Assessing Nature-Based Coastal Protection against Disasters Derived from Extreme Hydrometeorological Events in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Impact of Extreme Hydrometeorological Events in Mexico
2.2. Assessing the Protective Role of Natural Ecosystems
2.2.1. Casualties and Economic Damages
2.2.2. Probability of Occurrence of Tropical Cyclones: Hazard Index
2.2.3. Socioeconomic Vulnerability
2.2.4. Land Use Cover
2.2.5. Data Analyses
3. Results
3.1. Impact of Extreme Hydrometeorological Events in Mexico
3.2. Assessing the Protective Role of Natural Ecosystems
4. Discussion
4.1. The Protective Role of Natural Ecosystems
4.2. Sustainability of Mexican Coasts
4.3. Caveats of the Study
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- EM-DAT. The Emergency Events Database-Université Catholique de Louvain (UCL)—CRED, D. Guha-Sapir. Available online: www.emdat.be (accessed on 31 December 2017).
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Webster, P.J.; Holland, G.J.; Curry, J.A.; Chang, H.R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 2005, 309, 1844–1846. [Google Scholar] [CrossRef] [PubMed]
- Doody, J.P. “Coastal squeeze”—An historical perspective. J. Coast. Conserv. 2004, 10, 129–138. [Google Scholar] [CrossRef]
- Silva, R.; Martínez, M.L.; Hesp, P.A.; Catalan, P.; Osorio, A.F.; Martell, R.; Fossati, M.; Miot da Silva, G.; Mariño-Tapia, I.; Pereira, P.; et al. Present and Future Challenges of Coastal Erosion in Latin America. J. Coast. Res. 2014, 71, 1–16. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Salgado, K.; Martinez, M.L. Is ecosystem-based coastal defense a realistic alternative? Exploring the evidence. J. Coast. Conserv. 2017, 21, 837–848. [Google Scholar] [CrossRef]
- Feagin, R.A.; Figlus, J.; Zinnert, J.C.; Sigren, J.; Martínez, M.L.; Silva, R.; Smith, W.K.; Cox, D.; Young, D.R.; Carter, G. Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. Front. Ecol. Environ. 2015, 13, 203–210. [Google Scholar] [CrossRef]
- Maun, M.A. The Biology of Coastal Sand Dunes; Oxford University Press: Oxford, UK, 2009; ISBN 978-0-19-857036-3. [Google Scholar]
- Spalding, M.D.; Ruffo, S.; Lacambra, C.; Meliane, I.; Hale, L.Z.; Shepard, C.C.; Beck, M.W. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast. Manag. 2014, 90, 50–57. [Google Scholar] [CrossRef]
- Reguero, B.G.; Beck, M.W.; Bresch, D.N.; Calil, J.; Meliane, I. Comparing the cost effectiveness of nature-based and coastal adaptation: A case study from the Gulf Coast of the United States. PLoS ONE 2018, 13, e0192132. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.L.; Vázquez, G.; White, D.A.; Thivet, G.; Brengues, M. Effects of burial by sand and inundation by fresh- and seawater on seed germination of five tropical beach species. Can. J. Bot. 2002, 80, 416–424. [Google Scholar] [CrossRef]
- Costanza, R.; Pérez-Maqueo, O.; Martinez, M.L.; Sutton, P.; Anderson, S.J.; Mulder, K. The Value of Coastal Wetlands for Hurricane Protection. Ecol. Econ. 2008, 37, 241–248. [Google Scholar] [CrossRef]
- Silva, R.; Mendoza, E.; Mariño-Tapia, I.; Martínez, M.L.; Escalante, E. An artificial reef improves coastal protection and provides a base for coral recovery. J. Coast. Res. 2016, 75, 467–471. [Google Scholar] [CrossRef]
