Public Value of Enforcing the PM2.5 Concentration Reduction Policy in South Korean Urban Areas
Abstract
:1. Introduction
2. Methodology
2.1. Object to Be Investigated
- scientific identification of the cause of PM2.5;
- expansion of the particulates concentration measurement station;
- strengthening management of deteriorated diesel vehicles;
- consolidating regulations on coal-fired power plants;
- reinforcing standards for PM2.5 emission at plants; and
- international co-operation (currently, Korea and China are considering signing a particulate matter reduction agreement).
2.2. Method: Contingent Valuation (CV)
2.3. Sampling and Survey Instrument
2.4. Elicitation of WTP
3. WTP Model
3.1. OOHB DC Model
3.2. Combination of OOHB DC Question and Spike Model
- -
- “yes–yes” ();
- -
- “yes–no” ();
- -
- “no–yes” ();
- -
- “no–no” ();
- -
- “yes” ();
- -
- “no–yes” ();
- -
- “no–no–yes” (); and
- -
- “no–no–no” ().
4. Results and Discussion
4.1. Data
4.2. Estimation Results of the Model
4.3. Reflection of Covariates
4.4. Discussion of the Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Main Part of the Survey Questionnaire
Part 1. Questions about socio-economic characteristics
Q1. Please check with √ your education level in years.
Education level | Uneducated | Elementary school | Middle school | High school | University | Graduate school |
Education level in years | 0 | 1 2 3 4 5 6 | 7 8 9 | 10 11 12 | 13 14 15 16 | 17 18 19 20 |
Part 2. Questions about willingness to pay for reducing the PM2.5 concentration
- a.
- Yes—go to Type A. Q2.
- b.
- No—go to Q3.
- a.
- Yes—Finish this survey
- b.
- No—Finish this survey
- a.
- Yes—Finish this survey
- b.
- No—go to Type B. Q2.
- a.
- Yes—Finish this survey
- b.
- No—go to Q3.
- a.
- Yes, our household is willing to pay something less than 1000 Korean won.
- b.
- No, our household is not willing to pay anything. In other words, our household’s willingness to pay is zero.
References
- World Health Organization. 7 Million Premature Deaths Annually Linked to Air Pollution. 2014. Available online: http://www.who.int/mediacentre/news/releases/2014/air-pollution/en (accessed on 20 October 2017).
- International Agency for Research on Cancer. Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Laden, F.; Neas, L.M.; Dockery, D.W.; Schwartz, J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ. Health Perspect. 2000, 108, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Zíková, N.; Wang, Y.; Yang, F.; Li, X.; Tian, M.; Hopke, P.K. On the source contribution to Beijing PM2.5 concentrations. Atmos. Environ. 2016, 134, 84–95. [Google Scholar] [CrossRef]
- Maynard, R.L.; Howard, V. Particulate Matter: Properties and Effects upon Health; Bios Scientific Pub Limited: Oxford, UK, 1999. [Google Scholar]
- Harrison, R.M.; Yin, J. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci. Total Environ. 2000, 249, 85–101. [Google Scholar] [CrossRef]
- Shaughnessy, W.J.; Venigalla, M.M.; Trump, D. Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population. Atmos. Environ. 2015, 123, 102–111. [Google Scholar] [CrossRef]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, 69–74. [Google Scholar]
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. J. Am. Med. Assoc. 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Zanobetti, A.; Franklin, M.; Koutrakis, P.; Schwartz, J. Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ. Health 2009, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Achillas, C.; Vlachokostas, C.; Moussiopoulos, Ν.; Banias, G. Prioritize strategies to confront environmental deterioration in urban areas: Multicriteria assessment of public opinion and experts’ views. Cities 2011, 28, 414–423. [Google Scholar] [CrossRef]
- Kim, H.K.; Kang, K.M.; Kim, T.Y. Measurement of particulate matter (PM2.5) and health risk assessment of cooking-generated particles in the kitchen and living rooms of apartment houses. Sustainability 2018, 10, 843. [Google Scholar] [CrossRef]
- Wong, L.P.; Alias, H.; Aghamohammadi, N.; Ghadimi, A.; Sulaiman, N.M.N. Control measures and health effects of air pollution: A survey among public transportation commuters in Malaysia. Sustainability 2017, 9, 1616. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Park, D.; Lee, Y.; Lee, Y.C. Particulate matter (PM10 and PM2.5) in subway systems: Health-based economic assessment. Sustainability 2017, 9, 2135. [Google Scholar] [CrossRef]
- Harris, B.; Kang, B.S. South Korea Joins Ranks of WORLD’S most Polluted Countries. Financial Times. 2017. Available online: https://www.ft.com/content/b49a9878-141b-11e7-80f4-13e067d5072c (accessed on 20 October 2017).
