Enhancing Eco-Efficiency of Agro-Products’ Closed-Loop Supply Chain under the Belt and Road Initiatives: A System Dynamics Approach
Abstract
:1. Introduction
2. Theoretical Background
3. Method
3.1. Model Conceptualization
- The prices of the same product do not vary significantly in different commercial regions;
- The locations of the farms and the market as well as the logistic routes between different supply chain nodes are relatively stable;
- The supply chain only concerns the mobility of a single type of product.
3.2. Model Formulation
4. Results and Discussions
4.1. Case Background
4.2. Model Validation
4.3. Benchmark Scenario
4.4. Scenario Selection
4.5. Development of Incentive Policies
4.5.1. Government Subsidies for Bioenergy Enterprise
4.5.2. Logistic Subsidies
5. Implications
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Huang, Y. Understanding China’s Belt & Road Initiative: Motivation, framework and assessment. China Econ. Rev. 2016, 40, 314–321. [Google Scholar]
- Zhang, N.; Liu, Z.; Zheng, X.; Xue, J. Carbon footprint of China’s belt and road. Science 2017, 357, 1107. [Google Scholar] [CrossRef] [PubMed]
- Chen, H. China’s ‘One Belt, One Road’ initiative and its implications for Sino-African investment relations. Transnatl. Corp. Rev. 2016, 8, 178–182. [Google Scholar] [CrossRef]
- Shaharudin, M.R.; Govindan, K.; Zailani, S.; Tan, K.C.; Iranmanesh, M. Product return management: Linking product returns, closed-loop supply chain activities and the effectiveness of the reverse supply chains. J. Clean. Prod. 2017, 149, 1144–1156. [Google Scholar] [CrossRef]
- Xu, H. The Study on Eco-environmental Issue of Aral Sea from the Perspective of Sustainable Development of Silk Road Economic Belt. IOP Conf. Ser. Earth Environ. Sci. 2017, 57, 012060. [Google Scholar] [CrossRef]
- Herbert, G.J.; Krishnan, A.U. Quantifying environmental performance of biomass energy. Renew. Sustain. Energy Rev. 2016, 59, 292–308. [Google Scholar] [CrossRef]
- Motghare, K.A.; Rathod, A.P.; Wasewar, K.L.; Labhsetwar, N.K. Comparative study of different waste biomass for energy application. Waste Manag. 2016, 47, 40–45. [Google Scholar] [CrossRef] [PubMed]
- AI-Hamamre, Z.; Saidan, M.; Hararah, M.; Rawajfeh, K.; Alkhasawneh, H.E.; AI-Shannag, M. Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renew. Sustain. Energy Rev. 2017, 67, 295–314. [Google Scholar] [CrossRef]
- Sinclair, P.; Cohen, B.; Hansen, Y.; Basson, L.; Clift, R. Stakeholder engagement within the sustainability assessment of bioenergy: Case studies in heat, power and perennial and annual crops from the UK. Biomass Bioenergy 2015, 73, 11–22. [Google Scholar] [CrossRef]
- Patrizio, P.; Leduc, S.; Chinese, D.; Kraxner, F. Internalizing the external costs of biogas supply chains in the Italian energy sector. Energy 2017, 125, 85–96. [Google Scholar] [CrossRef]
- Tonelli, F.; Evans, S.; Taticchi, P. Industrial sustainability: Challenges, perspectives, actions. Int. J. Bus. Innov. Res. 2013, 7, 143–163. [Google Scholar] [CrossRef]
- Xiao, Y.B.; Jian, C.; Xu, X.L. Fresh product supply chain coordination under CIF business model with long distance transportation. Syst. Eng. 2008, 28, 19–34. [Google Scholar] [CrossRef]
- Pathumnakul, S.; Piewthongngam, K.; Khamjan, S. Integrating a shrimp-growth function, farming skills information, and a supply allocation algorithm to manage the shrimp supply chain. Comput. Electron. Agric. 2009, 66, 93–105. [Google Scholar] [CrossRef]
- Bohle, C.; Maturana, S.; Vera, J. A robust optimization approach to wine grape harvesting scheduling. Eur. J. Oper. Res. 2010, 200, 245–252. [Google Scholar] [CrossRef]
