Analysis of Blue and Green Water Consumption at the Irrigation District Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Area
2.2. Methods
2.2.1. Crops
2.2.2. Other Agricultural Products
2.2.3. Industrial Products
2.3. Data Sources
3. Results and Discussion
3.1. C1
3.2. C2
3.3. C3
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pedro-Monzonís, M.; Solera, A.; Ferrer, J.; Estrela, T.; Paredes-Arquiola, J. A review of water scarcity and drought indexes in water resources planning and management. J. Hydrol. 2015, 527, 482–493. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Hanasaki, N.; Fujimori, S.; Yamamoto, T.; Yoshikawa, S.; Masaki, Y.; Hijioka, Y.; Kainuma, M.; Kanamori, Y.; Masui, T.; Takahashi, K.; et al. A global water scarcity assessment under shared socio-economic pathways-part 2: Water availability and scarcity. Hydrol. Earth Syst. Sci. 2013, 17, 2393–2413. [Google Scholar] [CrossRef]
- Veldkamp, T.I.; Wada, Y.; de Moel, H.; Kummu, M.; Eisner, S.; Aerts, J.C.; Ward, P.J. Changing mechanism of global water scarcity events: Impacts of socioeconomic changes and inter-annual hydro-climatic variability. Glob. Environ. Chang. 2015, 32, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Li, B.Q.; Liang, Z.M.; Zhang, J.Y.; Wang, G. A revised drought index based on precipitation and pan evaporation. Int. J. Climatol. 2017, 37, 793–801. [Google Scholar] [CrossRef]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Gosling, S.N. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.Q.; Liang, Z.; Zhang, J.; Wang, G.; Zhao, W.; Zhang, H.; Wang, J.; Hu, Y. Attribution analysis of runoff decline in a semiarid region of the Loess Plateau, China. Theor. Appl. Climatol. 2016. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK, 2011. [Google Scholar]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, J.; Liu, Q.; Tillotson, M.R.; Guan, D.; Hubacek, K. Physical and virtual water transfers for regional water stress alleviation in China. Proc. Natl. Acad. Sci. USA 2015, 112, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y.; Wada, Y. Inter-and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961–2009). Adv. Water Resour. 2016, 87, 29–41. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Yu, Z.; Cao, X.; Tian, L.; Sun, S.; Wu, P. A comprehensive analysis of blue water scarcity from the production, consumption, and water transfer perspectives. Ecol. Indic. 2017, 72, 870–880. [Google Scholar] [CrossRef]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J. Review and classification of indicators of green water availability and scarcity. Hydrol. Earth Syst. Sci. 2015, 19, 4581–4608. [Google Scholar] [CrossRef]
- Falkenmark, M. Growing water scarcity in agriculture: Future challenge to global water security. Philos. Trans. R. Soc. A 2013, 371, 20120410. [Google Scholar] [CrossRef] [PubMed]
- Zoumides, C.; Bruggeman, A.; Hadjikakou, M.; Zachariadis, T. Policy-relevant indicators for semi-arid nations: The water footprint of crop production and supply utilization of Cyprus. Ecol. Indic. 2014, 43, 205–214. [Google Scholar] [CrossRef]
- Chouchane, H.; Krol, M.S.; Hoekstra, A.Y. Virtual water trade patterns in relation to environmental and socioeconomic factors: A case study for Tunisia. In Proceedings of the EGU General Assembly 2016, Vienna, Austria, 17–22 April 2016; p. 4997. [Google Scholar]
- Cao, X.C.; Wu, P.T.; Wang, Y.B.; Zhao, X.N.; Liu, J. Analysis on temporal and spatial differences of water productivity in irrigation districts in China. Trans. Chin. Soc. Agric. Eng. 2012, 28, 1–7. [Google Scholar]