- Reguero, B.G.; Beck, M.W.; Agostini, V.N.; Kramer, P.; Hancock, B. Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada. J. Environ. Manag. 2018, 210, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Narayan, S.; Beck, M.W.; Wilson, P.; Thomas, C.J.; Guerrero, A.; Shepard, C.C.; Reguero, B.G.; Franco, G.; Ingram, J.C.; Trespalacios, D. The Value of Coastal Wetlands for Flood Damage Reduction in the Northeastern USA. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B.; Koch, E.W.; Silliman, B.R.; Hacker, S.D.; Wolanski, E.; Primavera, J.; Granek, E.F.; Polasky, S.; Aswani, S.; Cramer, L.A.; et al. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 2008, 319, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Chua, T.-E.; Bonga, D.; Bermas-Atrigenio, N. Dynamics of Integrated Coastal Management: PEMSEA’s Experience. Coast. Manag. 2006, 34, 303–322. [Google Scholar] [CrossRef]
- Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 2013, 3, 961–968. [Google Scholar] [CrossRef]
- McLeod, K.L.; Lubchenco, J.; Palumbi, S.; Rosenberg, A.A. Scientific Consensus Statement on Marine Ecosystem-Based Management; Communication Partnership for Science and the Sea; Duke University: Durham, NC, USA, 2005. [Google Scholar]
- INEGI Censo de Población y Vivienda 2010. Available online: http://www.beta.inegi.org.mx/proyectos/ccpv/2010/ (accessed on 1 August 2017).
- Tapsell, S.; McCarthy, S.; Faulkner, H.; Alexander, M. Social Vulnerability and Natural Hazards; CapHaz-Net WP4 Report; Flood Hazard Research Centre, Middlesex University: London, UK, 2010. [Google Scholar]
- DesInventar DesInventar. Sistema de Inventario de Desastres, Guía Metodológica. Available online: https://www.desinventar.org/ (accessed on 3 September 2017).
- CENAPRED. Diagnóstico de Peligros e Identificación de Riesgos de Desastres en México. Atlas Nacional de Riesgos de la República Mexicana; Zepeda Ramos, O., Susana, G.M., Eds.; Electronic; Centro Nacional de Prevención de Desastres, Secretaría de Gobernación: Mexico City, Mexico, 2001; ISBN 970-628-593-8. [Google Scholar]
- CENAPRED. Grado de Riesgo por Ciclones Tropicales. Available online: https://datos.gob.mx/busca/dataset/centro-nacional-de-prevencion-de-desastres (accessed on 20 December 2017).
- CENAPRED. Guía Básica para la Elaboración de Atlas Estatales y Municipales de Peligros y Riesgos: Evaluación de la Vulnerabilidad Física y Social. In Serie Atlas Nacional de Riesgos; Centro Nacional de Prevención de Desastres, Secretaría de Gobernación: Mexico City, Mexico, 2006; p. 166. ISBN 9706289062. [Google Scholar]
- CENAPRED. Grado de Vuilnerabilidad Social. 2010. Available online: https://datos.gob.mx/busca/dataset/centro-nacional-de-prevencion-de-desastres (accessed on 20 December 2017).
- INEGI. Uso del Suelo y Vegetación, Escala 1:250,000, Serie IV (Continuo Nacional). Available online: http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/usv/inegi/usv250s5ugw (accessed on 1 January 2014).
- INEGI. Uso del Suelo y Vegetación, Escala 1:250,000, Serie III (Continuo Nacional). Available online: http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/usv/inegi/usv250s5ugw (accessed on 1 January 2014).
- INEGI. Uso del Suelo y Vegetación, Escala 1:250,000, Serie II (Continuo Nacional). Available online: http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/usv/inegi/usv250s5ugw (accessed on 1 January 2014).
- INEGI. Conjunto de Datos Vectoriales de uso de Suelo y Vegetación Escala 1:250,000, Serie V (Capa Unión). Available online: http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/usv/inegi/usv250s5ugw (accessed on 1 January 2014).
- INEGI. Guia Para la Interpretación de Cartografía Uso del Suelo y Vegetación Escala 1:250,000 Serie V; INEGI: Aguascalientes, Mexico, 2014.
