of high airborne ozone concentrations on Escherichia coli and Staphylococcus aureus. Ozone Sci. Eng. 1998. [Google Scholar] [CrossRef]
- Moore, G.; Griffith, C.; Peters, A. Bactericidal properties of ozone and its potential application as a terminal disinfectant. J. Food Prot. 2000, 63, 1100–1106. [Google Scholar] [CrossRef]
- Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42. [Google Scholar] [CrossRef]
- Li, X.-Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277. [Google Scholar]
- Loeb, B.L. Ozone: Science & Engineering: Thirty-three years and growing. Ozone Sci. Eng. 2011, 33, 329–342. [Google Scholar]
- Von Gunten, U. The basics of oxidants in water treatment. Part B: Ozone reactions. Water Sci. Technol. 2007, 55. [Google Scholar] [CrossRef]
- Loeb, B.L.; Thompson, C.M.; Drago, J.; Takahara, H.; Baig, S. Worldwide ozone capacity for treatment of drinking water and wastewater: A review. Ozone Sci. Eng. 2012, 34, 64–77. [Google Scholar] [CrossRef]
- Glaze, W.H. Drinking-water treatment with ozone. Environ. Sci. Technol. 1987, 21, 224–230. [Google Scholar] [CrossRef]
- Rice, R.G.; Robson, C.M.; Miller, G.W.; Hill, A.G. Uses of ozone in drinking water treatment. J.-Am. Water Works Assoc. 1981, 73, 44–57. [Google Scholar] [CrossRef]
- Glaze, W.H.; Kang, J.-W.; Chapin, D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987. [Google Scholar] [CrossRef]
- Ciambrone, D.F. Ozone Oxidation of Waste Water. U.S. Patent 4,007,118, 8 February 1977. [Google Scholar]
- Gottschalk, C.; Libra, J.A.; Saupe, A. Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and Its Applications; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Fiessinger, F.; Richard, Y.; Montiel, A.; Musquere, P. Advantages and disadvantages of chemical oxidation and disinfection by ozone and chlorine dioxide. Sci. Total Environ. 1981, 18, 245–261. [Google Scholar] [CrossRef]
- Haag, W.R.; Hoigné, J. Ozonation of water containing chlorine or chloramines. Reaction products and kinetics. Water Res. 1983, 17, 1397–1402. [Google Scholar] [CrossRef]
- Palermi, S.; Pitari, G.; Visconti, G. Ozone response to a CO2 doubling: Results from a stratospheric circulation model with heterogeneous chemistry. J. Geophys. Res.: Atmos. 1992, 97, 5953–5962. [Google Scholar]
- Pelletier, N. Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions. Agric. Syst. 2008, 98, 67–73. [Google Scholar] [CrossRef]
- Pascual, A.; Llorca, I.; Canut, A. Use of ozone in food industries for reducing the environmental impact of cleaning and disinfection activities. Trends Food Sci. Technol. 2007, 18, S29–S35. [Google Scholar] [CrossRef]
- Bott, T.R. Ozone as a disinfectant in process plant. Food Control 1991, 2, 45–49. [Google Scholar] [CrossRef]
- Remondino, M. The use of ozone as a driver for economic and environmental sustainable development. Ozone Ther. 2018, 3. [Google Scholar] [CrossRef]
- Czekalski, N.; Imminger, S.; Salhi, E.; Veljkovic, M.; Kleffel, K.; Drissner, D.; Hammes, F.; Bürgmann, H.; Von Gunten, U. Inactivation of antibiotic resistant bacteria and resistance genes by ozone: From laboratory experiments to full-scale wastewater treatment. Environ. Sci. Technol. 2016, 50, 11862–11871. [Google Scholar] [CrossRef] [PubMed]
