Predictive Diagnosis of Agricultural Periurban Areas Based on Territorial Indicators: Comparative Landscape Trends of the So-Called “Orchard of Europe”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Static Indicators: Current Territory Transformations
2.1.1. Land “Artificialization” Rate (LAR)
- Sn = Land use changed in a permanent way from 1950 until now (m2)
- Str = territorial surface in reference (m2)
2.1.2. Indicator of Infrastructural Anthropization (IFA)
- Li = length of agricultural paths, streets, urban roads and motorways (m)
- Str = territorial surface in reference (m2)
2.1.3. Indicator of Urban Fragmentation (UFI)
- Li = maximum dimension of urban boundary (m), Ltr = dimension of reference boundary (m)
- Sui = Urbanized territory (m2)
- Str = territorial surface in reference (m2)
2.2. Dynamic Indicators: Landscape Trends towards Future Scenarios
2.2.1. Index of Landscape Compactness (LCI)
- af = perimeter of a homogeneous subunit i of landscape
- Pi = perimeter in reference of the global periurban area i
2.2.2. Urban Sprawl Velocity
- Ti = Average annual rate in the increase of territory consumption (%)
- Ci: value/measurement of urban sprawl consumed territory on the date i
- a: adjustment factor for unequal periods of time (for annual intervals a = 1).
2.2.3. Index of Contribution to New Low Density Urban Cores (ICNUC)
- Is = dispersed building: low density and isolated urban sprawl configuring dispersed urban nuclei (Ha)
- Cs = consumed territory by regular urban sprawl processes of existing settlements (Ha)
2.2.4. Index of Agricultural Transformation (IAT)
- ni = Natural areas transformed into arable land or permanent crops for a year i [Ha].
- ai = non-irrigated crops transformed into irrigated ones for a year i [Ha].
- Pi = global agricultural periurban areas for a year i in the reference area of study [Ha].
3. Results
3.1. Analysis of the Three Case Studies
3.1.1. The Huerta de Murcia Área
3.1.2. El Ejido—Campo Dalias Area
3.1.3. Campo de Cartagena—Mar Menor Area
3.2. Comparative Results
4. Discussion
5. Conclusions
Supplementary Materials
Conflicts of Interest
References
- Ahmed, N.; Englund, J.-E.; Åhman, I.; Lieberg, M.; Johansson, E. Perception of pesticide use by farmers and neighbors in two periurban areas. Sci. Total Environ. 2011, 412–413, 77–86. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, D.; Privitera, R. Characterization of non-urbanized areas for land-use planning of agricultural and green infrastructure in urban contexts. Landsc. Urban Plan. 2013, 109, 94–106. [Google Scholar] [CrossRef]
- Narain, V. Taken for a ride? Mainstreaming periurban transport with urban expansion policies. Land Use Policy 2017, 64, 145–152. [Google Scholar] [CrossRef]
- Salvati, L.; Zitti, M.; Sateriano, A. Changes in city vertical profile as an indicator of sprawl: Evidence from a Mediterranean urban region. Habitat Int. 2013, 38, 119–125. [Google Scholar] [CrossRef]
- Verdú-Vázquez, A.; Fernández-Pablos, E.; Lozano-Diez, R.V.; López-Zaldívar, Ó. Development of a methodology for the characterization of urban and periurban green spaces in the context of supra-municipal sustainability strategies. Land Use Policy 2017, 69, 75–84. [Google Scholar] [CrossRef]
- Taylor, J.R.; Lovell, S.T. Mapping public and private spaces of urban agriculture in Chicago through the analysis of high-resolution aerial images in Google Earth. Landsc. Urban Plan. 2012, 108, 57–70. [Google Scholar] [CrossRef]
