Assessment of Geohazards and Preventative Countermeasures Using AHP Incorporated with GIS in Lanzhou, China
Abstract
:1. Introduction
2. Backgrounds
2.1. Study Area
2.2. Topography
2.3. Geology
2.3.1. Loess Landforms
2.3.2. Geological Structures
2.4. Hydrology
3. Methodology
3.1. Assessment Method
3.2. AHP Assessment Structure
3.3. Weight Calculation by AHP
3.4. Normalization
3.5. Extraction of Topography
3.6. Investigation of Geohazards
4. Results and Analysis
4.1. Weights of Assessment Factors
4.2. Assessment Results
4.3. Analysis
4.3.1. Relationship between Topography and Landslides
4.3.2. Relationship between Geological Materials and Landslides
5. Strategic Decision Making and Technical Countermeasures
5.1. Strategic Decision Making Suggestions
5.2. Countermeasures for Landslide-Accompanied Debris Flow
5.3. Early Monitoring System for Earthquake and Flood
6. Conclusions
- The geohazards investigation shows that intensive seasonal short-duration rainstorm and special loess landforms with many vertical fissures contribute to frequent landslides, which are often accompanied by debris flows. Faults and strong neotectonic movements provide geological conditions which are conducive to earthquakes. The disaster chain of earthquake–landslide–debris flow is common in Lanzhou City.
- Geohazard risk assessment results show that 32% of the total area is at high or very high risk. About 55% of the urban area and 44% of Gaolan county are at high or very high risk. During the monitoring process, local governments should pay particular attention to these high-risk regions.
- Appropriate countermeasures include the establishment of relationships between geohazards (for example, landslides accompanied with debris flows), topography, and geological materials. Regular slope maintenance is an effective way to further mitigate landslide events, while the installation of flexible barriers is useful to restrain debris flows.
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Factor | Influence Degree to Geohazards Risk | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Average annual rainfall | |||||||||
Average annual rainy day | |||||||||
Geological environment | |||||||||
Earthquake magnitude | |||||||||
Historical disaster | |||||||||
Topographical slope | |||||||||
Topographical elevation | |||||||||
River density | |||||||||
River proximity |
References
- Lyu, H.M.; Wang, G.F.; Shen, J.S.; Lu, L.H.; Wang, G.Q. Analysis and GIS mapping of flooding hazards on 10 May, 2016, Guangzhou, China. Water 2016, 8, 447. [Google Scholar] [CrossRef]
- Lyu, H.M.; Wang, G.F.; Cheng, W.C.; Shen, S.L. Tornado hazards on June 23 in Jiangsu Province, China: Preliminary investigation and analysis. Nat. Hazards 2017, 85, 597–604. [Google Scholar] [CrossRef]
- Shi, H.; Chen, J.; Wang, K.; Niu, J. A new method and a new index for identifying socioeconomic drought events under climate change: A case study of the East River basin in China. Sci. Total Environ. 2018, 616, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, C.; Wang, Y. Landslides and debris flows caused by an extreme rainstorm on 21 July 2012 in mountains near Beijing, China. Bull. Eng. Geol. Environ. 2017, 1–16. [Google Scholar] [CrossRef]
- Yang, L.; Scheffran, J.; Qin, H.; You, Q. Climate-related flood risks and urban responses in the Pearl River Delta, China. Reg. Environ. Chang. 2015, 15, 379–391. [Google Scholar] [CrossRef]
- Liu, X. Hazard assessment of debris flows in Lanzhou City. Northwest Geol. 2016, 49, 257–262. [Google Scholar]
- Jeong, S.; Kim, Y.; Lee, K.; Kim, J. Advances in debris-flow hazard assessment in mountainous area. Jpn. Geotech. Soc. Spec. Publ. 2016, 2, 1137–1142. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Q.; Scaringi, G.; Li, S.; Peng, D. A chemo-mechanical insight into the failure mechanism of frequently occurred landslides in the Loess Plateau, Gansu Province, China. Eng. Geol. 2017, 228, 337–345. [Google Scholar] [CrossRef]