- Selma, M.V.; Allende, A.; López-Gálvez, F.; Conesa, M.A.; Gil, M.I. Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry. Food Microbiol. 2008, 25, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Volk, C.; Roche, P.; Joret, J.-C.; Paillard, H. Comparison of the effect of ozone, ozone-hydrogen peroxide system and catalytic ozone on the biodegradable organic matter of a fulvic acid solution. Water Res. 1997, 31, 650–656. [Google Scholar] [CrossRef]
- Volk, C.; Renner, C.; Roche, P.; Paillard, H.; Joret, J.C. Effects of ozone on the production of biodegradable dissolved organic carbon (BDOC) during water treatment. Ozone Sci. Eng. 1993, 15, 389–404. [Google Scholar] [CrossRef]
- Bablon, G.; Bellamy, W.D.; Billen, G.; Bourbigot, M.-M.; Daniel, B.; Erb, F.; Gomella, C.; Gordon, G.; Hartemann, P.; Joret, J.C. Practical application of ozone: Principles and case studies. Ozone Water Treat. Appl. Eng. 1991, xvii, 569. [Google Scholar]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef]
- Mahfoudh, A.; Barbeau, J.; Moisan, M.; Leduc, A.; Séguin, J. Biocidal action of ozone-treated polystyrene surfaces on vegetative and sporulated bacteria. Appl. Surf. Sci. 2010, 256, 3063–3072. [Google Scholar] [CrossRef]
- Elford, W.J.; van den Ende, J. An investigation of the merits of ozone as an aerial disinfectant. Epidemiol. Infect. 1942, 42, 240–265. [Google Scholar] [CrossRef]
- Keutgen, A.J.; Pawelzik, E. Influence of pre-harvest ozone exposure on quality of strawberry fruit under simulated retail conditions. Postharvest Biol. Technol. 2008, 49, 10–18. [Google Scholar] [CrossRef]
- Loreto, F.; Mannozzi, M.; Maris, C.; Nascetti, P.; Ferranti, F.; Pasqualini, S. Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol. 2001, 126, 993–1000. [Google Scholar] [CrossRef] [PubMed]
- Eick, S.; Tigan, M.; Sculean, A. Effect of ozone on periodontopathogenic species—An in vitro study. Clin. Oral Investig. 2012, 16, 537–544. [Google Scholar] [CrossRef]
- Lee, J.; Deininger, R.A. Survival of bacteria after ozonation. Ozone Sci. Eng. 2000. [Google Scholar] [CrossRef]
- Von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003, 37, 1443–1467. [Google Scholar] [CrossRef]
- Boorman, G.A. Drinking water disinfection byproducts: Review and approach to toxicity evaluation. Environ. Health Perspect. 1999, 107, 207. [Google Scholar] [PubMed]
- Plewa, M.J.; Wagner, E.D.; Jazwierska, P.; Richardson, S.D.; Chen, P.H.; McKague, A.B. Halonitromethane drinking water disinfection byproducts: Chemical characterization and mammalian cell cytotoxicity and genotoxicity. Environ. Sci. Technol. 2004, 38, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Hei, R.D.; Guange-jong, J.W.; Cords, B.R.; Lokkesmoe, K.D. Potentiated Aqueous Ozone Cleaning and Sanitizing Composition for Removal of a Contaminating Soil from A surface. U.S. Patent US5567444A, 22 October 1996. [Google Scholar]
- Mallmann, W.L.; Kain, C.H.; Schaefer, R.J. Apparatus and Method for Sanitizing. U.S. Patent US2388753A, 13 November 1945. [Google Scholar]
- Blanc, D.S.; Carrara, P.; Zanetti, G.; Francioli, P. Water disinfection with ozone, copper and silver ions, and temperature increase to control Legionella: Seven years of experience in a university teaching hospital. J. Hosp. Infect. 2005, 60, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, P.H.; Whittaker, R.E.; Kreiling, R.L.; Howell, C.L. Efficacy of ozone in eradication of Legionella pneumophila from hospital plumbing fixtures. Appl. Environ. Microbiol. 1982, 44, 1330–1333. [Google Scholar] [PubMed]