- Ye, Z.Y.; Guo, K.Z.; Zhao, S.Y.; Xu, B. The current development and focal points in short-term water-saving agriculture in Hetao irrigation district. China Rural Water Conserv. Hydropower 2010, 6, 81–84. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.T.; Wang, Y.B.; Zhao, X.N. The Report on Water Footprint of Grain Product and Regional Virtual Water Flows in China in 2014; Chinese Agricultural Press: Beijing, China, 2016. [Google Scholar]
- Kastner, T.; Erb, K.H.; Haberl, H. Rapid growth in agricultural trade: Effects on global area efficiency and the role of management. Environ. Res. Lett. 2014, 9, 034015. [Google Scholar] [CrossRef]
- Schyns, J.F.; Hamaideh, A.; Hoekstra, A.Y.; Mekonnen, M.M.; Schyns, M. Mitigating the risk of extreme water scarcity and dependency: The case of Jordan. Water 2015, 7, 5705–5730. [Google Scholar] [CrossRef]
- Antonelli, M.; Laio, F.; Tamea, S. Water resources, food security and the role of virtual water trade in the MENA region. In Environmental Change and Human Security in Africa and the Middle East; Springer: Cham, Switzerland, 2017; pp. 199–217. [Google Scholar]
- Food and Agriculture Organization, Rome. CROPWAT 8.0 Model [EB/OL]. Available online: http://www.fao.org/nr/water/infores_databases_cropwat.html (accessed on 7 May 2012).
- Sun, S.K.; Wu, P.T.; Wang, Y.B.; Zhao, X.; Liu, J.; Zhang, X. The impacts of interannual climate variability and agricultural inputs on water footprint of crop production in an irrigation district of China. Sci. Total Environ. 2013, 444, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, P.T.; Wang, Y.B.; Zhao, X.; Sun, S.; Cao, X. Impacts of changing cropping pattern on virtual water flows related to crops transfer: A case study for the Hetao irrigation district, China. J. Sci. Food Agric. 2014, 94, 2992–3000. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, T. Simulation of the effect of irrigation on the hydrologic cycle in the highly cultivated Yellow River Basin. Agric. For. Meteorol. 2011, 151, 314–327. [Google Scholar] [CrossRef]
- Ding, S.L.; Chen, P. The concerned problems for life cycle assessment. Environ. Sci. Manag. 2009, 34, 61–64. (In Chinese) [Google Scholar]
- Guo, Y.; Liu, H.C.; Guo, B. Review of key issues on product life cycle assessment. Comput. Integr. Manuf. Syst. 2014, 20, 1141–1148. (In Chinese) [Google Scholar]
- Leng, R.B. Study on Product Life Cycle 3E+S Assessment and Methodology of Decision Analysis. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 2007. (In Chinese). [Google Scholar]
- Liu, J.G.; Liu, Q.Y.; Yang, H. Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecol. Indic. 2016, 60, 434–441. [Google Scholar] [CrossRef]
- China Meteorological Administration. China Meteorological Data Sharing Service System; China Meteorological Administration: Beijing, China, 2010. Available online: http://cdc.cma.gov.cn (accessed on 7 May 2010).
- Ministry of Agriculture of the People’s Republic of China. Hetao Irrigation District Agricultural Statistical Data 2001–2010; Ministry of Agriculture of the People’s Republic of China, Chinese Agricultural Press: Beijing, China, 2011.
- Ministry of Water Resources of the People’s Republic of China. Bayan Nur Water Resources Bulletin 2001–2010; Ministry of Water Resources of the People’s Republic of China, Water Resources and Electricity Press: Beijing, China, 2011.
- National Bureau of Statistics of China. Bayan Nur Statistical Yearbook and Inner Mongolia Statistical Yearbook 2001–2010; National Bureau of Statistics of China, China Statistical Press: Beijing, China, 2011.