- Inostroza, L.; Baur, R.; Csaplovics, E. Urban sprawl and fragmentation in Latin America: A dynamic quantification and characterization of spatial patterns. J. Environ. Manag. 2013, 115, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Statuto, D.; Cillis, G.; Picuno, P. Analysis of the effects of agricultural land use change on rural environment and landscape through historical cartography and GIS tools. J. Agric. Eng. 2016, 47, 28–39. [Google Scholar] [CrossRef]
- García-Ayllón, S. Rapid development as a factor of imbalance in urban growth of cities in Latin America: A perspective based on territorial indicators. Habitat Int. 2016, 58. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Zhang, B.; Wang, Z.; Liu, M. Quantifying Urban Land Sprawl and its Driving Forces in Northeast China from 1990 to 2015. Sustainability 2018, 10, 188. [Google Scholar] [CrossRef]
- Dai, E.; Wang, Y.; Ma, L.; Yin, L.; Wu, Z. “Urban-Rural” Gradient Analysis of Landscape Changes around Cities in Mountainous Regions: A Case Study of the Hengduan Mountain Region in Southwest China. Sustainability 2018, 10, 1019. [Google Scholar] [CrossRef]
- García-Ayllón, S. GIS Assessment of Mass Tourism Anthropization in Sensitive Coastal Environments: Application to a Case Study in the Mar Menor Area. Sustainability 2018, 12, 1344. [Google Scholar] [CrossRef]
- Duarte, R.; Pinilla, V.; Serrano, A. The water footprint of the Spanish agricultural sector: 1860–2010. Ecol. Econ. 2014, 108, 200–207. [Google Scholar] [CrossRef]
- Garcia-ayllon, S. Geographic Information System (GIS) Analysis of Impacts in the Tourism Area Life Cycle (TALC) of a Mediterranean Resort. Int. J. Tour. Res. 2016, 18, 186–196. [Google Scholar] [CrossRef]
- IMIDA IDERM. Infraestructuras de Datos Espaciales de la Región de Murcia. Available online: http://iderm.imida.es/geoportal/catalog/main/home.page (accessed on 18 March 2018).
- Junta de Andalucia Infraestructuras de Datos Espaciales IDE Andalucia. Available online: http://www.ideandalucia.es/portal/web/ideandalucia/ (accessed on 18 March 2018).
- European Commission INSPIRE. Available online: https://inspire.ec.europa.eu/ (accessed on 18 March 2018).
- European Environment Agency Corine Land Cover. 2012. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012 (accessed on 18 March 2018).
- García-Ayllón, S. The Integrated Territorial Investment (ITI) of the Mar Menor as a model for the future in the comprehensive management of enclosed coastal seas. Ocean Coast. Manag. 2018. [Google Scholar] [CrossRef]
- Statuto, D.; Cillis, G.; Picuno, P. Using Historical Maps within a GIS to Analyze Two Centuries of Rural Landscape Changes in Southern Italy. Land 2017, 6, 65. [Google Scholar] [CrossRef]
- Gutiérrez Angonese, J.; Grau, H.R. Assessment of swaps and persistence in land cover changes in a subtropical periurban region, NW Argentina. Landsc. Urban Plan. 2014, 127, 83–93. [Google Scholar] [CrossRef]
- Ode, Å.; Tveit, M.S.; Fry, G. Capturing Landscape Visual Character Using Indicators: Touching Base with Landscape Aesthetic Theory. Landsc. Res. 2008, 33, 89–117. [Google Scholar] [CrossRef]
