Seismic and Energy Retrofit of the Historic Urban Fabric of Enna (Italy)
Abstract
:1. Introduction
2. Methods and Case Studies
2.1. Seismic Analysis
2.2. Energy Audit
2.3. Four Case Studies in the Historic Centre of Enna
- Corner building: a building consisting of the union of two contiguous living cells, placed at the corner of a quarter, constituted by irregular plots. The plots at the rear saturated the space. (Case No. 1 located in Orfanotrofio St.).
- Terraced building: the building is placed on the front portion of a building block (Case No. 2 located in Portosalvo St.).
- Tower building: the building is defined by its height and it breaks the alignment of the block to which it belongs. It is characterized by one single room for each floor, all connected by stairs to each other (Case No. 3 located in Zacche St.).
- At court building: the building is set on the edge of a “court” building block (Case No. 4 located in Colajanni St.).
3. Results
3.1. Seismic Analysis
3.2. Energy Analysis
- , characteristic dimensions of the floor, being A its surface and P its perimeter;
- being the total thickness of walls;
- = 2 W/m2K, the thermal conductivity of ground (sand or gravel);
- = 0.17 m2K/W, the internal superficial thermal resistance for descending flux;
- = the thermal resistance of the floor;
- m2K/W, the external superficial thermal resistance.
3.3. Strategies for Seismic and Energy Improvement of Historical Buildings
4. Discussion of the Results
5. Conclusions and Future Research Lines
Author Contributions
Conflicts of Interest
References
- Available online: https://earthquake.usgs.gov/earthquakes/map/ (accessed on 6 February 2018).
- Legge 2 Febbraio 1974, n. 64. Provvedimenti per le Costruzioni con Particolari Prescrizioni per le Zone Sismiche. Available online: http://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=1974-03-21&atto.codiceRedazionale=074U0064&elenco30giorni=false (accessed on 2 April 2018).
- Cresme Ricerche SpA; Consiglio Nazionale degli Architetti, Pianificatori, Paesaggisti e Conservatori. Chi ha Progettato l’Italia? Ruolo Dell’architettura nella Qualità del Paesaggio Edilizio Italiano; Conferenza Nazionale degli Ordini degli Architetti, Pianificatori, Paesaggisti e Conservatori: Padova, Italy, 2017. [Google Scholar]
- Available online: http://www.europarl.europa.eu/legislative-train/theme-resilient-energy-union-with-a-climate-change-policy/file-energy-efficiency-directive-review/ (accessed on 8 January 2018).
- Available online: https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings (accessed on 19 March 2018).
- Available online: http://www.paesifantasma.it/Paesi/italia.html (accessed on 20 March 2018).
- Available online: http://italia.indettaglio.it/eng/statistiche/statistiche_edilizia.html (accessed on 19 March 2018).
- Maietti, F. Centri Storici Minori: Progetti di Recupero e Restauro del Tessuto Urbano fra Identità Culturale e Salvaguardia; Maggioli Editore: Santarcangelo di Romagna, Italy, 2008; ISBN 978-88-387-4656-7. [Google Scholar]
- Coletta, T. I Centri Storici Minori Abbandonati Della Campania—Conservazione, Recupero e Valorizzazione; Edizioni Scientifiche Italiane: Naples, Italy, 2010; ISBN 9788849520613. [Google Scholar]
- Righi, A.; Dalla Mora, T.; Peron, F.; Romagnoni, P. Historical buildings retrofit he city hall of the city of Motta di Livenza (TV). Energy Procedia 2017, 133, 392–400. [Google Scholar] [CrossRef]
- Nardi, I.; De Rubeis, T.; Taddei, M.; Ambrosini, D.; Sfarra, S. The energy efficiency challenge for a historical building undergone to seismic and energy refurbishment. Energy Procedia 2017, 133, 231–242. [Google Scholar] [CrossRef]
- Brandonisio, G.; Lucibello, G.; Mele, E.; De Luca, A. Damage and performance evaluation of masonry churches in the 2009 L’Aquila earthquake. Eng. Fail. Anal. 2013, 34, 693–714. [Google Scholar] [CrossRef]
- Ortega, J.; Vasconcelosa, G.; Rodrigues, H.; Correia, M.; Lourenco, P.B. Traditional earthquake resistant techniques for vernacular architecture and local seismic cultures: A literature review. J. Cult. Heritage 2017, 27, 181–196. [Google Scholar] [CrossRef]
- Belleri, A.; Marini, A. Does seismic risk affect the environmental impact of existing buildings? Energy Build. 2016, 110, 149–158. [Google Scholar] [CrossRef]