- Wang, Y.B.; Liu, D.; Cao, X.C.; Yang, Z.Y.; Song, J.F.; Chen, D.Y.; Sun, S.K. Agricultural water rights trading and virtual water export compensation coupling model: A case study of an irrigation district in China. Agric. Water Manag. 2017, 180, 99–106. [Google Scholar] [CrossRef]
- Wang, J.P. Study on Irrigation Water Price in Inner Mongolia Autonomous Region; Chinese Academy of Agricultural Sciences: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Bai, G.S.; Zhang, R.; Geng, R.J. Integrating agricultural water-saving technologies in Hetao irrigation district. Bull. Soil Water Conserv. 2011, 31, 149–154. (In Chinese) [Google Scholar]
- Lutter, S.; Pfister, S.; Giljum, S.; Wieland, H.; Mutel, C. Spatially explicit assessment of water embodied in European trade: A product-level multi-regional input-output analysis. Glob. Environ. Chang. 2016, 38, 171–182. [Google Scholar] [CrossRef]
- Giannakis, E.; Bruggeman, A.; Djuma, H.; Kozyra, J.; Hammer, J. Water pricing and irrigation across Europe: Opportunities and constraints for adopting irrigation scheduling decision support systems. Water Sci. Technol. Water Supply 2016, 16, 245–252. [Google Scholar] [CrossRef]
- Schoengold, K.; Sunding, D.L. The impact of water price uncertainty on the adoption of precision irrigation systems. Agric. Econ. 2014, 45, 729–743. [Google Scholar] [CrossRef]
- Philip, J.; Sanchez-Choliz, J.; Sarasa, C. Technological change in irrigated agriculture in a semiarid region of Spain. Water Resour. Res. 2014, 50, 9221–9235. [Google Scholar] [CrossRef]
- Morrison, M. Encouraging the adoption of decision support systems by irrigators. Rural Soc. 2009, 19, 17–31. [Google Scholar] [CrossRef]
- Scheierling, S.M.; Young, R.A.; Cardon, G.E. Public subsidies for water-conserving irrigation investments: Hydrologic, agronomic, and economic assessment. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Genius, M.; Koundouri, P.; Nauges, C.; Tzouvelekas, V. Information transmission in irrigation technology adoption and diffusion: Social learning, extension services, and spatial effects. Am. J. Agric. Econ. 2014, 96, 328–344. [Google Scholar] [CrossRef]
- Whittenbury, K.; Davidson, P. Beyond adoption: The need for a broad understanding of factors that influence irrigators’decision-making. Rural Soc. 2009, 19, 4–16. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Savenije, H.H.G.; Chapagain, A.K. An integrated approach towards assessing the value of water: A case study on the Zambezi basin. Integr. Assess. 2001, 2, 199–208. [Google Scholar] [CrossRef]
- Albersen, P.J.; Houba, H.E.D.; Keyzer, M.A. Pricing a raindrop in a process-based model: General methodology and a case study of the Upper-Zambezi. Phys. Chem. Earth 2003, 28, 183–192. [Google Scholar] [CrossRef]
- Clay, J.W. World Agriculture and the Environment: A Commodity-by-Commodity Guide to Impacts and Practices; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Aldaya, M.M.; Allan, J.A.; Hoekstra, A.Y. Strategic importance of green water in international crop trade. Ecol. Econ. 2010, 69, 887–894. [Google Scholar] [CrossRef]
- Veettil, A.V.; Mishra, A.K. Water security assessment using blue and green water footprint concepts. J. Hydrol. 2016, 542, 589–602. [Google Scholar] [CrossRef]
- Quinteiro, P.; Dias, A.C.; Silva, M.; Ridoutt, B.G.; Arroja, L. A contribution to the environmental impact assessment of green water flows. J. Clean. Prod. 2015, 93, 318–329. [Google Scholar] [CrossRef]
- Kummu, M.; Gerten, D.; Heinke, J.; Konzmann, M.; Varis, O. Climate-driven interannual variability of water scarcity in food production potential: A global analysis. Hydrol. Earth Syst. Sci. 2014, 18, 447–461. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, C.; Lotze-Campen, H.; Gerten, D.; Dietrich, J.P.; Bodirsky, B.; Biewald, A.; Popp, A. Blue water scarcity and the economic impacts of future agricultural trade and demand. Water Resour. Res. 2013, 49, 3601–3617. [Google Scholar] [CrossRef]
