Rethinking Sustainability within the Viticulture Realities Integrating Economy, Landscape and Energy
Abstract
:1. Introduction
1.1. Sustainability and Energy Dynamics in Local Economies
2. Materials and Methods
2.1. The Viticulture Sector in Italy
2.2. Local Case Study
2.3. Field Sampling Tests
3. Results
3.1. Landscape Changes
3.2. Energy and Mechanization Assessment
3.3. Economic Evaluation
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Banuri, T.; Hyden, G.; Juma, C.; Rivera, M. Sustainable Human Development: From Concept to Operation; United Nations Development Programme: New York, NY, USA, 1994. [Google Scholar]
- Burgherr, P. Deliverable n° D1.1–RS 2b Survey of Criteria and Indicators; Deliverable of de NEEDS Project; NEEDS: Schaffhausen, Switzerland, 2005. [Google Scholar]
- Buytaert, V.; Muys, B.; Devriendt, N.; Pelkmans, L.; Kretzschmar, J.G.; Samson, R. Towards integrated sustainability assessment for energetic use of biomass: A state of the art evaluation of assessment tools. Renew. Sustain. Energy Rev. 2011, 15, 3918–3933. [Google Scholar] [CrossRef]
- Pezzey, J.C.V. Sustainable development concepts. World 1992, 1, 45. [Google Scholar]
- Hueting, R.; Reijnders, L. Broad sustainability contra sustainability: The proper construction of sustainability indicators. Ecol. Econ. 2004, 50, 249–260. [Google Scholar] [CrossRef]
- Lélé, S.M. Sustainable development: A critical review. World Dev. 1991, 19, 607–621. [Google Scholar] [CrossRef]
- Pope, J.; Annandale, D.; Morrison-Saunders, A. Conceptualising sustainability assessment. Environ. Impact Assess. 2004, 24, 595–616. [Google Scholar] [CrossRef]
- Munasinghe, M. The sustainomics trans-disciplinary meta-framework for making development more sustainable: Applications to energy issues. Int. J. Sustain. Dev. 2002, 5, 125–182. [Google Scholar] [CrossRef]
- Omer, A.M. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 2008, 12, 2265–2300. [Google Scholar] [CrossRef]
- Vera, I.; Langlois, L. Energy indicators for sustainable development. Energy 2007, 32, 875–882. [Google Scholar] [CrossRef]
- Dincer, I. Renewable energy and sustainable development: A crucial review. Renew. Sustain. Energy Rev. 2000, 4, 157–175. [Google Scholar] [CrossRef]
- Bogliolo, A.; Lattanzi, E.; Acquaviva, A. Energetic sustainability of environmentally powered wireless sensor networks. In Proceedings of the 3rd ACM International Workshop on Performance Evaluation of Wireless ad Hoc, Sensor and Ubiquitous Networks, Malaga, Spain, 6 October 2006; pp. 149–152. [Google Scholar]
- Najam, A.; Cleveland, C.J. Energy and sustainable development at global environmental summits: An evolving agenda. Environ. Dev. Sustain. 2003, 5, 117–138. [Google Scholar] [CrossRef]
- Georgescu-Roegen, N. La legge di entropia e il problema economico. In Analisi Economica e Processo Economico; Sansoni: Firenze, Italy, 1973. [Google Scholar]
- Georgescu-Roegen, N. Lo stato stazionario e la salvezza ecologica: Un’analisi termodinamica. Econ. Ambient. 1984, 1, 15. [Google Scholar]
- Molesti, R. I Fondamenti della Bioeconomia. La nuova Economia Ecologica; FrancoAngeli: Milan, Italy, 2006. [Google Scholar]
- Johnson, T.G.; Altman, I. Rural development opportunities in the bioeconomy. Biomass Bioenergy 2014, 63, 341–344. [Google Scholar] [CrossRef]
- Kitchen, L.; Marsden, T. Creating Sustainable Rural Development through Stimulating the Eco-economy: Beyond the Eco-economic Paradox? Sociol. Ruralis 2009, 49, 273–294. [Google Scholar] [CrossRef]
- Frayssignes, J. The concept of “agro-energy district”: A pertinent tool for the sustainable development of rural areas. In Proceedings of the 51st Congress of the European Regional Science Association, Barcelona, Spain, 30 August–2 September 2011. [Google Scholar]