- De Berardinis, P.; Rotilio, M.; Marchionni, C.; Friedman, A. Improving the energy-efficiency of historic masonry buildings. A case-study: A minor centre in the Abruzzo region, Italy. Energy Build. 2014, 80, 415–423. [Google Scholar] [CrossRef]
- Modena, C.; da Porto, F.; Valluzzi, M.R.; Carapezza Guttuso, F.; Iannelli, P.; Rubino, C. Sustainable approaches to the assessment and mitigation of seismic risk and of the effects of earthquake induced damages to historic urban centers. In Proceedings of the 10th International Conference on Structural Analysis of Historical Constructions. Anamnesis, Diagnosis, Therapy, Controls, SAHC 2016, Leuven, Belgium, 13–15 September 2016; Van Balen, K., Verstrynge, E., Eds.; CRC Press: London, UK, 2016; ISBN 9781138029514. [Google Scholar]
- Cardinale, T.; Colapietro, D.; Cardinale, N.; Fatiguso, F. Evaluation of the efficacy of traditional recovery interventions in historical buildings. A new selection methodology. Energy Procedia 2013, 40, 515–524. [Google Scholar] [CrossRef]
- La Greca, P.; Margani, G. Seismic and energy renovation measures for sustainable cities: A critical analysis of the Italian scenario. In Proceedings of the International Conference on Seismic and Energy Renovation for Sustainable Cities, SER4SC, Catania, Italy, 1–3 February 2018; Margani, G., Rodonò, G., Sapienza, V., Eds.; EdicomEdizioni: Gorizia, Italy, 2018; pp. 93–104. ISBN 978-88-96386-56-9. [Google Scholar]
- Available online: http://www.niker.eu/ (accessed on 10 January 2018).
- Vitale, M.R.; Salerno, M.; Billeci, B.; Dessì, M.; Callea, L.; The historical centre of Marignane (France). Survey, diagnostic campaign and structural assessment. In Proceedings of the 10th International Conference on Structural Analysis of Historical Constructions. Anamnesis, Diagnosis, Therapy, Controls, SAHC 2016, Leuven, Belgium, 13–15 September 2016; Van Balen, K., Verstrynge, E., Eds.; CRC Press: London, UK, 2016; ISBN 9781138029514. [Google Scholar]
- Decreto Ministeriale n. 65 del 07/03/2017. Sisma Bonus—Linee Guida per la Classificazione del Rischio Sismico delle Costruzioni e i Relativi Allegati. Modifiche all’articolo 3 del Decreto Ministeriale Numero 58 del 28/02/2017. Available online: http://www.mit.gov.it/normativa/decreto-ministeriale-numero-65-del-07032017 (accessed on 2 April 2018).
- Conseil de l’Europe. Cahiers du Centre Européen de Géodynamique et de Séismologie; European Macroseismic Scale; Grünthal, G., Ed.; Conseil de l’Europe: Strasbourg, Italy, 1998; Volume 15. [Google Scholar]
- UNI/TS 11300-1, Energy Performance of Buildings—Part 1: Evaluation of Energy Need for Space Heating and Cooling; Ente Italiano di Normazione, 2014.
- UNI EN 15243, Ventilation for Buildings—Calculation of Room Temperatures and of Load and Energy for Buildings with Room Conditioning Systems; Ente Italiano di Normazione, 2008.
- Available online: http://italia.indettaglio.it/eng/sicilia/enna.html (accessed on 7 February 2018).
- Santos, C.; Ferreira, T.M.; Vicente, R.; Mendes da Silva, R. Building typologies identification to support risk mitigation at the urban scale. Case study of the old city centre of Seixal, Portugal. J. Cult. Heritage 2013, 14, 449–463. [Google Scholar] [CrossRef]
- May, J.; Reid, A. Architettura Senza Architetti; Rizzoli: Bologna, Italy, 2010; ISBN 9788817037853. [Google Scholar]
- Severino, C.G. Enna. La Città al Centro; Gangemi Editore: Rome, Italy, 1996; ISBN 9788874486816. [Google Scholar]
- Acampa, G.; Campisi, M.T.; Zarbo, I. Fra conservazione e riuso: Strumenti di valutazione per una progettazione critica. In Proceedings of the International Conference on Documentation, Conservation and Recovery of Architectural Heritage and Landscape Protection, ReUSO 2016, Pavia, Italy, 6–8 October 2016; Parrinello, S., Ed.; Edifir-Edizioni Firenze: Florence, Italy, 2016; pp. 284–292. ISBN 978-88-7970-810-4. [Google Scholar]
- Decreto Interministeriale 26 Giugno 2015—Adeguamento Linee Guida Nazionali per la Certificazione Energetica Degli Edifici. Available online: http://www.sviluppoeconomico.gov.it/index.php/it/normativa/decreti-interministeriali/2032968-decreto-interministeriale-26-giugno-2015-adeguamento-linee-guida-nazionali-per-la-certificazione-energetica-degli-edifici.html (accessed on 20 March 2018).