- Bai, S.; Xu, Q.; Wang, J.; Zhou, P. Pre-conditioning factors and susceptibility assessments of Wenchuan earthquake landslide at the Zhouqu segment of Bailongjiang basin, China. J. Geol. Soc. India 2013, 82, 575–582. [Google Scholar] [CrossRef]
- Bai, S.; Wang, J.; Zhang, Z.; Cheng, C. Combined landslide susceptibility mapping after Wenchuan earthquake at the Zhouqu segment in the Bailongjiang Basin, China. Catena 2012, 99, 18–25. [Google Scholar] [CrossRef]
- Lyu, H.M.; Sun, W.J.; Shen, S.L.; Arulrajah, A. Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach. Sci. Total Environ. 2018. [Google Scholar] [CrossRef]
- Shen, S.L.; Wang, Z.F.; Yang, J.; Ho, E.C. Generalized approach for prediction of jet grout column diameter. J. Geotech. Geoenviron. Eng. 2013, 139, 2060–2069. [Google Scholar] [CrossRef]
- Shen, S.L.; Xu, Y.S. Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can. Geotech. J. 2011, 48, 1378–1392. [Google Scholar] [CrossRef]
- Shen, S.L.; Wu, H.N.; Cui, Y.J.; Yin, Z.Y. Long-term settlement behavior of the metro tunnel in the soft deposits of Shanghai. Tunn. Undergr. Space Technol. 2014, 40, 309–323. [Google Scholar] [CrossRef]
- Shen, S.L.; Wang, Z.F.; Cheng, W.C. Estimation of lateral displacement induced by jet grouting in clayey soils. Geotechnique 2017, 67, 621–630. [Google Scholar] [CrossRef]
- Wu, H.N.; Shen, S.L.; Liao, S.M.; Yin, Z.Y. Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings. Tunn. Undergr. Space Technol. 2015, 50, 317–323. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, S.L.; Yuan, D.J. Characteristics of dewatering induced drawdown curve under barrier effect of retaining wall in aquifer. J. Hydrol. 2016, 539, 554–566. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Jin, Y.F.; Shen, S.L.; Hicher, P.Y. Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 70–94. [Google Scholar] [CrossRef]
- Xu, Y.S.; Shen, S.L.; Ren, D.J.; Wu, H.N. Analysis of factors in land subsidence in Shanghai: A view based on a strategic environmental assessment. Sustainability 2016, 8, 573. [Google Scholar] [CrossRef]
- Cheng, W.C.; Ni, J.C.; Shen, S.L. Experimental and analytical modeling of shield segment under cyclic loading. Int. J. Geomech. 2016, 17, 04016146. [Google Scholar] [CrossRef]
- Du, Y.J.; Wei, M.L.; Reddy, K.R.; Liu, Z.P.; Jin, F. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil. J. Hazard. Mater. 2014, 271, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yashima, A.; Sawada, K.; Zhang, F. Numerical assessment of the seismic response of an earth embankment on liquefiable soils. Bull. Eng. Geol. Environ. 2008, 67, 31. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, W.X.; Yang, Q.C. The impacts of mining exploitation on the environment in the Changchun–Jilin–Tumen economic area, Northeast China. Nat. Hazards 2015, 76, 1019–1038. [Google Scholar] [CrossRef]
- Nisio, S.; Caramanna, G.; Ciotoli, G. Sinkholes in Italy: First results on the inventory and analysis. Geol. Soc. Spec. Publ. 2007, 279, 23–45. [Google Scholar] [CrossRef]
- Mei, H.; Zhang, J.X. Types and distribution of geological hazards in Lanzhou city. South-to-North Water Transf. Water Sci. Technol. 2012, 8, 53–58. (In Chinese) [Google Scholar]
- Zhang, W.; Shi, Z.; Chen, G.; Liu, Y.; Niu, J.; Ming, Q.; Su, H. Geochemical characteristics and environmental significance of Talede loess-paleosol sequences of Ili Basin in Central Asia. Environ. Earth Sci. 2013, 70, 2191–2202. [Google Scholar] [CrossRef]
- Borjigidai, A.; Xi, Y.; Duan, F. Assessment of characteristics and impact of earthquake disasters in the minority regions of southwest China. J. Nat. Disasters 2014, 23, 84–89. [Google Scholar]