- Ren, Y.; Yan, J.; Wei, X.; Wang, Y.; Yang, Y.; Hua, L.; Xiong, Y.; Niu, X.; Song, X. Effects of rapid urban sprawl on urban forest carbon stocks: Integrating remotely sensed, GIS and forest inventory data. J. Environ. Manag. 2012, 113, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, J. The Cultural Values Model: An integrated approach to values in landscapes. Landsc. Urban Plan. 2008, 84, 127–139. [Google Scholar] [CrossRef]
- Vizzari, M.; Hilal, M.; Sigura, M.; Antognelli, S.; Joly, D. Urban-rural-natural gradient analysis with CORINE data: An application to the metropolitan France. Landsc. Urban Plan. 2018, 171, 18–29. [Google Scholar] [CrossRef]
- European Environment Agency. CLC2006 Technical Guidelines; European Environment Agency: Copenhagen, Demark, 2007; Volume, 2007; Volume 2010, p. 70. [Google Scholar]
- Liu, X.; Zhou, J. Mind the missing links in China’s urbanizing landscape: The phenomenon of broken intercity trunk roads and its underpinnings. Landsc. Urban Plan. 2017, 165, 64–72. [Google Scholar] [CrossRef]
- Ji, W.; Ma, J.; Twibell, R.W.; Underhill, K. Characterizing urban sprawl using multi-stage remote sensing images and landscape metrics. Comput. Environ. Urban Syst. 2006, 30, 861–879. [Google Scholar] [CrossRef]
- García-Ayllón, S. Retro-diagnosis methodology for land consumption analysis towards sustainable future scenarios: Application to a mediterranean coastal area. J. Clean. Prod. 2018. [Google Scholar] [CrossRef]
- Zhang, X.; Skitmore, M.; De Jong, M.; Huisingh, D.; Gray, M. Regenerative sustainability for the built environment—From vision to reality: An introductory chapter. J. Clean. Prod. 2015, 109, 1–10. [Google Scholar] [CrossRef]
- Yue, W.; Liu, Y.; Fan, P. Measuring urban sprawl and its drivers in large Chinese cities: The case of Hangzhou. Land Use Policy 2013, 31, 358–370. [Google Scholar] [CrossRef]
- Van Vliet, J.; de Groot, H.L.F.; Rietveld, P.; Verburg, P.H. Manifestations and underlying drivers of agricultural land use change in Europe. Landsc. Urban Plan. 2015, 133, 24–36. [Google Scholar] [CrossRef]
- Estrella, E. García-Ayllón La evolución urbana de la ciudad de Murcia entorno al rio Segura. Rev. Obras Publicas 2012, 3941, 69–82. [Google Scholar]
- Ros, M.; Sanz, J.P.; García, F. Periurban land management in the garden of Murcia. In Proceedings of the First National Congress of Applied Research Building Management, Alicante, Spain, 28–30 June 2010. [Google Scholar]
- Barbero-Sierra, C.; Marques, M.J.; Ruíz-Pérez, M. The case of urban sprawl in Spain as an active and irreversible driving force for desertification. J. Arid Environ. 2013, 90, 95–102. [Google Scholar] [CrossRef]
- Galdeano-Gómez, E.; Aznar-Sánchez, J.A.; Pérez-Mesa, J.C.; Piedra-Muñoz, L. Exploring Synergies among Agricultural Sustainability Dimensions: An Empirical Study on Farming System in Almería (Southeast Spain). Ecol. Econ. 2017, 140, 99–109. [Google Scholar] [CrossRef]
- Daniele, L.; Vallejos, Á.; Corbella, M.; Molina, L.; Pulido-Bosch, A. Hydrogeochemistry and geochemical simulations to assess water–rock interactions in complex carbonate aquifers: The case of Aguadulce (SE Spain). Appl. Geochem. 2013, 29, 43–54. [Google Scholar] [CrossRef]
- Veolia. Campo Dalías desalination plant—One of the largest in Europe. Membr. Technol. 2016, 2016, 9. [Google Scholar] [CrossRef]
- García-Ayllón, S. Diagnosis of complex coastal ecological systems: Environmental GIS analysis of a highly stressed Mediterranean lagoon through spatiotemporal indicators. Ecol. Indic. 2017, 83. [Google Scholar] [CrossRef]