- Raja, R.; Sooriamoorthi, C.E.; Kanniappan, P.; Ramachandran, T. Energy planning and optimization model for rural development—A case of sustainable agriculture. Int. J. Energy Res. 1997, 21, 527–547. [Google Scholar] [CrossRef]
- Karekezi, S.; Kithyoma, W. Bioenergy and Agriculture: Promises and Challenges. Bioenergy and the Poor. In 2020 Vision for Food, Agriculture, and the Environment; International Food Policy Research Institute: Washington, DC, USA, 2006. [Google Scholar]
- Hashiramoto, O. Wood-product trade and policy issue. In Cross-Sectoral Policy Developments in Forestry; Food & Agriculture Organization: Rome, Italy, 2007; pp. 24–35. [Google Scholar]
- Roberts, D. Globalization and Its Implications for the Indian Forest Sector. Int. For. Rev. 2008, 10, 401–413. [Google Scholar]
- Ladanai, S.; Vinterbäck, J. Global Potential of Sustainable Biomass for Energy; SLU, Institutionen för Energi och Teknik Report 013; Swedish University of Agricultural Sciences ISSN 1654-9406; Department of Energy and Technology: Uppsala, Sweden, 2009. [Google Scholar]
- Silveira, S. Bioenergy—Realizing the Potential; Swedish Energy Agency: Eskilstuna, Sweden, 2005. [Google Scholar]
- Best, G. Agro-Energy: A New Function of Agriculture; Revue LAMNET-NEWS, 3rd Issue; Food and Agriculture Organisation of the United Nation: Rome, Italy, 2003. [Google Scholar]
- Manos, B.; Partalidou, M.; Fantozzi, F.; Arampatzis, S.; Papadopoulou, O. Agro-energy districts contributing to environmental and social sustainability in rural areas: Evaluation of a local public-private partnership scheme in Greece. Renew. Sustain. Energy Rev. 2014, 29, 85–95. [Google Scholar] [CrossRef]
- Mosconi, E.M.; Poponi, S.; Parsi, M.A. Analysis of the economic and application-related sustainability of biofuels—A case study. Appl. Math. Sci. 2014, 8, 6481–6493. [Google Scholar] [CrossRef]
- Carlini, M.; Mosconi, E.M.; Castellucci, S.; Villarini, M.; Colantoni, A. An economical evaluation of anaerobic digestion plants fed with organic agro-industrial waste. Energies 2017, 10, 1165. [Google Scholar] [CrossRef]
- Lapola, D.M.; Schaldach, R.; Alcamo, J.; Bondeau, A.; Koch, J.; Koelking, C.; Priess, J.A. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl. Acad. Sci. USA 2010, 107, 3388–3393. [Google Scholar] [CrossRef] [PubMed]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Yu, T.H. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Tenerelli, P.; Monteleone, M. A combined land-crop multicriteria evaluation for agro-energy planning. In Proceeding of the 16th Biomass Conference, Valencia, Spain, 2–6 June 2008; pp. 2–6. [Google Scholar]
- Delfanti, L.; Colantoni, A.; Recanatesi, F.; Bencardino, M.; Sateriano, A.; Zambon, I.; Salvati, L. Solar plants, environmental degradation and local socioeconomic contexts: A case study in a Mediterranean country. Environ. Impact Assess. Rev. 2016, 61, 88–93. [Google Scholar] [CrossRef]
- Colantoni, A.; Delfanti, L.; Recanatesi, F.; Tolli, M.; Lord, R. Land use planning for utilizing biomass residues in Tuscia Romana (central Italy): Preliminary results of a multi criteria analysis to create an agro-energy district. Land Use Policy 2016, 50, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Mariani, A.; Vastola, A. Sustainable winegrowing: Current perspectives. Int. J. Wine Res. 2015, 7, 37–48. [Google Scholar] [CrossRef]
- European Commission. Report from the Commission to the European Parliament and the Council in Accordance with Article 184(8) of Council Regulation (EC) No 1234/2007 on the Experience Gained with the Implementation of the Wine Reform of 2008; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- World Commission on Environment and Development (WCED). Burtland Report; United Nations: New York, NY, USA, 1987. [Google Scholar]