- CENAPRED. Base de Datos Sobre el Impacto Socioeconómico de los Daños y Pérdidas Ocasionados por los Desastres en México. Available online: http://www.atlasnacionalderiesgos.gob.mx/archivo/descargas.html (accessed on 26 March 2018).
- Banco de México. Consumer Price Index. Available online: http://www.banxico.org.mx/portal-inflacion/inflation.html (accessed on 10 January 2018).
- OECD. Purchasing Power Parities (PPP). Available online: https://data.oecd.org/conversion/purchasing-power-parities-ppp.htm (accessed on 25 March 2018).
- Mendoza-González, G.; Martínez, M.L.; Lithgow, D.; Pérez-Maqueo, O.; Simonin, P. Land use change and its effects on the value of ecosystem services along the coast of the Gulf of Mexico. Ecol. Econ. 2012, 82, 23–32. [Google Scholar] [CrossRef]
- Fuentes Mariles, Ó.A.; Matías Ramirez, L.G.; Jiménez Espinosa, M.; Mendoza Estrada, D.R.; Baeza Ramírez, C. Elaboración de mapas de riesgo por inundaciones costeras por marea de tormenta. In Guía Básica Para la Elaboración de Atlas Estatales y Municipales de Peligros y Riesgos; Fenómenos Hidrometeorológicos; Centro Nacional de Prevención de Desastres, Secretaría de Gobernación: Mexico City, Mexico, 2006; pp. 221–293. ISBN 970-628-905-4. [Google Scholar]
- Jiménez Espinoza, M.; Baeza Ramírez, C.; Matías Ramírez, L.G.; Eslava Morales, H. Mapas de Índices de Riesgo a Escala Municipal por Fenómenos Hidrometeorológicos. 2012. Available online: http://www.anr.gob.mx/Descargas/Metodologias/Hidrometeorologico.pdf (accessed on 18 October 2017).
- INE-INEGI. Uso del Suelo y Vegetación, Escala 1:250,000, Serie I (Continuo Nacional). Available online: http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/usv/inegi/usv250s5ugw (accessed on 1 January 2014).
- CONABIO. Biodiversidad Mexicana. Available online: http://www.biodiversidad.gob.mx/ecosistemas/manglares2013/manglares.html (accessed on 14 January 2018).
- Rzedowski, J. Vegetación de México, 1a ed.; Limusa, Ed.; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, Mexico, 2006. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008. [Google Scholar]
- CENAPRED. Impacto Socioeconómico de Desastres de 2000 a 2015. Available online: https://datos.gob.mx/busca/dataset/impacto-socioeconomico-de-desastres-de-2000-a-2015/resource/868fe928-b3e7-4940-9e33-3abbb7cd41aa (accessed on 11 April 2017).