- Black, A.R.; Burns, J.C. Re-assessing the flood risk in Scotland. Sci. Total Environ. 2002, 294, 169–184. [Google Scholar] [CrossRef]
- Willems, P. Revision of urban drainage design rules after assessment of climate change impacts on precipitation extremes at Uccle, Belgium. J. Hydrol. 2013, 496, 166–177. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Deng, L.; Chen, L.; Wu, J.; Li, J. Risk assessment and validation of flood disaster based on fuzzy mathematics. Prog. Nat. Sci. 2009, 19, 1419–1425. [Google Scholar] [CrossRef]
- Kazakis, N.; Kougias, I.; Patsialis, T. Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: Application in Rhodope-Evros region, Greece. Sci. Total Environ. 2015, 538, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Tanavud, C.; Yongchalermchai, C.; Bennui, A.; Densreeserekul, O. Assessment of flood risk in Hat Yai municipality, Southern Thailand, using GIS. J. Nat. Disaster Sci. 2004, 26, 1–14. [Google Scholar] [CrossRef]
- Meesuk, V.; Vojinovic, Z.; Mynett, A.E.; Abdullah, A.F. Urban flood modelling combining top-view LiDAR data with ground-view SfM observations. Adv. Water Resour. 2015, 75, 105–117. [Google Scholar] [CrossRef]
- Yi, C.S.; Lee, J.H.; Shim, M.P. GIS-based distributed technique for assessing economic loss from flood damage: Pre-feasibility study for the Anyang Stream Basin in Korea. Nat. Hazards 2010, 55, 251–272. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H.; Marui, H.; Kanno, T. Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Eng. Geol. 2005, 81, 432–445. [Google Scholar] [CrossRef]
- Arisido, M.W.; Gaetan, C.; Zanchettin, D.; Rubino, A.A. Bayesian hierarchical approach for spatial analysis of climate model bias in multi-model ensembles. Stoch. Environ. Res. Risk Assess. 2017, 31, 2645–2657. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.M.; Tang, W.H. Bayesian framework for characterizing geotechnical model uncertainty. J. Geotech. Geoenviron. Eng. 2009, 135, 932–940. [Google Scholar] [CrossRef]
- Samela, C.; Troy, T.J.; Manfreda, S. Geomorphic classifiers for flood-prone areas delineation for data-scarce environments. Adv. Water Resour. 2017, 102, 13–28. [Google Scholar] [CrossRef]
- Science Museums of China (SMC). Loess Plateau Loess Distribution and Thickness Map. Available online: http://www.kepu.net.cn/gb/practicecenter/201001_01_htgy/xingcheng/huangtu.html (accessed on 12 December 2017).
- Su, L.H.; Yao, Z.H.; Huang, X.F.; Li, N.; Qu, Y.H. Water migration regularity of self-weight collapsible loess ground. Chin. J. Rock Mech. Eng. 2016, 35, 4328–4336. (In Chinese) [Google Scholar]
- Yuan, D.; Wang, L.; He, W.; Lu, B.; Ge, W.; Liu, X.; Liang, M.; Zheng, W. New progress of seismic active fault prospecting in Lanzhou city. Seismol. Geol. 2008, 30, 236–249. (In Chinese) [Google Scholar]
- Tian, X.; Zeng, W.; Pan, Z.; Zhang, W.; Yuan, J.; Zhang, X. Status quo of Lanzhou earthquake early warning system and analysis of its key technical indicators. J. Phys Conf. Ser. 2017, 910, 012072. [Google Scholar] [CrossRef]
- Cruden, D.M. A simple definition of a landslide. Bull. Eng. Geol. Environ. 1991, 43, 27–29. [Google Scholar] [CrossRef]
- Sun, P.; Peng, J.; Chen, L.; Lu, Q.; Igwe, O. An experimental study of the mechanical characteristics of fractured loess in western China. Bull. Eng. Geol. Environ. 2016, 75, 1639–1647. [Google Scholar] [CrossRef]
- DeVore, J.R.; Sawyer, D.E. Shear strength of siliciclastic sediments from passive and active margins (0–100 m below seafloor): Insights into seismic strengthening. In Submarine Mass Movements and Their Consequences; Springer: Berlin, Germany, 2016; pp. 173–180. [Google Scholar]
