The Role of Urban Agriculture as a Nature-Based Solution: A Review for Developing a Systemic Assessment Framework
Abstract
:1. Introduction
2. Methods
2.1. Review Approach
- (1)
- focus on urban areas in the global north,
- (2)
- address UPA with a focus on food supply,
- (3)
- deal at least with one of the ten challenges,
- (4)
- are published in English,
- (5)
- are published from 2010 onwards and
- (6)
- provide an empirical study (reviews, explorative or conceptual papers were excluded to ensure that primary data on UPA is gained).
2.2. Analysis Approach of Identified Papers
3. Results
3.1. General Overview and Patterns
3.1.1. Temporal Development
3.1.2. Geographical Pattern
3.1.3. Major Groups of Papers
- (1)
- Papers focusing on threats related to UPA and the challenges:
- (1a)
- Those that study negative impacts from UPA impacting a challenge (e.g., fertilizer used for UPA jeopardizes challenge 3, biodiversity) (n = 14).
- (1b)
- Those that reflect negative impacts to UPA through challenges (e.g., challenge 1, climate change, increases the risk of floods jeopardizing UPA) (n = 6).
- (2)
- Papers focusing on opportunities related to UPA and the challenges:
- (2a)
- Those that investigate positive impacts from UPA on a challenge (e.g., urban gardening contributing to social cohesion (challenge 9) (n = 90).
- (2b)
- Those that reflect positive impacts to UPA through impacts related to a challenge (e.g., challenge 1, climate change, and the related impact urban heat island promote food supply of exotic fruits) (n = 16).
- (3)
- Papers having an open focus (negative/positive impacts) related to UPA and the challenges:
- (3a)
- Those that study positive and negative impacts resulting from UPA on a challenge (e.g., assessing the environmental performance of food production by rooftop gardens using a life cycle assessment approach (challenge 5)) (n = 21).
- (3b)
- Those that consider positive and negative impacts to UPA through impacts related to a challenge (e.g., assessing the soil quality of urban brownfields (challenge 6) used for urban gardening) (n = 24).
3.2. UPA Contributing to Societal Challenges of Urbanization
3.2.1. Climate Change
3.2.2. Food Security
3.2.3. Biodiversity and Ecosystem Services
3.2.4. Agricultural Intensification
3.2.5. Resource Efficiency
3.2.6. Urban Renewal and Regeneration
3.2.7. Land Management and Governance
3.2.8. Public Health
3.2.9. Social Cohesion, Social Justice, Participation/Civic Engagement
3.2.10. Economic Growth
3.3. Implementation of UPA as Nature-Based Solution and Its Co-Benefits
3.3.1. Drivers and Constraints of UPA Implementation
3.3.2. Instruments Supporting UPA Implementation
3.3.3. Actors Relevant for UPA Implementation
3.4. Co-Benefits of UPA
3.4.1. Ecosystem Services and Multifunctional Benefits by UPA
3.4.2. Actors Affected by UPA
4. Discussion
4.1. (Peri-)Urban Agriculture as Nature-Based Solution—An Assessment Framework
4.1.1. Vision Definition
4.1.2. Implementation Efficiency
4.1.3. Impact Efficiency
4.1.4. Possibilities for Applying the Assessment Framework
4.2. Risks and Ecosystem Disservices Related with UPA
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- European Environmental Agency (EEA). Land Take. Available online: http://www.eea.europa.eu/data-and-maps/indicators/land-take-2/assessment (accessed on 24 May 2018).
- Eigenbrod, F.; Bell, V.; Davies, H.; Heinemeyer, A.; Armsworth, P.; Gaston, K. The impact of projected increases in urbanization on ecosystem services. Proc. R. Soc. Lond. B 2011. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.; Chakraborty, A. The environmental impacts of sprawl: Emergent themes from the past decade of planning research. Sustainability 2013, 5, 3302–3327. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of the World’s Land and Water Resources for Food and Agriculture: Managing Systems at Risk; Earthscan: London, UK, 2011. [Google Scholar]
- Grewal, S.S.; Grewal, P.S. Can cities become self-reliant in food? Cities 2012, 29, 1–11. [Google Scholar] [CrossRef]
- Haberman, D.; Gillies, L.; Canter, A.; Rinner, V.; Pancrazi, L.; Martellozzo, F. The potential of urban agriculture in Montréal: A quantitative assessment. Int. J. Geo-Inf. 2014, 3, 1101–1117. [Google Scholar] [CrossRef] [Green Version]
- Lovell, S.T. Multifunctional urban agriculture for sustainable land use planning in the United States. Sustainability 2010, 2, 2499–2522. [Google Scholar] [CrossRef]
- Russo, A.; Escobedo, F.J.; Cirella, G.T.; Zerbe, S. Edible green infrastructure: An approach and review of provisioning ecosystem services and disservices in urban environments. Agric. Ecosyst. Environ. 2017, 242, 53–66. [Google Scholar] [CrossRef]
- Worldwatch Institute. State of the World 2011. Innovations that Nourish the Planet; Worldwatch Institute: Washington, DC, USA, 2011. [Google Scholar]
- Dutt, A. The Future of Food in Cities: Urban Agriculture. Available online: http://www.ipsnews.net/2016/07/the-future-of-food-in-cities-urban-agriculture/ (accessed on 24 May 2018).