- Albino, V.; Nicolò, M.D.; Garavelli, A.C.; Petruzzelli, A.M.; Yazan, D.M. Rural Development and Agro-Energy Supply Chain. An Application of Enterprise Input-Output Modelling Supported by GIS. In Proceedings of the 16th International Input-Output Conference, Istanbul, Turkey, 2–6 July 2007. [Google Scholar]
- Albino, V.; Kühtz, S.; Zhou, C.; Peng, G. Energy and Materials use in Italian and Chinese tile manufacturers: A comparison using an enterprise input-output model. In Proceedings of the 15th International Conference on Input-Output Techniques, Beijing, China, 25 June–1 July 2005. [Google Scholar]
- Renn, O.; Goble, R.; Kastenholz, H. How to apply the concept of sustainability to a region. Technol. Forecast. Soc. Chang. 1998, 58, 63–81. [Google Scholar] [CrossRef]
- Yazan, D.M.; Garavelli, A.C.; Petruzzelli, A.M.; Albino, V. The effect of spatial variables on the economic and environmental performance of bioenergy production chains. Int. J. Prod. Econ. 2011, 131, 224–233. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Bioenergy; Committee on Agricolture: Rome, Italy, 2000. [Google Scholar]
- Albino, V.; Dietzenbacher, E.; Kühtz, S. Analyzing Material and Energy Flows in an Industrial District using an Enterprise Input-Output Model. Econ. Syst. Res. 2003, 15, 457–480. [Google Scholar] [CrossRef]
- Albino, V.; Izzo, C.; Kühtz, S. Input-Output Models for the Analysis of a Local/Global Supply Chain. Int. J. Prod. Econ. 2002, 78, 119–131. [Google Scholar] [CrossRef]
- Albino, V.; Messeni Petruzzelli, A.; Yazan, D.M. Analyzing the environmental impact of transportation in reengineered supply chains: A case study from a leather upholstery company. Transp. Res. Part D Transp. Environ. 2011, 16, 335–340. [Google Scholar]
- Del Rio, P.; Burguillo, M. An empirical analysis of the impact of renewable energy deployment on local sustainability. Renew. Sustain. Energy Rev. 2009, 13, 1314–1325. [Google Scholar] [CrossRef]
- Van Der Schoor, T.; Scholtens, B. Power to the people: Local community initiatives and the transition to sustainable energy. Renew. Sustain. Energy Rev. 2015, 43, 666–675. [Google Scholar] [CrossRef]
- Duvernoy, I.; Zambon, I.; Sateriano, A.; Salvati, L. Pictures from the other side of the fringe: Urban growth and peri-urban agriculture in a post-industrial city (Toulouse, France). J. Rural Stud. 2018, 57, 25–35. [Google Scholar] [CrossRef]
- Mediobanca. Indagine sul Settore Vitivinicolo. Available online: http://www.mbres.it/it/publications/wine-industry-survey (accessed on 31 December 2017).
- Annunziata, E.; Pucci, T.; Frey, M.; Zanni, L. The role of organizational capabilities in attaining corporate sustainability practices and economic performance: Evidence from Italian wine industry. J. Clean. Prod. 2018, 171, 1300–1311. [Google Scholar] [CrossRef]
- Zhu, X.; Moriondo, M.; van Ierland, E.C.; Trombi, G.; Bindi, M. A model-based assessment of adaptation options for Chianti wine production in Tuscany (Italy) under climate change. Reg. Environ. Chang. 2016, 16, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Fortis, M.; Sartori, A. Food & Wine: Quality, Tradition and Innovation. In The Pillars of the Italian Economy. Manufacturing, Food & Wine, Tourism; Fortis, M., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 283–317. [Google Scholar]
- Pomarici, E.; Vecchio, R.; Mariani, A. Wineries’ Perception of Sustainability Costs and Benefits: An Exploratory Study in California. Sustainability 2015, 7, 16164–16174. [Google Scholar] [CrossRef]