- Rovins, J.E.; Wilson, T.M.; Hayes, J.; Jensen, S.J.; Dohaney, J.; Mitchell, J.; Johnston, D.M.; Davies, A. Risk Assessment Handbook; GNS Science Miscellaneous Series; Massey University: Palmerston North, Nеw Zеаlаnd, 2015. [Google Scholar]
- Ghesquiere, F.; Kellett, J.; Campbell, J.; Kc, S.; Reid, R. The Sendai Report: Managing Disaster Risks for a Resilient Future; The World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Liu, R.; Chen, Y.; Wu, J.; Gao, L.; Barrett, D.; Xu, T.; Yu, J. Assessing spatial likelihood of flooding hazard using naïve Bayes and GIS: A case study in Bowen Basin, Australia. Stoch. Environ. Res. Risk Assess. 2016, 30, 1575–1590. [Google Scholar] [CrossRef]
- Liu, R.; Chen, Y.; Wu, J.; Gao, L.; Barrett, D.; Xu, T.; Yu, J. Integrating Entropy-Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard. Risk Anal. 2017, 37, 756–773. [Google Scholar] [CrossRef] [PubMed]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 2008, 1, 83–98. [Google Scholar] [CrossRef]
- Chen, G.; Feng, X.D.; Gao, L. Comparison with characteristics of landslide and other geological hazards in Lanzhou. Sci. Technol. Vis. 2012, 5, 213–215. (In Chinese) [Google Scholar]
- Xiao, Y.; Yi, S.; Tang, Z. Integrated flood hazard assessment based on spatial ordered weighted averaging method considering spatial heterogeneity of risk preference. Sci. Total Environ. 2017, 599, 1034. [Google Scholar] [CrossRef] [PubMed]
- Luu, C.; Von Meding, J.; Kanjanabootra, S. Assessing flood hazard using flood marks and analytic hierarchy process approach: A case study for the 2013 flood event in Quang Nam, Vietnam. Nat. Hazards 2017, 30, 1031–1050. [Google Scholar] [CrossRef]
- Sun, D.C.; Huang, J.; Wang, H.M.; Wang, Z.Q.; Wang, W.Q. Risk assessment of urban flood disaster in Jingdezhen City based on analytic hierarchy process and geographic information system. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; Volume 82, p. 012075. [Google Scholar]
- Correia, F.N.; Rego, F.C.; Saraiva, M.D.G.; Ramos, I. Coupling GIS with hydrologic and hydraulic flood modelling. Water Resour. Manag. 1998, 12, 229–249. [Google Scholar] [CrossRef]
- Carey, P.J.; Schmid-Mcgibbon, G.; Liu, Z.X.; Li, T.M. Geohazards in the Chongqing district of China. In Urban Ground Engineering, Proceeding of the International Conference Organized by the Institution of Civil Engineers, Hong Kong, China, 11–12 November 1999; Institution of Civil Engineers: London, UK, 1999; pp. 320–331. [Google Scholar]
- Chen, K.L.; Wu, H.N.; Cheng, W.C.; Zhang, Z.; Chen, J. Geological characteristics of strata in Chongqing, China, and mitigation of the environmental impacts of tunneling-induced geo-hazards. Environ. Earth Sci. 2017, 76, 10. [Google Scholar] [CrossRef]
- Chen, H.; Lee, C.F. Geohazards of slope mass movement and its prevention in Hong Kong. Eng. Geol. 2004, 76, 3–25. [Google Scholar] [CrossRef]
- Kim, M.S.; Onda, Y.; Uchida, T.; Kim, J.K.; Song, Y.S. Effect of seepage on shallow landslides in consideration of changes in topography: Case study including an experimental sandy slope with artificial rainfall. Catena 2018, 161, 50–62. [Google Scholar] [CrossRef]
- Bandara, S.; Ohtsuka, S. Spatial distribution of landslides induced by the 2004 Mid-Niigata prefecture earthquake, Japan. Landslides 2017, 14, 1877–1886. [Google Scholar] [CrossRef]
- Shi, J.S.; Shi, L.; Wu, S.R.; Wang, T. Difficulties and countermeasures in the practice of landslide risk assessment. Geol. Bull. China 2009, 28, 1020–1030. [Google Scholar]
- Yao, Y.P.; Zhou, A.N. Non-isothermal unified hardening model: A thermo-elastoplastic model for clays. Geotechnique 2013, 63, 1328–1345. [Google Scholar] [CrossRef]
- Yao, Y.P.; Hou, W.; Zhou, A.N. UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique 2009, 59, 451–469. [Google Scholar] [CrossRef]