- Sutton-Grier, A.E.; Gittman, R.K.; Arkema, K.K.; Bennett, R.O.; Benoit, J.; Blitch, S.; Burks-copes, K.A.; Colden, A.; Dausman, A.; Deangelis, B.M.; Hughes, A.R.; et al. Investing in Natural and Nature-Based Infrastructure: Building Better Along Our Coasts. Sustainability 2018, 10, 523. [Google Scholar] [CrossRef]
- Barbier, E.B. Valuing ecosystem services as productive inputs. Econ. Policy 2007, 22, 178–229. [Google Scholar] [CrossRef]
- Farber, S. The value of coastal wetlands for protection of property against hurricane wind damage. J. Environ. Econ. Manag. 1987, 14, 143–151. [Google Scholar] [CrossRef]
- Costanza, R.; Farber, S.C.; Maxwell, J. Valuation and management of wetland ecosystems. Ecol. Econ. 1989, 1, 335–361. [Google Scholar] [CrossRef]
- Silva, R.; Martínez, M.L.; Odériz, I.; Mendoza, E.; Feagin, R.A. Response of vegetated dune-beach systems to storm conditions. Coast. Eng. 2016, 109, 53–62. [Google Scholar] [CrossRef]
- Fosberg, F.R.; Chapman, V.J. Mangroves v. tidal waves. Biol. Conserv. 1971, 4, 38–39. [Google Scholar] [CrossRef]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Bruun, P.; Gerritsen, F.; Morgan, W.H. Florida Coastal Problems. Coast. Eng. Proc. 1957, 1, 463–509. [Google Scholar] [CrossRef]
- Barbier, E.B. Natural barriers to natural disasters: Replanting mangroves after the tsunami. Front. Ecol. Environ. 2006, 4, 124–131. [Google Scholar] [CrossRef]
- Challenger, A.; Soberón, J. Los ecosistemas terrestres. In Capital Natural de México, Vol. I. Conocimiento Actual de la Biodiversidad; CONABIO: Mexico City, Mexico, 2008; pp. 87–108. [Google Scholar]
- Vandecar, K.L.; Lawrence, D.; Richards, D.; Schneider, L.; Rogan, J.; Schmook, B.; Wilbur, H. High Mortality for Rare Species Following Hurricane Disturbance in the Southern Yucatán. Biotropica 2011, 43, 676–684. [Google Scholar] [CrossRef]
- McGroddy, M.; Lawrence, D.; Schneider, L.; Rogan, J.; Zager, I.; Schmook, B. Damage patterns after Hurricane Dean in the southern Yucatán: Has human activity resulted in more resilient forests? For. Ecol. Manag. 2013, 310, 812–820. [Google Scholar] [CrossRef]
- Samaras, A.G.; Koutitas, C.G. Modeling the impact of climate change on sediment transport and morphology in coupled watershed-coast systems: A case study using an integrated approach. Int. J. Sediment Res. 2014, 29, 304–315. [Google Scholar] [CrossRef]
- Corbetts, C.W.; Wahlb, M.; Porter, D.; Edwards, D.; Moise, C. Nonpoint source runoff modeling A comparison of a forested watershed and an urban watershed on the South Carolina coast. J. Exp. Mar. Biol. Ecol. 1997, 213, 133–149. [Google Scholar] [CrossRef]
Year | Hurricane | Category | Landing | Economic Damages (Million USD) | Death Toll |
---|---|---|---|---|---|
1955 | Hilda | 3 | Yucatan, Tamaulipas | 120 | 300 |
1955 | Janet | 5 | Yucatan, Veracruz, Tamaulipas | 45 | 800 |
1959 | Mexico | 5 | Colima, Jalisco | 280 | hundreds |
1967 | Beulah | 3 | Tamaulipas | 100 | 38 |
1988 | Gilbert | 5 | Yucatan, Campeche, Veracruz, Tamaulipas | 2000 | 202 |
1995 | Opal | 5 | Yucatan, Campeche, Tabasco, Quintana Roo | 5.1 | 63 |
1995 | Roxane | 3 | Campeche, Quintana Roo, Tabasco, Veracruz, Yucatan | 1500 | 14 |