- Brûlet, A.; Nicolle, M.-C.; Giard, M.; Nicolini, F.-E.; Michallet, M.; Jarraud, S.; Etienne, J.; Vanhems, P. Fatal nosocomial Legionella pneumophila infection due to exposure to contaminated water from a washbasin in a hematology unit. Infect. Control Hosp. Epidemiol. 2008, 29, 1091–1093. [Google Scholar] [CrossRef] [PubMed]
- Woo, A.H.; Victor, L.Y.; Goetz, A. Potential in-hospital modes of transmission of Legionella pneumophila. Demonstration experiments for dissemination by showers, humidifiers, and rinsing of ventilation bag apparatus. Am. J. Med. 1986, 80, 567–573. [Google Scholar] [CrossRef]
- Feng, L.; Jiang, T.; Wang, Y.; Li, J. Effects of tea polyphenol coating combined with ozone water washing on the storage quality of black sea bream (Sparus macrocephalus). Food Chem. 2012, 135, 2915–2921. [Google Scholar] [CrossRef]
- Kim, J.-G.; Yousef, A.E.; Dave, S. Application of ozone for enhancing the microbiological safety and quality of foods: A review. J. Food Prot. 1999, 62, 1071–1087. [Google Scholar] [CrossRef] [PubMed]
- Ölmez, H.; Kretzschmar, U. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT-Food Sci. Technol. 2009, 42, 686–693. [Google Scholar] [CrossRef]
- Bucks, D.A.; Nakayama, F.S.; Gilbert, R.G. Trickle irrigation water quality and preventive maintenance. Agric. Water Manag. 1979, 2, 149–162. [Google Scholar] [CrossRef]
- Newman, S.E. Disinfecting irrigation water for disease management. In Proceedings of the 20th Annual Conference on Pest Management on Ornamentals, San Jose, CA, USA, 20–22 February 2004; pp. 20–22. [Google Scholar]
- Steele, M.; Odumeru, J. Irrigation water as source of foodborne pathogens on fruit and vegetables. J. Food Prot. 2004, 67, 2839–2849. [Google Scholar] [CrossRef]
- Lagerkvist, B.J.; Bernard, A.; Blomberg, A.; Bergstrom, E.; Forsberg, B.; Holmstrom, K.; Karp, K.; Lundstrom, N.-G.; Segerstedt, B.; Svensson, M. Pulmonary epithelial integrity in children: Relationship to ambient ozone exposure and swimming pool attendance. Environ. Health Perspect. 2004, 112, 1768. [Google Scholar] [CrossRef] [PubMed]
- Zwiener, C.; Richardson, S.D.; De Marini, D.M.; Grummt, T.; Glauner, T.; Frimmel, F.H. Drowning in disinfection byproducts? Assessing swimming pool water. Environ. Sci. Technol. 2007, 41, 363–372. [Google Scholar] [CrossRef]
- Boeniger, M.F. Use of ozone generating devices to improve indoor air quality. Am. Ind. Hyg. Assoc. J. 1995, 56, 590–598. [Google Scholar] [CrossRef]
- Clavo, B.; Pérez, J.L.; López, L.; Suárez, G.; Lloret, M.; Rodríguez, V.; Macías, D.; Santana, M.; Morera, J.; Fiuza, D. Effect of ozone therapy on muscle oxygenation. J. Altern. Complement. Med. 2003, 9, 251–256. [Google Scholar] [CrossRef]
- Bocci, V.; Di Paolo, N. Oxygen-ozone therapy in medicine: An update. Blood Purif. 2009, 28, 373–376. [Google Scholar] [CrossRef] [PubMed]
- Buckley, R.D.; Hackney, J.D.; Clark, K.; Posin, C. Ozone and human blood. Arch. Environ. Health Int. J. 1975, 30, 40–43. [Google Scholar] [CrossRef]
- Wong, C.-M.; Ma, S.; Hedley, A.J.; Lam, T.-H. Does ozone have any effect on daily hospital admissions for circulatory diseases? J. Epidemiol. Community Health 1999, 53, 580. [Google Scholar] [CrossRef] [PubMed]
- Valacchi, G.; Fortino, V.; Bocci, V. The dual action of ozone on the skin. Br. J. Dermatol. 2005, 153, 1096–1100. [Google Scholar] [CrossRef] [PubMed]
- Jekel, M.R. Flocculation effects of ozone. Ozone Sci. Eng. 1994, 16, 55–66. [Google Scholar] [CrossRef]