- Paksoy, T.; Pehlivan, N.Y.; Özceylan, E. Application of fuzzy optimization to a supply chain network design: A case study of an edible vegetable oils manufacturer. Appl. Math. Model. 2012, 36, 2762–2776. [Google Scholar] [CrossRef]
- De Keizer, M.; Haijema, R.; Bloemhof, J.M.; van der Vorst, J.G. Hybrid optimization and simulation to design a logistics network for distributing perishable products. Comput. Ind. Eng. 2015, 88, 26–38. [Google Scholar] [CrossRef]
- Soto-Silva, W.E.; Nadal-Roig, E.; González-Araya, M.C.; Pla-Aragones, L.M. Operational research models applied to the fresh fruit supply chain. Eur. J. Oper. Res. 2016, 251, 345–355. [Google Scholar] [CrossRef]
- Soysal, M.; Bloemhof-Ruwaard, J.M.; Van der Vorst, J.G.A.J. Modelling food logistics networks with emission considerations: The case of an international beef supply chain. Int. J. Prod. Econ. 2014, 152, 57–70. [Google Scholar] [CrossRef]
- Accorsi, R.; Cholette, S.; Manzini, R.; Pini, C.; Penazzi, S. The land-network problem: Ecosystem carbon balance in planning sustainable agro-food supply chains. J. Clean. Prod. 2016, 112, 158–171. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Chandrasekaran, M.; Ranganathan, R.; Ranganathan, R. Modelling and optimization of Indian traditional agriculture supply chain to reduce post-harvest loss and CO2 emission. Ind. Manag. Data Syst. 2017, 117, 1817–1841. [Google Scholar] [CrossRef]
- Jonker, J.G.G.; Junginger, H.M.; Verstegen, J.A.; Lin, T.; Rodríguez, L.F.; Ting, K.C.; Faaij, A.P.C.; van der Hilst, F. Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil. Appl. Energy 2016, 173, 494–510. [Google Scholar] [CrossRef]
- Miranda-Ackerman, M.A.; Azzaro-Pantel, C. Extending the scope of eco-labelling in the food industry to drive change beyond sustainable agriculture practices. J. Environ. Manag. 2017, 204, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Genovese, A.; Acquaye, A.A.; Figueroa, A.; Koh, S.L. Sustainable supply chain management and the transition towards a circular economy: Evidence and some applications. Omega 2017, 66, 344–357. [Google Scholar] [CrossRef]
- Kim, T.; Glock, C.H.; Kwon, Y. A closed-loop supply chain for deteriorating products under stochastic container return times. Omega 2014, 43, 30–40. [Google Scholar] [CrossRef]
- Turki, S.; Didukh, S.; Sauvey, C.; Rezg, N. Optimization and Analysis of a Manufacturing–Remanufacturing–Transport–Warehousing System within a Closed-Loop Supply Chain. Sustainability 2017, 9, 561. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Rovas, D.; Libutti, A.; Monteleone, M. Boosting circular economy and closing the loop in agriculture: Case study of a small-scale pyrolysis–biochar based system integrated in an olive farm in symbiosis with an olive mill. Environ. Dev. 2015, 14, 22–36. [Google Scholar] [CrossRef]
- Banasik, A.; Kanellopoulos, A.; Claassen, G.D.H.; Bloemhof-Ruwaard, J.M.; van der Vorst, J.G. Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain. Int. J. Prod. Econ. 2017, 183, 409–420. [Google Scholar] [CrossRef]
- Bianchi, N.P.; Evans, S.; Revetria, R.; Tonelli, F. Influencing factors of successful transitions towards product-service systems: A simulation approach. Int. J. Math. Comput. Simul. 2009, 3, 30–43. [Google Scholar]
- Zhao, R.; Xi, B.; Liu, Y.; Su, J.; Liu, S. Economic potential of leachate evaporation by using landfill gas: A system dynamics approach. Resour. Conserv. Recycl. 2017, 124, 74–84. [Google Scholar] [CrossRef]
- IPCC. Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; The National Greenhouse Gas Inventories Programme, IGES: Kanagawa, Japan, 2006; Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htm (accessed on 26 January 2018).