1997 | Pauline | 4 | Oaxaca, Guerrero | 7500 | 400 |
2005 | Emily | 4 | Quintana Roo, Campeche, Tamaulipas | 632 | 9 |
2005 | Wilma | 5 | Quintana Roo, Campeche | 10,000 | 19 |
2005 | Stan | 1 | Campeche | 3000 | 1668 |
2007 | Dean | 5 | Yucatan, Campeche, Veracruz | 200 | 12 |
2012 | Charlotte | 2 | Oaxaca | 113 | 7 |
2013 | Manuel | 1 | Guerrero | 5700 | 168 |
2013 | Ingrid | 1 | Gulf of Mexico | ||
2014 | Odile | 4 | Baja California | 1200 | 18 |
2015 | Patricia | 5 | Jalisco | 460 | 13 |
Land Cover Period | Period of Hydrometeorological Events Analyzed |
---|---|
1993 | 1970–1993 |
2002 | 1994–2002 |
2008 | 2003–2008 |
2011 | 2009 to present |
Regression Type | ||||
---|---|---|---|---|
General: States (n = 1984) | Specific: Municipalities (n = 2288) | |||
Database Used | Database Used | |||
Hydrometeorological events used | All (floods, heavy rains, tropical cyclones) | CENAPRED (2000–2015) [33] | Tropical cyclones | DESINVENTAR (1970–2011) [23] |
Explanatory variables | Social Vulnerability Index | CENAPRED (calculated with data from 2000–2015) [27] | Social Vulnerability Index | CENAPRED (calculated with data from 2000–2015) [27] |
Population per state (5-year mean) | INEGI [21] (2000–2010) | Population per municipality (5-year mean) | INEGI [21] | |
Land use cover (mangroves, agriculture, cloud forest, oak forest, shrubland, grassland, tropical rainforest, without vegetation, and other land use types) | INEGI [28,29,31] (2002, 2007, 2011) | Land use cover (mangroves, agriculture, cloud forest, oak forest, shrubland, grassland, tropical rainforest, without vegetation, and other land use types) | INEGI [28,29,31,39] | |
Hazard Index | CENAPRED (calculated with data from 1970–2011) [25] | Hazard Index | CENAPRED (calculated with data from 1970–2011) [25] | |
Response variables | Economic damages (pondered with state GDP 5-year mean) | CENAPRED (2000–2015) [43] | ||
Total number of casualties (pondered with state population—5-year mean) | CENAPRED (2000–2015) [43] | Occurrence of casualties | DESINVENTAR [23] |
Reduced Model | Estimate | Std. Error | t Value | Pr (>|t|) | Significance |
---|---|---|---|---|---|
(Intercept) | 1.21 × 10−7 | 2.47 × 10−7 | 0.489 | 0.62484 | |
Social vulnerability | −1.04 × 10−7 | 7.08 × 10−8 | −1.469 | 1.42 × 10−1 | |
Hazard index | 1.97 × 10−7 | 4.26 × 10−8 | 4.635 | 3.80 × 10−6 | *** |
Mangrove | 3.58 × 10−12 | 1.71 × 10−12 | 2.097 | 3.61 × 10−2 | * |
Pine forest | −1.96 × 10−13 | 5.66 × 10−14 | −3.469 | 5.33 × 10−4 | *** |
Shrubland | 6.94 × 10−14 | 1.28 × 10−14 | 5.417 | 6.81 × 10−8 | *** |
Tropical dry forest | −2.03 × 10−13 | 8.34 × 10−14 | −2.434 | 0.015004 | * |
Agriculture | 7.48 × 10−13 | 2.99 × 10−13 | 2.497 | 0.012589 | * |
Thorn forest | −7.59 × 10−13 | 4.07 × 10−13 | −1.864 | 0.062485 | |
Tropical rain forest | −3.20 × 10−13 | 1.31 × 10−13 | −2.452 | 0.014304 | * |
Cloud forest | 8.38 × 10−13 | 3.11 × 10−13 | 2.696 | 0.007079 | ** |
Deviance Residuals: | |||||
Min | 1Q | Median | 3Q | Max | |
−1.527 × 10−6 | −2.622 × 10−7 | −1.581 × 10−7 | −4.300 × 10−9 | 3.075 × 10−5 | |
n = 1985 | |||||
Null deviance: 2.8156 × 10−9 on 1984 degrees of freedom | |||||