- Bulsink, F.; Hoekstra, A.Y.; Booij, M.J. The water footprint of Indonesian provinces related to the consumption of crop products. Hydrol. Earth Syst. Sci. 2010, 14, 119–128. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y.; Savenije, H.H.G. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. 2006, 10, 455–468. [Google Scholar] [CrossRef]
- Li, Y.; Ye, Q.; Liu, A.; Meng, F.; Zhang, W.; Wei, X.; Wang, P.; Wang, C. Seeking urbanization security and sustainability: Multi-objective optimization of rainwater harvesting systems in China. J. Hydrol. 2017, 550, 42–53. [Google Scholar] [CrossRef]
- Coutts, A.M.; Tapper, N.J.; Beringer, J.; Loughnan, M.; Demuzere, M. Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Prog. Phys. Geogr. 2012, 37, 2–28. [Google Scholar] [CrossRef]
- Bhaskar, A.S.; Hogan, D.M.; Archfield, S.A. Urban base flow with low impact development. Hydrol. Process. 2016, 30, 3156–3171. [Google Scholar] [CrossRef]
- Andoh, R.Y.G.; Iwugo, K.O. Sustainable Urban Drainage Systems: A UK Perspective. In Global Solutions for Urban Drainage; The American Society of Civil Engineers: Reston, VA, USA, 2004. [Google Scholar]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Sponge Cities Construction Technology Guides; Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2014.
- Da Silva, V.D.P.R.; de Oliveira, S.D.; Hoekstra, A.Y.; Dantas Neto, J.; Campos, J.H.B.; Braga, C.C.; de Holanda, R.M. Water footprint and virtual water trade of Brazil. Water 2016, 8, 517. [Google Scholar] [CrossRef]
- Flach, R.; Ran, Y.; Godar, J.; Karlberg, L.; Suavet, C. Towards more spatially explicit assessments of virtual water flows: Linking local water use and scarcity to global demand of Brazilian farming commodities. Environ. Res. Lett. 2016, 11, 075003. [Google Scholar] [CrossRef]
- Tamea, S.; Laio, F.; Ridolfi, L. Global effects of local food-production crises: A virtual water perspective. Sci. Rep. 2016, 6, 18803. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Savenije, H.H. Food consumption patterns and their effect on water requirement in China. Hydrol. Earth Syst. Sci. 2008, 12, 887–898. [Google Scholar] [CrossRef]
- Pascale, P.; Julio, C.; Macedo, P.; Jose, R. Water footprint accounting and scarcity indicators of conventional and organic dairy production systems. J. Clean. Prod. 2015, 93, 299–307. [Google Scholar]
- Sun, Q.; Huang, X.; Shi, L. Corporate water footprint of textile industry: Methodology and case study. Res. Environ. Sci. 2014, 27, 910–914. [Google Scholar]
- Chiu, Y.; Wu, M. Assessing county-level water footprints of different cellulosic-biofuel feedstock pathways. Environ. Sci. Technol. 2012, 46, 9155–9162. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Cao, X.; Li, B.; Yu, Z. Analysis of Blue and Green Water Consumption at the Irrigation District Scale. Sustainability 2018, 10, 305. https://doi.org/10.3390/su10020305
Liu J, Cao X, Li B, Yu Z. Analysis of Blue and Green Water Consumption at the Irrigation District Scale. Sustainability. 2018; 10(2):305. https://doi.org/10.3390/su10020305
Chicago/Turabian StyleLiu, Jing, Xinchun Cao, Binquan Li, and Zhongbo Yu. 2018. "Analysis of Blue and Green Water Consumption at the Irrigation District Scale" Sustainability 10, no. 2: 305. https://doi.org/10.3390/su10020305
APA StyleLiu, J., Cao, X., Li, B., & Yu, Z. (2018). Analysis of Blue and Green Water Consumption at the Irrigation District Scale. Sustainability, 10(2), 305. https://doi.org/10.3390/su10020305