- Patel, H.K.; Kumar, S. Experimental analysis on performance of diesel engine using mixture of diesel and bio-diesel as a working fuel with aluminum oxide nanoparticle additive. Therm. Sci. Eng. Prog. 2017, 4, 252–258. [Google Scholar] [CrossRef]
- Giordano, A.; Fischbeck, P.; Matthews, H.S. Environmental and economic comparison of diesel and battery electric delivery vans to inform city logistics fleet replacement strategies. Transp. Res. D Transp. Environ. 2017. [Google Scholar] [CrossRef]
- Lee, U.; Han, J.; Wang, M. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways. J. Clean. Prod. 2017, 166, 335–342. [Google Scholar] [CrossRef]
- Li, Z.; Shen, G.Q.; Alshawi, M. Measuring the impact of prefabrication on construction waste reduction: An empirical study in China. Resour. Conserv. Recycl. 2014, 91, 27–39. [Google Scholar] [CrossRef]
- Elsawah, S.; Pierce, S.A.; Hamilton, S.H.; Van Delden, H.; Haase, D.; Elmahdi, A.; Jakeman, A.J. An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environ. Model. Softw. 2017, 93, 127–145. [Google Scholar] [CrossRef]
- Zhao, R.; Zhou, X.; Jin, Q.; Wang, Y.; Liu, C. Enterprises’ compliance with government carbon reduction labelling policy using a system dynamics approach. J. Clean. Prod. 2017, 163, 303–319. [Google Scholar] [CrossRef]
- He, Y.; Xu, Y.; Pang, Y.; Tian, H.; Wu, R. A regulatory policy to promote renewable energy consumption in China: Review and future evolutionary path. Renew. Energy 2016, 89, 695–705. [Google Scholar] [CrossRef]
- Nguyen, L.; Cafferty, K.G.; Searcy, E.M.; Spatari, S. Uncertainties in life cycle greenhouse gas emissions from advanced biomass feedstock logistics supply chains in Kansas. Energies 2014, 7, 7125–7146. [Google Scholar] [CrossRef]
- Yue, D.; You, F.; Snyder, S.W. Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Comput. Chem. Eng. 2014, 66, 36–56. [Google Scholar] [CrossRef]
- Smith, J.U.; Fischer, A.; Hallett, P.D.; Homans, H.Y.; Smith, P.; Abdul-Salam, Y.; Emmerling, H.H.; Phimister, E. Sustainable use of organic resources for bioenergy, food and water provision in rural Sub-Saharan Africa. Renew. Sustain. Energy Rev. 2015, 50, 903–917. [Google Scholar] [CrossRef]
- Moreira, J.R.; Romeiro, V.; Fuss, S.; Kraxner, F.; Pacca, S.A. BECCS potential in Brazil: Achieving negative emissions in ethanol and electricity production based on sugar cane bagasse and other residues. Appl. Energy 2016, 179, 55–63. [Google Scholar] [CrossRef] [Green Version]
Key Variable | Variable Type | Input/Output |
---|---|---|
C (Cost) | Constant | Input |
FECFS (Factor of Energy Consumption in Farming Stage) | Constant | Input |
FECT (Factor of Energy Consumption in Transportation) | Constant | Input |
FECMS (Factor of Energy Consumption in Marketing Stage) | Constant | Input |
FECCE (Factor of Energy Consumption Converted into Carbon Emissions) | Constant | Input |
CEFL (Carbon Emissions Factor of Landfill Disposal) | Constant | Input |
BCF (Biomass-to-Energy Conversion Factor) | Constant | Input |
TCEF (Factor of Carbon Emissions in Transportation) | Constant | Input |
PLRF (Product Loss Rate in Farming Stage) | Rate | Input |
PLRM (Product Loss Rate in Marketing Stage) | Rate | Input |
PLRC (Product Loss Rate of Consuming Stage) | Rate | Input |
IPA (Initial Production of Agro-Products) | Constant | Input |
FMR (Factor of Marketing Revenue) | Constant | Input |
AP (Acquisition Price) | Constant | Input |
MP (Marketing Price) | Constant | Input |
PIFS (Product Inventory in Farming Stage) | State | Output |
PIMS (Product Inventory in Marketing Stage) | State | Output |
PICS (Product Inventory in Consuming Stage) | State | Output |
AL (Amount of Landfill Disposal) | State | Output |
TAP (Total Amount of Products) | State | Output |
TCE (Total Carbon Emissions) | State | Output |
TRF (Total Revenue of Farmers) | State | Output |
RABP (Recycling Amount of Bioenergy Plant) | State | Output |
ECRL (Energy Consumption of Reverse Logistics) | State | Output |
TEC (Total Energy Consumption) | State | Output |
VECT (Variation of Energy Consumption in Transportation) | Auxiliary | Output |
VECF (Variation of Energy Consumption in Farming Stage) | Auxiliary | Output |