- UNI 10351:2015. Building Materials and Products—Hygrothermal Proprieties—Procedure for Determining the Design Values; UNI, Ente Italiano di Normazione: Milan, Italy, 2015.
- UNI EN ISO 10456:2008. Building Materials and Products—Hygrothermal Properties—Tabulated Design Values and Procedures for Determining Declared and Design Thermal Values; UNI, Ente Italiano di Normazione: Milan, Italy, 2008.
- UNI EN ISO 13370:2008. Thermal Performance of Buildings. Heat Transfer via the Ground. Calculation Methods; UNI, Ente Italiano di Normazione: Milan, Italy, 2008.
- Grabau, A.W. Paleozoic coral reefs. GSA Bull. 1903, 14, 337–352. [Google Scholar] [CrossRef]
- Genova, E.; Kilian, R. Thermal and hygrometric properties of traditional calcarenite stones in the area of Palermo. Energy Procedia 2017, 122, 1081–1086. [Google Scholar] [CrossRef]
- Maio, R.; Estêvão, J.M.C.; Ferreira, T.M.; Vicente, R. The seismic performance of stone masonry buildings in Faial island and the relevance of implementing effective seismic strengthening policies. Eng. Struct. 2017, 141, 41–58. [Google Scholar] [CrossRef]
- Gattesco, N.; Gubana, A.; Melotto, M. GFRP to strengthen masonry walls: Numerical analysis and evaluation of the different mechanical parameters role. In Proceedings of the 10th International Conference on Structural Analysis of Historical Constructions. Anamnesis, Diagnosis, Therapy, Controls, SAHC 2016, Leuven, Belgium, 13–15 September 2016; Van Balen, K., Verstrynge, E., Eds.; CRC Press: London, UK, 2016; ISBN 9781138029514. [Google Scholar]
- Lucibello, G.; Brandonisio, G.; Mele, E.; De Luca, A. Seismic damage and performance of Palazzo Centi after L’Aquila earthquake: A paradigmatic case study of effectiveness of mechanical steel ties. Eng. Fail. Anal. 2013, 34, 407–430. [Google Scholar] [CrossRef]
- Branco, M.; Guerreiro, L.M. Seismic rehabilitation of historical masonry buildings. Eng. Struct. 2011, 33, 1626–1634. [Google Scholar] [CrossRef]
- Diz, S.; Costa, A.; Costa, A.A. Efficiency of strengthening techniques assessed for existing masonry buildings. Eng. Struct. 2015, 101, 205–215. [Google Scholar] [CrossRef]
- Suriya Prakash, S.; Alagusundaramoorthy, P. Behaviour of masonry load bearing walls retrofitted with GFRP composites. J. Struct. Eng. 2009, 36, 397–405. [Google Scholar]
- Sivaraja, S.S.; Thandavamoorthy, T.S.; Vijayakumar, S.; Mosesasaranganathan, S.; Rathnasheela, P.T.; Dasarathy, A.K. GFRP Strengthening and Applications of Unreinforced Masonry wall (UMW). Proc. Eng. 2013, 54, 428–439. [Google Scholar] [CrossRef]
- Proença, J.; Sousa Gago, A.; Cardoso, J.; Cóias, V.; Paula, R. Development of an innovative seismic strengthening technique for traditional load-bearing masonry walls. B Earthq. Eng. 2012, 10, 113–133. [Google Scholar] [CrossRef]
- Penna, P.; Prada, A.; Cappelletti, F.; Gasparella, A. Multi-objectives optimization of Energy Efficiency Measures in existing buildings. Energy Build. 2015, 95, 57–69. [Google Scholar] [CrossRef]