- Jun, Y.; Lu, S.; Ding, Y. Treatment of Simulated Dyeing Wastewater by Modified Red Mud Flocculation-Ozone Oxidation Process. Environ. Prot. Chem. Ind. 2010, 4. [Google Scholar] [CrossRef]
- Sliter, J.T. Ozone: An alternative to chlorine? J. Water Pollut. Control Fed. 1974, 4–6. [Google Scholar]
- Kim, S.; Aga, D.S. Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J. Toxicol. Environ. Health Part B 2007, 10, 559–573. [Google Scholar] [CrossRef]
- Baquero, F.; Martínez, J.-L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef]
- Farooq, S.; Akhlaque, S. Comparative response of mixed cultures of bacteria and virus to ozonation. Water Res. 1983, 17, 809–812. [Google Scholar] [CrossRef]
- Reckhow, D.A.; Knocke, W.R.; Kearney, M.J.; Parks, C.A. Oxidation of iron and manganese by ozone. Ozone Sci. Eng. 1991, 13, 675–695. [Google Scholar] [CrossRef]
- Giunta, R.; Coppola, A.; Luongo, C.; Sammartino, A.; Guastafierro, S.; Grassia, A.; Giunta, L.; Mascolo, L.; Tirelli, A.; Coppola, L. Ozonized autohemotransfusion improves hemorheological parameters and oxygen delivery to tissues in patients with peripheral occlusive arterial disease. Ann. Hematol. 2001, 80, 745–748. [Google Scholar] [CrossRef] [PubMed]
- Häußler, U. Effect of Ozone/Oxygen-Pneumoperitoneum on Tumour Growth and Metastatic Spread of the Rabbit VX2 Head and Neck Cancer Model. Philipps-Universität Marburg: Marburg, Germany, 2009. Available online: http://archiv.ub.uni-marburg.de/diss/z2009/0028 (accessed on 14 December 2018).
- Valdenassi, L.; Franzini, M.; Garbelli, P.; Camolese, M. Oxygen-ozone activity in making factory farms antibiotic-free for prevention of antibiotic resistance. Ozone Ther. 2016, 1, 42–44. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Franzini, M.; Valdenassi, L.; Ionita, G. First evaluations of oxygen-ozone therapy in antibiotic-resistant infections. Ozone Ther. 2016, 1, 5–7. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Amábile-Cuevas, C.F.; Cars, O.; Evans, T.; Heymann, D.L.; Hoffman, S.; Holmes, A.; Mendelson, M.; Sridhar, D.; Woolhouse, M. UN High-Level Meeting on antimicrobials—What do we need? Lancet 2016, 388, 218–220. [Google Scholar] [CrossRef]
- Jasovskỳ, D.; Littmann, J.; Zorzet, A.; Cars, O. Antimicrobial resistance—A threat to the world’s sustainable development. Upsal. J. Med. Sci. 2016, 121, 159–164. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Skov, R.L.; Monnet, D.L. Plasmid-mediated colistin resistance (mcr-1 gene): Three months later, the story unfolds. Eurosurveillance 2016, 21, 30155. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, D.T.; Liu, J.; Lee, R.B.; Lee, R.E. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv. Drug Deliv. Rev. 2016, 102, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A review on antibiotic resistance: Alarm bells are ringing. Cureus 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Cheng, L.; Selorm, A.L.; Yuan, F. An Overview of Ozone Research. J. Adv. Oxid. Technol. 2018, 21, 297–302. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, K.; Gao, M.; Shi, C.; Ge, C.; Qu, D.; Zhu, J.; Shi, Y.; Han, J. Inactivation of Vibrio parahaemolyticus by Aqueous Ozone. J. Microbiol. Biotechnol. 2018, 28, 1233–1246. [Google Scholar] [PubMed]
- NULL Franzini: “L’ozono può Sconfiggere i Superbatteri”; ZENIT Italia: San Cesario sul Panaro, Italy, 2016.