- Organization for Economic Co-operation and Development. Exposure to PM2.5 in Countries and Regions. 2017. Available online: http://stats.oecd.org/index.aspx?queryid=72722 (accessed on 20 October 2017).
- Korea Ministry of Environment. Monthly Report of Air Quality. 2015. Available online: http://www.me.go.kr (accessed on 20 October 2017).
- Korea Ministry of Environment. Monthly Report of Air Quality. 2016. Available online: http://www.me.go.kr (accessed on 20 October 2017).
- Korea Ministry of Environment. Monthly Report of Air Quality. 2017. Available online: http://www.me.go.kr (accessed on 20 October 2017).
- The Straits Times. S. Korea Among Most Polluted Nations. 2017. Available online: http://www.straitstimes.com/asia/east-asia/s-korea-among-most-polluted-nations (accessed on 20 October 2017).
- Air Korea. Regional Air Quality. Available online: http://www.airkorea.or.kr/pmRelay?itemCode=11008 (accessed on 20 October 2017).
- Yoo, S.H.; Kwak, S.J.; Lee, J.S. Using a choice experiment to measure the environmental costs of air pollution impacts in Seoul. J. Environ. Manag. 2008, 86, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Lim, S.Y.; Yoo, S.H. The economic value of the national meteorological service in the Korean household sector: A contingent valuation study. Sustainability 2016, 8, 834. [Google Scholar] [CrossRef]
- Netalieva, I.; Wesseler, J.; Heijman, W. Health costs caused by oil extraction air emissions and the benefits from abatement: The case of Kazakhstan. Energy Policy 2005, 33, 1169–1177. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.S. Air quality assessment by contingent valuation in Ji’nan, China. J. Environ. Manag. 2009, 90, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lim, Y.W.; Yang, J.Y.; Kim, C.S.; Shin, Y.C.; Shin, D.C. Evaluating the PM damage cost due to urban air pollution and vehicle emissions in Seoul, Korea. J. Environ. Manag. 2011, 92, 603–609. [Google Scholar] [CrossRef] [PubMed]
- EI-Fadel, M.; Massoud, M. Particulate matter in urban areas: Health-based economic assessment. Sci. Total Environ. 2000, 257, 133–146. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Voorhees, A.S.; Zhao, B.; Jang, C.; Jiang, J.; Fu, J.S.; Ding, D.; Zhu, Y.; Hao, J. Assessment of short-term PM2.5-related mortality due to different emission sources in the Yangtze River Delta, China. Atmos. Environ. 2015, 123, 440–448. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, Y. Using discrete choice experiments to value preferences for air quality improvement: The case of curbing haze in urban China. J. Environ. Plan. Manag. 2016, 59, 1473–1494. [Google Scholar] [CrossRef]
- Wei, W.; Yan, W. Willingness to pay to control PM2.5 pollution in Jing-Jin-Ji Region, China. Appl. Econ. Lett. 2017, 24, 753–761. [Google Scholar] [CrossRef]
- Carlsson, F.; Johansson-Stenman, O. Willingness to pay for improved air quality in Sweden. Appl. Econ. 2000, 32, 661–669. [Google Scholar] [CrossRef]
- Cooper, J.C.; Hanemann, W.M.; Signorello, G. One and one-half bound dichotomous choice contingent valuation. Rev. Econ. Stat. 2002, 84, 742–750. [Google Scholar] [CrossRef] [Green Version]
- Kriström, B. Spike model in contingent valuation. Am. J. Agric. Econ. 1997, 79, 1013–1023. [Google Scholar] [CrossRef]
- Arrow, K.; Solow, R.; Portney, P.R.; Leamer, E.E.; Radner, R.; Schuman, H. Report of the NOAA panel on contingent valuation. Fed. Regist. 1993, 58, 4601–4614. [Google Scholar]
- Statistics Korea. Available online: http://kosis.kr (accessed on 20 October 2017).