- Yao, Y.P.; Sun, D.A.; Matsuoka, H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput. Geotech. 2008, 35, 210–222. [Google Scholar] [CrossRef]
- Nkwunonwo, U.C.; Whitworth, M.; Baily, B. A review and critical analysis of the efforts towards urban flood risk management in the Lagos region of Nigeria. Nat. Hazards Earth Syst. Sci. 2016, 16, 349–369. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides 2008, 5, 3–17. [Google Scholar] [CrossRef]
- Finlay, P.J.; Fell, R.; Maguire, P.K. The relationship between the probability of landslide occurrence and rainfall. Can. Geotech. J. 1997, 34, 811–824. [Google Scholar] [CrossRef]
- Yoshimatsu, H.; Abe, S. A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides 2006, 3, 149–158. [Google Scholar] [CrossRef]
- Zhang, X.H.; Lei, C.F.; Li, H.F. Study on natural disaster prevention countermeasures for Western Valley City from the perspective of city planning: A case of Lanzhou city. Appl. Mech. Mater. 2013, 409, 827–832. [Google Scholar] [CrossRef]
- Vagnon, F.; Ferrero, A.M.; Umili, G.; Segalini, A. A factor strength approach for the design of rock fall and debris flow barriers. Geotech. Geol. Eng. 2017, 35, 2663–2675. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Song, D.; Choi, C.E.; Liu, L.H.D.; Kwan, J.S.H.; Koo, R.C.H.; Pun, W.K. Impact mechanisms of granular and viscous flows on rigid and flexible barriers. Can. Geotech. J. 2016, 54, 188–206. [Google Scholar] [CrossRef]
- Shu, H.P.; Wang, G.; Zhang, P.; Ma, J.Z. Assessment of the Risk of Debris Flows in Zhouqu County, South Gansu Province, China. Adv. Mater. Res. 2014, 955, 1617–1621. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Cheng, Y.L.; Yao, X.; Wang, J.; Wu, S.R.; Wang, M. The evolution process of Wenchuan earthquake-landslide-debris flow geohazard chain. Geol. Bull. China 2013, 32, 1900–1910. [Google Scholar]
Object Layer | Index Layer | Weight (Ri) | Factor Layer | Weight (Fi) | Comprehensive Weight (wi) |
---|---|---|---|---|---|
Disaster risk | Hazard | 0.6 | Annual average rainfall | 0.097 | 0.058 |
Annual average number of rainy days | 0.192 | 0.115 | |||
Geologic condition | 0.192 | 0.115 | |||
Earthquake magnitude | 0.084 | 0.051 | |||
Historical disaster events | 0.435 | 0.261 | |||
Exposure | 0.4 | Topographic elevation | 0.341 | 0.136 | |
Topographical slope | 0.439 | 0.163 | |||
River density | 0.175 | 0.071 | |||
River proximity | 0.075 | 0.030 |
Risk Level | Ratio of Risk Level in Different Area (%) | Ratio of Whole Region (%) | |||
---|---|---|---|---|---|
Urban Area | Yuzhong | Gaolan | Yongdeng | ||
Very low | 3.56 | 9.36 | 0.02 | 9.75 | 7.00 |
Low | 13.13 | 35.01 | 6.89 | 28.71 | 24.00 |
Medium | 28.01 | 32.60 | 48.27 | 37.02 | 36.26 |
High | 38.24 | 18.37 | 40.49 | 22.28 | 27.04 |
Very high | 17.06 | 4.66 | 4.33 | 2.24 | 5.70 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, H.-M.; Shen, J.S.; Arulrajah, A. Assessment of Geohazards and Preventative Countermeasures Using AHP Incorporated with GIS in Lanzhou, China. Sustainability 2018, 10, 304. https://doi.org/10.3390/su10020304
Lyu H-M, Shen JS, Arulrajah A. Assessment of Geohazards and Preventative Countermeasures Using AHP Incorporated with GIS in Lanzhou, China. Sustainability. 2018; 10(2):304. https://doi.org/10.3390/su10020304
Chicago/Turabian StyleLyu, Hai-Min, Jack Shuilong Shen, and Arul Arulrajah. 2018. "Assessment of Geohazards and Preventative Countermeasures Using AHP Incorporated with GIS in Lanzhou, China" Sustainability 10, no. 2: 304. https://doi.org/10.3390/su10020304
APA StyleLyu, H. -M., Shen, J. S., & Arulrajah, A. (2018). Assessment of Geohazards and Preventative Countermeasures Using AHP Incorporated with GIS in Lanzhou, China. Sustainability, 10(2), 304. https://doi.org/10.3390/su10020304