- Wolf, C.; von Gunten, U.; Kohn, T. Virus inactivation by ozone: Kinetics and influence of water quality parameters. In Proceedings of the IWA International Symposium on Health-Related Water Microbiology, Chapel Hill, NC, USA, 15–19 May 2017. [Google Scholar]
- Marcelino, R.B.; Leão, M.M.; Lago, R.M.; Amorim, C.C. Multistage ozone and biological treatment system for real wastewater containing antibiotics. J. Environ. Manag. 2017, 195, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Sacco, G.; Campus, G. The treatment of periodontal disease using local oxygen-ozone. Ozone Ther. 2017, 1, 45–52. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Winter, C.K.; Davis, S.F. Organic foods. J. Food Sci. 2006, 71, R117–R124. [Google Scholar] [CrossRef]
- Mann, R.M.; Hyne, R.V.; Choung, C.B.; Wilson, S.P. Amphibians and agricultural chemicals: Review of the risks in a complex environment. Environ. Pollut. 2009, 157, 2903–2927. [Google Scholar] [CrossRef]
- Weil, C.S.; McCollister, D.D. Safety evaluation of chemicals, relationship between short-and long-term feeding studies in designing an effective toxicity test. J. Agric. Food Chem. 1963, 11, 486–491. [Google Scholar] [CrossRef]
- Ecobichon, D.J. Pesticide use in developing countries. Toxicology 2001, 160, 27–33. [Google Scholar] [CrossRef]
- Pope, C.N. Organophosphorus pesticides: Do they all have the same mechanism of toxicity? J. Toxicol. Environ. Health B Crit. Rev. 1999, 2, 161–181. [Google Scholar] [CrossRef] [PubMed]
- Vozmilov, A.G.; Ilimbetov, R.Y.; Astafev, D.V. The usage of ozone in agriculture technological processes. In Proceedings of the 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Chelyabinsk, Russia, 19–20 May 2016; pp. 1–4. [Google Scholar]
- Nürnberger, T.; Brunner, F. Innate immunity in plants and animals: Emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr. Opin. Plant Biol. 2002, 5, 318–324. [Google Scholar] [CrossRef]
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; Den Nijs, L.; Hockland, S.; Maafi, Z.T. Current nematode threats to world agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer: Berlin/Heidelberg, Germany, 2011; pp. 21–43. [Google Scholar]
- Msayleb, N.; Ibrahim, S. Treatment of nematodes with ozone gas: A sustainable alternative to nematicides. Phys. Procedia 2011, 21, 187–192. [Google Scholar] [CrossRef]
- Margni, M.; Rossier, D.; Crettaz, P.; Jolliet, O. Life cycle impact assessment of pesticides on human health and ecosystems. Agric. Ecosyst. Environ. 2002, 93, 379–392. [Google Scholar] [CrossRef]
- Lozowicka, B.; Jankowska, M.; Hrynko, I.; Kaczynski, P. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environ. Monit. Assess. 2016, 188, 51. [Google Scholar] [CrossRef]
- Khadre, M.A.; Yousef, A.E.; Kim, J.-G. Microbiological aspects of ozone applications in food: A review. J. Food Sci. 2001, 66, 1242–1252. [Google Scholar] [CrossRef]
- Sopher, C.D.; Graham, D.M.; Rice, R.G.; Strasser, J.H. Studies on the use of ozone in production agriculture and food processing. In Proceedings of the International Ozone Association, Pan American Group, Raleigh-Durham, NC, USA, 18–22 May 2002; pp. 1–15. [Google Scholar]
- Tai, P.L. Ozone Injection System for a Livestock Building. U.S. Patent US5983834A, 16 November 1999. [Google Scholar]