- Hanemann, W.M. Welfare evaluations in contingent valuation experiments with discrete responses. Am. J. Agric. Econ. 1984, 66, 332–341. [Google Scholar] [CrossRef]
- Champ, P.A.; Boyle, K.J.; Brown, T.C.A. Primer on Nonmarket Valuation; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Johnston, R.J.; Boyle, K.J.; Adamowicz, W.; Bennett, J.; Brouwer, R.; Cameron, T.A.; Hanemann, W.M.; Hanley, N.; Ryan, M.; Scarpa, R.; et al. Contemporary guidance for stated preference studies. J. Assoc. Environ. Resour. Econ. 2017, 4, 319–405. [Google Scholar] [CrossRef]
- Hanemann, W.M.; Loomis, J.; Kanninen, B.J. Statistical efficiency of double-bounded dichotomous choice contingent valuation. Am. J. Agric. Econ. 1991, 73, 1255–1263. [Google Scholar] [CrossRef]
- Krinsky, I.; Robb, A.L. On approximating the statistical properties of elasticities. Rev. Econ. Stat. 1986, 68, 715–719. [Google Scholar] [CrossRef]
- Kikulwe, E.M.; Wesseler, J.; Falck-Zepeda, J. Attitudes, perceptions, and trust. Insights from a consumer survey regarding genetically modified banana in Uganda. Appetite 2011, 57, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Kikulwe, E.M.; Falck-Zepeda, J.; Wesseler, J. If labels for GM food were present, would consumers trust them?’ Insights from a consumer survey in Uganda. Environ. Dev. Econ. 2013, 19, 786–805. [Google Scholar] [CrossRef]
Variables | Definitions | Mean | Standard Deviation |
---|---|---|---|
Gender | The respondent’s gender (0 = male; 1 = female) | 0.50 | 0.50 |
Family | The size of the respondent’s household (unit: persons) | 3.31 | 1.05 |
Education | The respondent’s education level in years | 14.23 | 2.28 |
Income | The household’s monthly income before tax deduction (unit: million Korean) | 4.40 | 2.01 |
Bid Amount a | Lower Bid Is Offered at First (%) b | Upper Bid Is Offered at First (%) b | Sample Size | |||||||
---|---|---|---|---|---|---|---|---|---|---|
“yes–yes” | “yes–no” | “no–yes” | “no–no” | “yes” | “no–yes” | “no–no–yes” | “no–no–no” | |||
1000 | 3000 | 27 (18.9) | 19 (13.3) | 3 (2.1) | 23 (16.1) | 31 (21.7) | 12 (8.4) | 1 (0.7) | 27 (18.9) | 143 (100.0) |
2000 | 4000 | 21 (14.7) | 16 (11.2) | 12 (8.4) | 22 (15.4) | 27 (18.9) | 3 (2.1) | 7 (4.9) | 35 (24.5) | 143 (100.0) |
3000 | 6000 | 16 (11.2) | 13 (9.1) | 16 (11.2) | 26 (18.2) | 28 (19.6) | 6 (4.2) | 6 (4.2) | 32 (22.4) | 143 (100.0) |
4000 | 8000 | 12 (8.4) | 13 (9.1) | 11 (7.7) | 36 (25.2) | 19 (13.3) | 8 (5.6) | 10 (7.0) | 34 (23.8) | 143 (100.0) |