- Pullman, M.E.; Maloni, M.J.; Dillard, J. Sustainability practices in food supply chains: How is wine different? J. Wine Res. 2010, 21, 35–56. [Google Scholar] [CrossRef]
- Szolnoki, G. A cross-national comparison of sustainability in the wine industry. J. Clean. Prod. 2013, 53, 243–251. [Google Scholar] [CrossRef]
- Voivontas, D.; Assimacopoulos, D.; Koukios, E.G. Assessment of biomass potential for power production: A GIS based method. Biomass Bioenergy 2001, 20, 101–112. [Google Scholar] [CrossRef]
- Zambon, I.; Delfanti, L.; Marucci, A.; Bedini, R.; Bessone, W.; Cecchini, M.; Monarca, D. Identification of Optimal Mechanization Processes for Harvesting Hazelnuts Based on Geospatial Technologies in Sicily (Southern Italy). Agriculture 2017, 7, 56. [Google Scholar] [CrossRef]
- Brunori, G.; Rossi, A. Differentiating countryside: Social representations and governance patterns in rural areas with high social density: The case of Chianti, Italy. J. Rural Stud. 2007, 23, 183–205. [Google Scholar] [CrossRef]
- Barella, L.; Paniz, A.; Antonini, E. L'uso Energetico dei Sarmenti della Vite; Veneto Agricoltura e AIEL: Padova, Italy, 2010. [Google Scholar]
- Francescato, V.; Antonini, E.; Paniz, A.; Grigolato, S. Valorizzazione energetica dei sarmenti di vite in provincia di Gorizia. Inf. Agrar. 2007, 10, 59–69. [Google Scholar]
- Kasemir, B.; Jäger, J.; Jeager, C.C.; Gardner, M.T. Public Participation in Sustainability Science: A Handbook; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Gobattoni, F.; Pelorosso, R.; Leone, A.; Ripa, M.N. Sustainable rural development: The role of traditional activities in Central Italy. Land Use Policy 2015, 48, 412–427. [Google Scholar] [CrossRef]
- Hennenberg, K.J.; Dragisic, C.; Haye, S.; Hewson, J.; Semroc, B.; Savy, C. The power of bioenergy-related standards to protect biodiversity. Conserv. Boil. 2010, 24, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Elsam, R. Fuelling the Ecological Crisis—Six Examples of Habitat Destruction Driven by Biofuels; BirdLife International: Brussels, Belgium, 2008. [Google Scholar]
- Schubert, R. Future Bioenergy and Sustainable Land Use; Report of the Germand Advisory Council on Global Change; Earthscan: London, UK, 2009. [Google Scholar]
- Bailey, R. Unfree Labour: Ni-Vanuatu Worker in New Zealand’s Recognised Seasonal Employer Scheme. Master’s Thesis, University of Canterbury, Christchurch, New Zealand, 2009. [Google Scholar]
- Bailey, R. Working the Vines: Ni-Vanuatu Labour, Central Otago Pinot, and Economic Development in Vanuatu. In Social, Cultural and Economic Impacts of Wine in New Zealand; Howland, P., Ed.; Routledge: Abingdon, UK, 2014; pp. 71–85. [Google Scholar]
- Bailey, R. Working the Vines: Seasonal Migration, Money and Development in New Zealand and Ambrym, Vanuatu. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2014. [Google Scholar]
- Bedford, C. Picking Winners? New Zealand’s Recognised Seasonal Employer (RSE) Policy and its Impacts on Employers, Pacific Workers and the IslandBased Communities. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2013. [Google Scholar]
- Santiago-Brown, I.; Metcalfe, A.; Jerram, C.; Collins, C. Sustainability assessment in wine-grape growing in the new world: Economic, environmental, and social indicators for agricultural businesses. Sustainability 2015, 7, 8178–8204. [Google Scholar] [CrossRef]
- Pimentel, D.; Harvey, C.; Resosudarmo, P.; Sinclair, K.; Kurz, D.; McNair, M.; Crist, S.; Shpritz, L.; Fitton, L.; Saffouri, R.; et al. Environmental and economic costs of soil erosion and conservation benefits. Science 1995, 267, 1117–1123. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Fami, H.S.; Ghasemi, J.; Malekipoor, R.; Rashidi, P.; Nazari, S.; Mirzaee, A. Renewable Energy Use in Smallholder Farming Systems: A Case Study in Tafresh Township of Iran. Sustainability 2010, 2, 702–716. [Google Scholar] [CrossRef]