- Mallakian, S.; Rezanezhad, R.; Jalali, M.; Ghobadi, F. The effect of ozone gas on destruction and detoxification of aflatoxin. Agric. Eng. Lett. 2017, 1, 9–16. [Google Scholar]
- Correa, R. Method for Improving Conditions in a Poultry Grow out Facility Prior to Placing Chicks by Means of Ozone. U.S. Patent US20160015846A1, 21 January 2016. [Google Scholar]
- Elliott, K.A.; Kenny, C.; Madan, J. A Global Treaty to Reduce Antimicrobial Use in Livestock; Center for Global Development: Washington, DC, USA, 2017. [Google Scholar]
- Yanqiu, L.; Dongfeng, H.; Xingang, Y.; Xuejun, Y.; Liangxing, B.; Yong, X.; Meili, W.; Guodong, X.; Yongfu, Z.; Chunmei, L. Ozone Disinfection Test in Chicken House. Anim. Husb. Feed Sci. 2018, 10, 97–98. [Google Scholar]
- Wolf, C.; von Gunten, U.; Kohn, T. Inactivation of enteric viruses by ozone. In Proceedings of the Gordon Research Seminar, Environmental Sciences Water: Opportunities for Aquatic Sciences to Impact a Changing World, Holderness, NH, USA, 22–27 June 2016. [Google Scholar]
- Biswas, S.K.; Jana, C.; Chand, K.; Rehman, W.; Mondal, B. Detection of fowl poxvirus integrated with reticuloendotheliosis virus sequences from an outbreak in backyard chickens in India. Vet. Ital. 2011, 47, 147–153. [Google Scholar] [PubMed]
- Tothill, I.E.; Turner, A.P.F. New developments and opportunities in the diagnosis of livestock diseases. Livest. Dis. Diagn. 1998, 21, 79–94. [Google Scholar]
- Powell, A.; Chingombe, P.; Lupatsch, I.; Shields, R.J.; Lloyd, R. The effect of ozone on water quality and survival of turbot (Psetta maxima) maintained in a recirculating aquaculture system. Aquac. Eng. 2015, 64, 20–24. [Google Scholar] [CrossRef]
- Guzel-Seydim, Z.B.; Greene, A.K.; Seydim, A.C. Use of ozone in the food industry. LWT-Food Sci. Technol. 2004, 37, 453–460. [Google Scholar] [CrossRef]
- Burger, M.R. Air Purification Electrostatic Charcoal Filter and Method. U.S. Patent US4244710A, 13 January 1981. [Google Scholar]
- Pichat, P.; Disdier, J.; Hoang-Van, C.; Mas, D.; Goutailler, G.; Gaysse, C. Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis. Catal. Today 2000, 63, 363–369. [Google Scholar] [CrossRef]
- Babando, P. Ozone therapy in dentistry: Clinical experiences. Ozone Ther. 2017, 2. [Google Scholar] [CrossRef]
- Almeida, A.; Cunha, Â.; Gomes, N.; Alves, E.; Costa, L.; Faustino, M.A. Phage therapy and photodynamic therapy: Low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar. Drugs 2009, 7, 268–313. [Google Scholar] [CrossRef]
- Forneris, G.; Bellardi, S.; Palmegiano, G.B.; Saroglia, M.; Sicuro, B.; Gasco, L.; Zoccarato, I. The use of ozone in trout hatchery to reduce saprolegniasis incidence. Aquaculture 2003, 221, 157–166. [Google Scholar] [CrossRef]
- Crisinel, P.; Prost, L.; Bon, L. Method for Improving Conditions in Closed Circuit Fish Farming. U.S. Patent US6722314B1, 20 April 2004. [Google Scholar]
- Liltved, H.; Hektoen, H.; Efraimsen, H. Inactivation of bacterial and viral fish pathogens by ozonation or UV irradiation in water of different salinity. Aquac. Eng. 1995, 14, 107–122. [Google Scholar] [CrossRef]
- Powell, A.; Scolding, J.W. Direct application of ozone in aquaculture systems. Rev. Aquac. 2018, 10, 424–438. [Google Scholar] [CrossRef]