6000 | 10,000 | 15 (10.6) | 9 (6.3) | 7 (4.9) | 40 (28.2) | 21 (14.8) | 4 (2.8) | 5 (3.5) | 41 (28.9) | 142 (100.0) |
8000 | 12,000 | 13 (9.2) | 13 (9.2) | 10 (7.0) | 35 (24.6) | 14 (9.9) | 4 (2.8) | 17 (12.0) | 36 (25.4) | 142 (100.0) |
10,000 | 15,000 | 15 (10.4) | 9 (6.3) | 8 (5.6) | 40 (27.8) | 17 (11.8) | 3 (2.1) | 14 (9.7) | 38 (26.4) | 144 (100.0) |
Sample size | 119 (11.9) | 92 (9.2) | 67 (6.7) | 222 (22.2) | 157 (15.7) | 40 (4.0) | 60 (6.0) | 243 (24.3) | 1000 (100.0) |
Variables | Estimates d |
---|---|
Constant | 0.1146 (1.84) * |
Bid amount a | −0.1345 (−17.95) # |
Spike | 0.4714 (30.31) # |
Yearly mean WTP per household t-value 95% confidence interval b | KRW 5591 (USD 4.97) 17.13 # KRW 5004 to 6304 (USD 4.44 to 5.60) |
Sample size | 1000 |
Log-likelihood | −1259.67 |
Wald statistic (p-value) c | 293.48 (0.000) |
Variables a | Estimates | t-values |
---|---|---|
Constant | −2.3946 | −5.66 # |
Bid amount b | −0.1412 | −18.01 # |
Gender | 0.1037 | 0.85 |
Family | −0.0662 | −1.03 |
Education | 0.1568 | 5.44 # |
Income | 0.1044 | 3.05 # |
Spike | 0.4679 | 29.47 # |
Yearly mean WTP per household t-value 95% confidence interval c | KRW 5380 (USD 4.78) 17.30 # KRW 4808 to 6022 (USD 4.27 to 5.35) | |
Wald statistic (p-value) d | 299.33 (0.000) | |
Log-likelihood | −1232.10 | |
Number of observations | 1000 |
Estimates | 95% Confidence Intervals | |
---|---|---|
Mean annual WTP per household | KRW 5591 (USD 4.97) | KRW 5004 to 6304 (USD 4.44 to 5.60) |
Total annual WTP | KRW 98.9 billion (USD 87.8 million) | KRW 88.5 to 111.5 billion (USD 78.6 to 99.1 million) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Kim, H.-J.; Yoo, S.-H. Public Value of Enforcing the PM2.5 Concentration Reduction Policy in South Korean Urban Areas. Sustainability 2018, 10, 1144. https://doi.org/10.3390/su10041144
Kim J-H, Kim H-J, Yoo S-H. Public Value of Enforcing the PM2.5 Concentration Reduction Policy in South Korean Urban Areas. Sustainability. 2018; 10(4):1144. https://doi.org/10.3390/su10041144
Chicago/Turabian StyleKim, Ju-Hee, Hyo-Jin Kim, and Seung-Hoon Yoo. 2018. "Public Value of Enforcing the PM2.5 Concentration Reduction Policy in South Korean Urban Areas" Sustainability 10, no. 4: 1144. https://doi.org/10.3390/su10041144
APA StyleKim, J. -H., Kim, H. -J., & Yoo, S. -H. (2018). Public Value of Enforcing the PM2.5 Concentration Reduction Policy in South Korean Urban Areas. Sustainability, 10(4), 1144. https://doi.org/10.3390/su10041144