- Torquati, B.; Venanzi, S.; Ciani, A.; Diotallevi, F.; Tamburi, V. Environmental sustainability and economic benefits of dairy farm biogas energy production: A case study in Umbria. Sustainability 2014, 6, 6696–6713. [Google Scholar] [CrossRef]
- Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley: New York, NY, USA, 1999. [Google Scholar]
- Mitchell, C.P. Development of decision support systems for bioenergy applications. Biomass Bioenergy 2000, 18, 265–278. [Google Scholar] [CrossRef]
- Noon, C.E.; Daly, M.J. GIS-based biomass resource assessment with bravo. Biomass Bioenergy 1996, 10, 101–109. [Google Scholar] [CrossRef]
- Overend, R.P.; Mitchell, C.P. Modelling biomass and bioenergy. Biomass Bioenergy 2000, 18, 263–264. [Google Scholar] [CrossRef]
- Corbo, C.; Lamastra, L.; Capri, E. From environmental to sustainability programs: A review of sustainability initiatives in the Italian wine sector. Sustainability 2014, 6, 2133–2159. [Google Scholar] [CrossRef]
Offer | 2011 | 2012 | 2013 | V% | μm | Foreign Trade | 2011 | 2012 | 2013 | V% | μm |
---|---|---|---|---|---|---|---|---|---|---|---|
Production (*) | 42,705 | 41,070 | 48,161 | 11% | thousands hl | Import (*) | 298 | 306 | 321 | 7% | millions of € |
Weight of denominations (Doc/Docg) (*) | 33.1 | 33.0 | 36.1 | 8% | % q. | Import/consumption | 7.7 | 11.6 | 12.9 | 40% | % q. |
Production/consumption | 223.6 | 190.1 | 238.4 | 6% | % q. | Weight on the tot. Agribusiness | 0.74 | 0.77 | 0.79 | 6% | % v. |
Industry turnover (***) | 11,235 | 12,010 | 12,587 | 11% | millions of € | Export (*) | 4405 | 4695 | 5039 | 13% | millions of € |
Weight on sales ind. Agroal. (***) | 8.8 | 8.0 | 8.0 | −10% | % v. | Weight on the tot. Agribusiness | 14.6 | 14.7 | 15.1 | 3% | % v. |
DEMAND | 2011 | 2012 | 2013 | V% | udm | ||||||
Total apparent consumption (***) | 19,100 | 21,600 | 20,200 | 5% | thousands hl | ||||||
Apparent per capita consumption (***) | 32 | 36 | 34 | 6% | Liters |
Operation | Minimum Cost (€/tons) | Maximum Cost (€/tons) | Water Content * |
---|---|---|---|
Forage harvester on line | 20 | 30 | 35 |
Parallel forage harvester | 64.5 | 64.5 | 35 |
Large bales | 25 | 30 | 35 |
Small bales | 34 | 40 | 35 |
Chipping | 25 | 33 | 25 |
Transport | 10 | 15 | 25–35 |
Storage, natural drying and handling | 7 | 10 | 25 |
Shredding pre-densification | 5 | 10 | 10 |
Briquetting with plant amortization | 75 | 85 | 10 |
Pelleting with plant amortization | 85 | 110 | 10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambon, I.; Colantoni, A.; Cecchini, M.; Mosconi, E.M. Rethinking Sustainability within the Viticulture Realities Integrating Economy, Landscape and Energy. Sustainability 2018, 10, 320. https://doi.org/10.3390/su10020320
Zambon I, Colantoni A, Cecchini M, Mosconi EM. Rethinking Sustainability within the Viticulture Realities Integrating Economy, Landscape and Energy. Sustainability. 2018; 10(2):320. https://doi.org/10.3390/su10020320
Chicago/Turabian StyleZambon, Ilaria, Andrea Colantoni, Massimo Cecchini, and Enrico Maria Mosconi. 2018. "Rethinking Sustainability within the Viticulture Realities Integrating Economy, Landscape and Energy" Sustainability 10, no. 2: 320. https://doi.org/10.3390/su10020320
APA StyleZambon, I., Colantoni, A., Cecchini, M., & Mosconi, E. M. (2018). Rethinking Sustainability within the Viticulture Realities Integrating Economy, Landscape and Energy. Sustainability, 10(2), 320. https://doi.org/10.3390/su10020320