- DJuričić, D.; Valpotić, H.; Samardžija, M. Prophylaxis and therapeutic potential of ozone in buiatrics: Current knowledge. Anim. Reprod. Sci. 2015, 159, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Özlem Enginler, S.; Sabuncu, A.; Başaran Kahraman, B.; Koçak, Ö.; Yıldar, E.; Güzel, Ö. Comparison of intramammary ozone administration doses in dairy cows with clinical mastitis. Acta Sci. Vet. 2015, 43, 1260. [Google Scholar]
- Soares, C.; Weber, A.; Moecke, E.S.; Reiter, M.G.; Scussel, V.M.; De Souza, C.K. Use of Ozone Gas as a Green Control Alternative to Beetles Alphitobius diaperinus (Panzer) Infestation in Aviary Bed Utilized in the Poultry Industry. Chem. Eng. Trans. 2018, 64, 589–594. [Google Scholar]
- Zargaran, M.; Fatahinia, M.; Mahmoudabadi, A.Z. The efficacy of gaseous ozone against different forms of Candida albicans. Curr. Med. Mycol. 2017, 3, 26. [Google Scholar] [CrossRef] [PubMed]
- Rajabi, O.; Sazgarnia, A.; Abbasi, F.; Layegh, P. The activity of ozonated olive oil against Leishmania major promastigotes. Iran. J. Basic Med. Sci. 2015, 18, 915. [Google Scholar]
- Caplan, J.A. Therapeutic ozone agent and treatment. 2018. Available online: http://www.freepatentsonline.com/y2016/0175353.html (accessed on 3 October 2018).
- Remondino, M.; Valdenassi, L.; Franzini, M. Pharmacoeconomic analysis of ozone therapy supported by agent based process simulation and data mining. Ozone Ther. 2018, 3. [Google Scholar] [CrossRef]
- Remondino, M.; Franzini, M. Pharmacoeconomics as a Management and Financial Strategy in Healthcare and Simulation as a Decision Making Tool for it: The Case of Ozone Therapy. Int. J. Simul. Syst. Sci. Technol. 2018, 19, 28.1–28.10. [Google Scholar] [CrossRef]
- Carroll, A.B. The pyramid of corporate social responsibility: Toward the moral management of organizational stakeholders. Bus. Horiz. 1991, 34, 39–48. [Google Scholar] [CrossRef]
- Khan, M.; Majid, A.; Yasir, M.; Arshad, M. Corporate social responsibility and corporate reputation: A case of cement industry in Pakistan. Interdiscip. J. Contemp. Res. Bus. 2013, 5, 843–857. [Google Scholar]
2014 | 2017 | |
---|---|---|
Traditional pharmaceutical drugs (antibiotics, disinfectants, …) | €35,000 | €6000 |
Phytotherapies/homeopaths | €19,000 | €41,000 |
Branchispira and chloristride control acids | €66,000 | - |
Ten-year amortization of ozone plant | - | €9000 |
Electrical costs of ozone plant | - | €4000 |
Other maintenance costs | €2500 | |
Total | €120,000 | €62,500 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Remondino, M.; Valdenassi, L. Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study. Sustainability 2018, 10, 4783. https://doi.org/10.3390/su10124783
Remondino M, Valdenassi L. Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study. Sustainability. 2018; 10(12):4783. https://doi.org/10.3390/su10124783
Chicago/Turabian StyleRemondino, Marco, and Luigi Valdenassi. 2018. "Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study" Sustainability 10, no. 12: 4783. https://doi.org/10.3390/su10124783
APA StyleRemondino, M., & Valdenassi, L. (2018). Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study. Sustainability, 10(12), 4783. https://doi.org/10.3390/su10124783