- Straube, J.F.; Ueno, K.; Schumacher, C.J. Measure Guideline: Internal Insulation of Masonry Walls; Building Science Corporation: Somerville, MA, USA, 2012. [Google Scholar]
Municipality | Population | Residential Buildings | Abandoned Residential Buildings | Abandoned Buildings Percentage |
---|---|---|---|---|
Palermo | 672,398 | 44,499 | 2068 | 4.65 |
Catania | 315,769 | 26,755 | 1272 | 4.75 |
Reggio Calabria | 182,323 | 26,368 | 2010 | 7.62 |
Naples | 969,490 | 40,344 | 1107 | 2.74 |
Rome | 2,874,529 | 107,332 | 2365 | 2.20 |
Milan | 1,353,467 | 42,628 | 1791 | 4.20 |
Turin | 885,651 | 35,814 | 1119 | 3.12 |
Type of Structure | Original Layers | Thickness [m] | λ [W/mK] | R [m2K/W] | U [W/ m2K] |
---|---|---|---|---|---|
Façade wall | Internal hydraulic lime and gypsum plaster | 0.015 | 0.70 | 0.021 | |
Solid brick | 0.340 | 1.30 | 0.226 | ||
External cement-based plaster | 0.020 | 0.90 | 0.022 | ||
0.440 * | 2.271 | ||||
Roofing | Fir plank | 0.020 | 0.12 | 0.167 | |
Sicilian curved tiles | 0.010 | 1.00 | 0.010 0.317 ** | 3.158 | |
Slab-on-ground floor | Ceramic floor tiles | 0.012 | 1.00 | 0.012 | |
Bedding cementitious mortar | 0.030 | 1.30 | 0.023 | ||
Concrete layer | 0.200 | 1.90 | 0.100 | ||
Rubble drain | 0.400 | 1.80 | 0.220 | ||
0.355 *** | 0.876 |
Type of Structure | Original Layers | Thickness [m] | λ [W/mK] | R [m2K/W] | U [W/ m2K] |
---|---|---|---|---|---|
Façade wall | Internal hydraulic lime and gypsum plaster | 0.015 | 0.70 | 0.021 | |
Extruded polystyrene panels | 0.040 | 0.04 | 1.000 | ||
Calcarenite irregular stone masonry [34,35] | 0.700 | 1.50 | 0.467 | ||
External NHL plaster | 0.020 | 0.90 | 0.022 1.680 * | 0.595 | |
Roofing | Internal hydraulic lime and gypsum plaster | 0.010 | 0.70 | 0.014 | |
Cane mesh ceiling | 0.015 | 0.06 | 0.273 | ||
Cavity | 0.100 | 0.25 | 0.400 | ||
Cane mesh ceiling | 0.015 | 0.06 | 0.273 | ||
Cementitious screed | 0.030 | 1.30 | 0.023 | ||
Sicilian curved tiles | 0.010 | 1.00 | 0.010 1.132 ** | 0.883 | |
Slab-on-ground floor | Bedding cementitious mortar | 0.050 | 1.30 | 0.038 | |
Rubble drain | 0.800 | 1.80 | 0.444 | ||
0.482 *** | 0.638 |
Type of Structure | Original Layers | Thickness [m] | λ [W/mK] | R [m2K/W] | U [W/ m2K] |
---|---|---|---|---|---|
Façade wall | Internal hydraulic lime and gypsum plaster | 0.015 | 0.70 | 0.021 | |
Calcarenite irregular stone masonry | 0.600 | 1.50 | 0.400 | ||
External NHL plaster | 0.020 | 0.90 | 0.022 0.614 * | 1.630 | |
Roofing | Fir plank | 0.020 | 0.12 | 0.167 | |
Sicilian curved tiles | 0.010 | 1.00 | 0.010 | ||
0.317 ** | 3.158 | ||||
Slab-on-ground floor | Bedding cementitious mortar | 0.030 | 1.30 | 0.023 | |
Concrete layer | 0.200 | 2.00 | 0.100 | ||
Rubble drain | 0.800 | 1.80 | 0.444 | ||
0.567 *** | 0.589 |
Type of structure | Original Layers | Thickness [m] | λ [W/mK] | R [m2K/W] | U [W/ m2K] |
---|---|---|---|---|---|
Façade wall | Internal hydraulic lime and gypsum plaster | 0.015 | 0.70 | 0.021 | |
Calcarenite irregular stone masonry | 0.850 | 1.50 | 0.567 | ||
External NHL plaster | 0.020 | 0.90 | 0.022 0.780 * | 1.282 | |
Roofing | Plasterboard false ceiling | 0.015 | 0.21 | 0.071 | |