VECM (Variation of Energy Consumption in Marketing Stage) | Auxiliary | Output |
CEP (Carbon Emissions Per Product) | Auxiliary | Output |
PP (Profit Per Product) | Auxiliary | Output |
MR (Market Revenue) | Auxiliary | Output |
FII (Farmers’ Income Index) | Auxiliary | Output |
FFI (Factor of Farmers’ Income) | Auxiliary | Output |
FMP (Factor for Marketing Price) | Auxiliary | Output |
FCD (Factor of Consumers’ Demand) | Auxiliary | Output |
VFP (Variation of Farmers’ Production) | Auxiliary | Output |
VMA (Variation of Marketing Acquisition) | Auxiliary | Output |
VCP (Variation of Consumers’ Purchasing) | Auxiliary | Output |
VC (Variation Consumption) | Auxiliary | Output |
VFI (Variation of Farmers’ Income) | Auxiliary | Output |
VP (Variation of Total Products) | Auxiliary | Output |
VCE (Variation of Carbon Emissions) | Auxiliary | Output |
VWRBP (Variation of Waste Recycling by Bioenergy Plant) | Auxiliary | Output |
VCEWT (Variation of Carbon Emissions in Waste Transportation) | Auxiliary | Output |
VCET (Variation of Carbon Emissions in Transportation) | Auxiliary | Output |
VARF (Variation of Agro-Waste Recycling from Farmers) | Auxiliary | Output |
VWRM (Variation of Waste Recycling from Market) | Auxiliary | Output |
VCEL (Variation of Carbon Emissions in Landfill Disposal) | Auxiliary | Output |
VWGC (Variation of Waste Generation in Consuming Stage) | Auxiliary | Output |
VBP (Variation of Bioenergy Production) | Auxiliary | Output |
CELD (Carbon Emissions of Landfill Disposal) | Auxiliary | Output |
VECRL (Variation of Energy Consumption of Reverse Logistics) | Auxiliary | Output |
VEC (Variation of Energy Consumption) | Auxiliary | Output |
Variable | Value | Source |
---|---|---|
Cost (C) | 0.72 Yuan/kg | Field investigation |
FECFS (Factor of Energy Consumption in Farming Stage) | 0.0018 kg diesel/(kg·day) | Field investigation |
FECMS (Factor of Energy Consumption in Marketing Stage) | 0.0044 kg diesel/(kg·day) | Field investigation |
FECCE (Factor of Energy Consumption Converted into Carbon Emissions) | 3.1388 | IPCC [30] |
TCEF (Factor of Carbon Emissions in Transportation) | 0.0347 kg CO2/kg·100 km | Patel and Kumar [31] |
PLRC (Products Loss Rate of Consuming Stage) | 0.3 | Delphi method |
FECT (Factor of Energy Consumption in Transportation) | 0.011 kg diesel/kg·100 km | Giordano et al. [32] |
CEFL (Carbon Emissions Factor of Landfill Disposal) | 0.2708 kg CO2/kg waste | Lee et al. [33] |
BCF (Biomass-to-Energy Conversion Factor) | 0.007 kg diesel/kg recycled waste | AI-Hamamre et al. [8] |
PLRF (Products Loss Rate in Farming Stage) | 0.25 | Delphi method |
PLRM (Products Loss Rate in Marketing Stage) | 0.1 | Delphi method |
Farmers’ Income | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
---|---|---|---|---|---|---|---|
(Ten Thousand Yuan) | |||||||
Simulation result | 206.79 | 220.01 | 206.19 | 221.34 | 216.33 | 220.48 | 217.23 |
Statistical data | 205.12 | 214.32 | 220.67 | 212.83 | 230.59 | 225.34 | 229.03 |
Relative error | 0.81% | 2.65% | 6.56% | 4.00% | 6.18% | 2.16% | 5.15% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Liu, Y.; Zhang, Z.; Guo, S.; Tseng, M.-L.; Wu, K.-J. Enhancing Eco-Efficiency of Agro-Products’ Closed-Loop Supply Chain under the Belt and Road Initiatives: A System Dynamics Approach. Sustainability 2018, 10, 668. https://doi.org/10.3390/su10030668
Zhao R, Liu Y, Zhang Z, Guo S, Tseng M-L, Wu K-J. Enhancing Eco-Efficiency of Agro-Products’ Closed-Loop Supply Chain under the Belt and Road Initiatives: A System Dynamics Approach. Sustainability. 2018; 10(3):668. https://doi.org/10.3390/su10030668
Chicago/Turabian StyleZhao, Rui, Yiyun Liu, Zhenyan Zhang, Sidai Guo, Ming-Lang Tseng, and Kuo-Jui Wu. 2018. "Enhancing Eco-Efficiency of Agro-Products’ Closed-Loop Supply Chain under the Belt and Road Initiatives: A System Dynamics Approach" Sustainability 10, no. 3: 668. https://doi.org/10.3390/su10030668
APA StyleZhao, R., Liu, Y., Zhang, Z., Guo, S., Tseng, M. -L., & Wu, K. -J. (2018). Enhancing Eco-Efficiency of Agro-Products’ Closed-Loop Supply Chain under the Belt and Road Initiatives: A System Dynamics Approach. Sustainability, 10(3), 668. https://doi.org/10.3390/su10030668