- García-Ayllón, S. La Manga case study: Consequences from short-term urban planning in a tourism mass destiny of the Spanish Mediterranean coast. Cities 2015, 43, 141–151. [Google Scholar] [CrossRef]
1950 | 1960 | 1970 | 1981 | 1991 | 2001 | 2011 | 2016 | |
---|---|---|---|---|---|---|---|---|
Land transformed (km2) | ||||||||
Huerta de Murcia (HdM) | 526 | 1079 | 1886 | 2782 | 3931 | 6156 | 7832 | 8867 |
Region of Murcia (RoM) | 4861 | 6415 | 8579 | 10,515 | 14,806 | 28,252 | 54,673 | 55,932 |
% HdM/RoM | 10.82 | 16.81 | 21.98 | 26.45 | 26.55 | 21.78 | 14.32 | 15.85 |
Population | ||||||||
Huerta de Murcia (HdM) | 260,023 | 297,806 | 304,522 | 371,237 | 432,851 | 491,290 | 551,119 | 626,451 |
Region of Murcia (RoM) | 755,850 | 803,086 | 832,047 | 955,487 | 1,045,601 | 1,190,379 | 1,335,792 | 1,521,354 |
% HdM/RoM | 34.40 | 37.08 | 36.59 | 38.85 | 41.39 | 41.27 | 41.25 | 41.17 |
1950 | 1960 | 1970 | 1981 | 1991 | 2001 | 2011 | 2016 | |
---|---|---|---|---|---|---|---|---|
Land transformed (LT, km2) | ||||||||
Greenhouse surface | 0 | 22 | 436 | 2782 | 6388 | 15,874 | 25,556 | 26,738 |
Urban surface | 1036 | 1084 | 1517 | 1960 | 3006 | 3852 | 4673 | 4782 |
LT/Total area (%) | 3.03 | 3.23 | 5.70 | 13.85 | 27.43 | 57.60 | 88.28 | 92.05 |
Population | ||||||||
El Ejido city | 3023 | 8064 | 12,199 | 20,458 | 31,201 | 55,710 | 83,774 | 88,752 |
Roquetas de Mar city | 3811 | 7059 | 12,884 | 18,891 | 26,842 | 50,096 | 82,860 | 91,965 |
Campo Dalias territory | 8782 | 18,930 | 32,174 | 46,091 | 69,399 | 136,543 | 254,720 | 303,604 |
Agrifood production (thousands of tons) | ||||||||
Campo Dalias territory | 32 | 35 | 344 | 817 | 1478 | 2501 | 2749 | 3103 |
1950 | 1960 | 1970 | 1981 | 1991 | 2001 | 2011 | 2016 | |
---|---|---|---|---|---|---|---|---|
Land transformed (LT, km2) | ||||||||
Irrigation areas (Ha) | 0 | 22 | 436 | 2782 | 6388 | 15,874 | 25,556 | 26,738 |
Urban surface areas (Ha) | 1036 | 1084 | 1517 | 1960 | 3006 | 3852 | 4673 | 4782 |
Coastal occupation 1 (%) | 3.03 | 3.23 | 5.70 | 25.85 | 45.43 | 67.60 | 88.28 | 89.05 |
Tourist resorts | ||||||||
Resorts built | 0 | 0 | 0 | 1 | 2 | 5 | 17 | 18 |
Total resorts surface (Ha) | 0 | 0 | 0 | 202 | 391 | 2674 | 5521 | 5714 |
Population | ||||||||
Campo de Cartagena | 184,855 | 179,847 | 204,671 | 238,138 | 251,837 | 301,256 | 402,278 | 420,183 |
Whole Region of Murcia | 755,850 | 803,086 | 832.047 | 955.487 | 1.045,601 | 1,190,379 | 1,335,792 | 1,465,867 |
Huerta de Murcia | Campo Dalias—El Ejido | Campo de Cartagena | |||||||
---|---|---|---|---|---|---|---|---|---|
Landscape subunits (Ha) | 12 subunits | Min. | 1560 | 8 subunits | Min. | 1345 | 9 subunits | Min. | 2234 |
Average | 3050 | Average | 4448 | Average | 4421 | ||||
Max. | 3978 | Max. | 5770 | Max. | 6051 | ||||
Static Indicators | |||||||||
LAR | Bottom | Average | Top | Bottom | Average | Top | Bottom | Average | Top |
0.322 | 0.467 | 0.685 | 0.103 | 0.622 | 0.792 | 0.255 | 0.304 | 0.360 | |
IFA | Bottom | Average | Top | Bottom | Average | Top | Bottom | Average | Top |
0.551 | 0.643 | 0.677 | 0.099 | 0.221 | 0.476 | 0.292 | 0.333 | 0.394 | |
UFI | Bottom | Average | Top | Bottom | Average | Top | Bottom | Average | Top |
0.457 | 0.504 | 0.622 | 0.068 | 0.183 | 0.272 | 0.324 | 0.341 | 0.399 | |
Dynamic Indicators | |||||||||