Cavity | 0.015 | 0.25 | 0.600 | ||
Fir plank | 0.020 | 0.12 | 0.167 | ||
Sicilian curved tiles | 0.010 | 1.00 | 0.010 | ||
0.988 ** | 1.012 | ||||
Slab-on-ground floor | Marble grain floor tiles | 0.010 | 2.80 | 0.004 | |
Bedding cementitious mortar | 0.020 | 1.30 | 0.015 | ||
Concrete layer | 0.200 | 2.00 | 0.100 | ||
Rubble drain | 0.400 | 1.80 | 0.222 | ||
0.337 *** | 0.762 |
Site of Intervention | Retrofit Solution | Description |
---|---|---|
Walls | SW1 | Mortar injections |
SW2 | GRFP | |
SW3 | Wall to wall connection improvement through tie-rods or internal hooping by means of iron profiles | |
Floors | SF1 | Stiffening and connection with the load-bearing walls |
SF2 | Reconstruction | |
Roofing | SR1 | Steel or reinforced brick bond-beam with steel tie-rods or carbon fibre |
SR2 | Stiffening of the existing roof with steel tie-rods in the intrados | |
SR3 | Connection of the existing roofing with the masonry through tie-rods or internal hooting by means of iron profiles |
Strategy | Walls | Roofing | Slab-on-ground Floor | Doors and Windows |
---|---|---|---|---|
1 | F1 E2 E3 D4 | G1 G2 G3 G4 | G1 G2 G3 G4 | G1 G2 G3 G4 |
2 (Walls) | - | D1 D2 D3 D4 | E1 D2 D3 D4 | E1 D2 D3 D4 |
3 (Roofing) | D1 D2 D3 D4 | - | G1 G2 G3 G4 | G1 G2 G3 G4 |
4 (Slab-on-ground floor) | E1 D2 D3 D4 | G1 G2 G3 G4 | - | G1 G2 G3 G4 |
5 (Walls + roofing) | - | - | D1 D2 D3 D4 | D1 D2 D3 D4 |
6 (Walls + slab-on-ground floor) | - | D1 D2 D3 D4 | - | E1 D2 D3 C4 |
Case Studies | Seismic Improvement Interventions | Energy Improvement Intervention | Seismic Risk Class | Energy Class |
---|---|---|---|---|
No. 1 | SW2 SR3 | External insulation, 12 cm thick, and ʎ = 0.04 W/mk Roofing insulation, 15 cm thick, and ʎ = 0.04 W/mk (Figure 12a) | ||
No. 2 | SW1 SR2 | External insulation, 8 cm thick, and ʎ = 0.04 W/mk and integration of internal insulation, 4 cm thick Roofing insulation, 11 cm thick, and ʎ = 0.04 W/mk (Figure 12b) | ||
No. 3 | SW1 SW3 SR2 | External insulation, 12 cm thick, and ʎ = 0.04 W/mk Roofing insulation, 15 cm thick, and ʎ = 0.04 W/mk | ||
No. 4 | SW1 SR1 | Internal insulation, 8 cm thick SPF, and ʎ = 0.035 W/mk + 5 cm thick calcium silicate sheet, and ʎ = 0.094 W/mk Roofing insulation from outside or intrados with insulation, 12 cm thick, and ʎ = 0.04 W/mk |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basiricò, T.; Enea, D. Seismic and Energy Retrofit of the Historic Urban Fabric of Enna (Italy). Sustainability 2018, 10, 1138. https://doi.org/10.3390/su10041138
Basiricò T, Enea D. Seismic and Energy Retrofit of the Historic Urban Fabric of Enna (Italy). Sustainability. 2018; 10(4):1138. https://doi.org/10.3390/su10041138
Chicago/Turabian StyleBasiricò, Tiziana, and Daniele Enea. 2018. "Seismic and Energy Retrofit of the Historic Urban Fabric of Enna (Italy)" Sustainability 10, no. 4: 1138. https://doi.org/10.3390/su10041138
APA StyleBasiricò, T., & Enea, D. (2018). Seismic and Energy Retrofit of the Historic Urban Fabric of Enna (Italy). Sustainability, 10(4), 1138. https://doi.org/10.3390/su10041138