Residual deviance: 2.6987 × 10−9 on 1974 degrees of freedom | |||||
AIC: −48,581 | |||||
Number of Fisher Scoring iterations: 2 |
Reduced Model | Estimate | Std. Error | t Value | Pr (>|t|) | Significance |
---|---|---|---|---|---|
(Intercept) | 1.43 × 10−3 | 1.16 × 10−3 | 1.226 | 0.220266 | |
Social vulnerability | −9.18 × 10−4 | 3.47 × 10−4 | −2.643 | 0.008279 | ** |
Hazard index | 6.99 × 10−4 | 2.09 × 10−4 | 3.344 | 0.000843 | *** |
Oak forest | −2.04 × 10−9 | 7.80 × 10−10 | −2.614 | 0.009006 | ** |
Grassland | 6.22 × 10−10 | 4.13 × 10−10 | 1.508 | 0.131797 | |
Agriculture | 3.54 × 10−9 | 1.35 × 10−9 | 2.629 | 0.008633 | ** |
Wetlands | 4.91 × 10−9 | 1.99 × 10−9 | 2.469 | 0.013641 | * |
Other | 2.05 × 10−8 | 9.26 × 10−9 | 2.212 | 0.027056 | * |
Thorn forest | −5.18 × 10−9 | 1.84 × 10−9 | −2.817 | 0.004893 | ** |
Deviance Residuals: | |||||
Min | 1Q | Median | 3Q | Max | |
−0.005711 | −0.001136 | −0.000383 | 0.000313 | 0.205669 | |
N = 1984 | |||||
Null deviance: 0.085601 on 1983 degrees of freedom | |||||
Residual deviance: 0.083359 on 1975 degrees of freedom | |||||
AIC: −14,343 | |||||
Number of Fisher Scoring iterations: 2 |
Estimate | Std. Error | z Value | Pr (>|z|) | Significance | |
---|---|---|---|---|---|
(Intercept) | −1.52 | 2.49 × 10−1 | −6.125 | 9.09 × 10−10 | *** |
Social vulnerability | 1.57 × 10−1 | 8.39 × 10−2 | 1.873 | 0.06106 | |
Mangrove | −3.09 × 10−5 | 1.05 × 10−5 | −2.936 | 0.00333 | ** |
Grassland | 1.43 × 10−6 | 6.46 × 10−7 | 2.218 | 0.02658 | * |
Tropical dry forest | −3.95 × 10−6 | 1.17 × 10−6 | −3.389 | 0.0007 | *** |
Tropical rain forest | −1.81 × 10−6 | 1.08 × 10−6 | −1.683 | 0.09238 | |
Thorn forest | 4.96 × 10−6 | 3.42 × 10−6 | 1.451 | 0.14688 | |
Deviance Residuals: | |||||
Min | 1Q | Median | 3Q | Max | |
−1.2734 | −0.7554 | −0.6745 | −0.2163 | 2.9312 | |
N = 1134 | |||||
Null deviance: 1170.6 on 1133 degrees of freedom | |||||
Residual deviance: 1116.5 on 1127 degrees of freedom | |||||
AIC: 1130.5 | |||||
Number of Fisher Scoring iterations: 6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Maqueo, O.; Martínez, M.L.; Sánchez-Barradas, F.C.; Kolb, M. Assessing Nature-Based Coastal Protection against Disasters Derived from Extreme Hydrometeorological Events in Mexico. Sustainability 2018, 10, 1317. https://doi.org/10.3390/su10051317
Pérez-Maqueo O, Martínez ML, Sánchez-Barradas FC, Kolb M. Assessing Nature-Based Coastal Protection against Disasters Derived from Extreme Hydrometeorological Events in Mexico. Sustainability. 2018; 10(5):1317. https://doi.org/10.3390/su10051317
Chicago/Turabian StylePérez-Maqueo, Octavio, M. Luisa Martínez, Flor C. Sánchez-Barradas, and Melanie Kolb. 2018. "Assessing Nature-Based Coastal Protection against Disasters Derived from Extreme Hydrometeorological Events in Mexico" Sustainability 10, no. 5: 1317. https://doi.org/10.3390/su10051317
APA StylePérez-Maqueo, O., Martínez, M. L., Sánchez-Barradas, F. C., & Kolb, M. (2018). Assessing Nature-Based Coastal Protection against Disasters Derived from Extreme Hydrometeorological Events in Mexico. Sustainability, 10(5), 1317. https://doi.org/10.3390/su10051317