LCI | 1956–1981 | 1981–1999 | 1999–2016 | 1956–1981 | 1981–1999 | 1999–2016 | 1956–1981 | 1981–1999 | 1999–2016 |
0.776 | 0.612 | 0.414 | 0.921 | 0.878 | 0.824 | 0.901 | 0.857 | 0.710 | |
Average Ti | 1956–1981 | 1981–1999 | 1999–2016 | 1956–1981 | 1981–1999 | 1999–2016 | 1956–1981 | 1981–1999 | 1999–2016 |
0.289 | 0.441 | 0.532 | 0.049 | 0.137 | 0.152 | 0.054 | 0.188 | 0.308 | |
Average ICNUC | 1956–1981 | 1981–1999 | 1999–2016 | 1956–1981 | 1981–1999 | 1999–2016 | 1956–1981 | 1981–1999 | 1999–2016 |
0.421 | 0.585 | 0.689 | 0.022 | 0.026 | 0.029 | 0.045 | 0.108 | 0.309 | |
Average IAT | 1956–1981 | 1981–1999 | 1999–2016 | 1956–1981 | 1981–1999 | 1999–2016 | 1956–1981 | 1981–1999 | 1999–2016 |
0.321 | 0.256 | 0.109 | 0.559 | 0.737 | 0.771 | 0.132 | 0.318 | 0.564 |
Sample 1 (West Orchard) | Sample 2 (East Orchard) | ||
---|---|---|---|
Analyzed surface | 654,387 m2 | Analyzed surface | 654,387 m2 |
1956 | |||
Artificial surface | 8220 m2 | Artificial surface | 5343 m2 |
Agricultural area | 563,835 m2 | Agricultural area | 606,911 m2 |
Number of houses | 201 | Number of houses | 33 |
Average plot size | 15,600 m2 | Average plot size | 16,300 m2 |
Road length | 1013 m | Road length | 818 m |
Cultivated land in use | 555,245 m2 | Cultivated land in use | 592,804 m2 |
1956–1981 Average transformation rate | 12.5% | 1956–1981 Average transformation rate | 11.7% |
1981 | |||
Artificial surface | 27,514 m2 | Artificial surface | 9678 m2 |
Agricultural area | 556,976 m2 | Agricultural area | 601,372 m2 |
Number of houses | 437 | Number of houses | 65 |
Average plot size | 7400 m2 | Average plot size | 14,800 m2 |
Road length | 4844 m | Road length | 1399 m |
Cultivated land in use | 489,981 m2 | Cultivated land in use | 565,701 m2 |
1981–2016 Average transformation rate | 67.3% | 1981–2016 Average transformation rate | 37.6% |
2016 | |||
Artificial surface | 67,165 m2 | Artificial surface | 18,263 m2 |
Agricultural area | 523,632 m2 | Agricultural area | 597,372 m2 |
Number of houses | 743 | Number of houses | 108 |
Average plot size | 1600 m2 | Average plot size | 12,200 m2 |
Road length | 9673 m | Road length | 4836 m |
Cultivated land in use | 217,812 m2 | Cultivated land in use | 486,785 m2 |
Trend transformation rate in 2016 (linearized) | 36.2% | Trend transformation rate in 2016 (linearized) | 29.9% |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Ayllón, S. Predictive Diagnosis of Agricultural Periurban Areas Based on Territorial Indicators: Comparative Landscape Trends of the So-Called “Orchard of Europe”. Sustainability 2018, 10, 1820. https://doi.org/10.3390/su10061820
García-Ayllón S. Predictive Diagnosis of Agricultural Periurban Areas Based on Territorial Indicators: Comparative Landscape Trends of the So-Called “Orchard of Europe”. Sustainability. 2018; 10(6):1820. https://doi.org/10.3390/su10061820
Chicago/Turabian StyleGarcía-Ayllón, Salvador. 2018. "Predictive Diagnosis of Agricultural Periurban Areas Based on Territorial Indicators: Comparative Landscape Trends of the So-Called “Orchard of Europe”" Sustainability 10, no. 6: 1820. https://doi.org/10.3390/su10061820
APA StyleGarcía-Ayllón, S. (2018). Predictive Diagnosis of Agricultural Periurban Areas Based on Territorial Indicators: Comparative Landscape Trends of the So-Called “Orchard of Europe”. Sustainability, 10(6), 1820. https://doi.org/10.3390/su10061820