- European Commission. Guidelines on Best Practice to Limit, Mitigate or Compensate Soil Sealing (Commission Staff Working Document); EC: Brussels, Belgium, 2012. [Google Scholar]
- United Nations. Resolution Adopted by the General Assembly on 25 September 2015. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Mok, H.-F.; Williamson, V.G.; Grove, J.R.; Burry, K.; Barker, S.F.; Hamilton, A.J. Strawberry fields forever? Urban agriculture in developed countries: A review. Agron. Sustain. Dev. 2014, 34, 21–43. [Google Scholar] [CrossRef]
- Poulsen, M.N. Cultivating citizenship, equity, and social inclusion? Putting civic agriculture into practice through urban farming. Agric. Hum. Values 2017, 34, 135–148. [Google Scholar] [CrossRef]
- Forster, T.H.; Hussein, K.; Mattheisen, E. City region food systems: An inclusive and integrated approach to improving food systems and urban-rural linkages. Urban Agric. Mag. 2015, 29, 8–11. [Google Scholar]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef]
- European Commission. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities: Final Report of the Horizon 2020 Expert Group on ‘nature-Based Solutions and Re-Naturing Cities’; EC: Brussels, Belgium, 2015. [Google Scholar]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef]
- Santiago Fink, H. Human-nature for climate action: Nature-based solutions for urban sustainability. Sustainability 2016, 8, 254. [Google Scholar] [CrossRef]
- Raymond, C.M.; Berry, P.; Breil, M.; Nita, M.R.; Kabisch, N.; de Bel, M.; Enzi, V.; Frantzeskaki, N.; Geneletti, D.; Cardinaletti, M.; et al. An Impact Evaluation Framework to Support Planning and Evaluation of Nature-Based Solutions Projects; Centre for Ecology & Hydrology: Wallingford, UK, 2017. [Google Scholar]
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-based solutions: New influence for environmental management and research in Europe. GAIA-Ecol. Perspect. Sci. Soc. 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Lin, B.B.; Philpott, S.M.; Jha, S. The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic Appl. Ecol. 2015, 16, 189–201. [Google Scholar] [CrossRef]
- Pourias, J.; Aubry, C.; Duchemin, E. Is food a motivation for urban gardeners? Multifunctionality and the relative importance of the food function in urban collective gardens of Paris and Montreal. Agric. Hum. Values 2016, 33, 257–273. [Google Scholar] [CrossRef]
- Kabisch, N.; Qureshi, S.; Haase, D. Human–environment interactions in urban green spaces—A systematic review of contemporary issues and prospects for future research. Environ. Impact Assess. Rev. 2015, 50, 25–34. [Google Scholar] [CrossRef]
- Haase, D. Nature-Based Solutions for Cities: A New Tool for Sustainable Urban Land Development? UGEC VIEWPOINTS. 17 May 2016. Available online: https://ugecviewpoints.wordpress.com/2016/05/17/nature-based-solutions-for-cities-a-new-tool-for-sustainable-urban-land-development/ (accessed on 24 May 2018).
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis. A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Hansen, R.; Pauleit, S. From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for urban areas. Ambio 2014, 43, 516–529. [Google Scholar] [CrossRef] [PubMed]
- Hansen, R.; Frantzeskaki, N.; McPhearson, T.; Rall, E.; Kabisch, N.; Kaczorowska, A.; Kain, J.-H.; Artmann, M.; Pauleit, S. The uptake of the ecosystem services concept in planning discourses of European and American cities. Ecosyst. Serv. 2015, 12, 228–246. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337. [Google Scholar] [CrossRef] [PubMed]
- International Union for Conservation of Nature. Nature-Based Solutions. Available online: https://www.iucn.org/regions/europe/our-work/nature-based-solutions (accessed on 24 May 2018).
- ICLEI. Nature-Based Solutions for Sustainable Urban Development. ICLEI Briefing Sheet. March 2017. Available online: https://unfccc.int/files/parties_observers/submissions_from_observers/application/pdf/777.pdf (accessed on 24 May 2018).
- European Commission. Communication from the Commission to the European Parliament, the Council, the Economic and Social Committee and the Committee of the Regions. Our Life Insurance, Our Natural Capital: An EU Biodiversity Strategy to 2020. COM(2011) 244 Final; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Green Infrastructure (GI)—Enhancing Europe’s Natural Capital. COM(2013) 249 Final; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Huang, J.; Tichit, M.; Poulot, M.; Darly, S.; Li, S.; Petit, C.; Aubry, C. Comparative review of multifunctionality and ecosystem services in sustainable agriculture. J. Environ. Manag. 2015, 149, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Bastian, O.; Syrbe, R.-U.; Rosenberg, M.; Rahe, D.; Grunewald, K. The five pillar EPPS framework for quantifying, mapping and managing ecosystem services. Ecosyst. Serv. 2013, 4, 15–24. [Google Scholar] [CrossRef]
- Kambites, C.; Owen, S. Renewed prospects for green infrastructure planning in the UK. Plan. Pract. Res. 2006, 21, 483–496. [Google Scholar] [CrossRef]
- Zanon, B.D.B.; Roeffen, B.; Czapiewska, K.M.; de Graaf-Van Dinther, R.E.; Mooj, P.R. Potential of floating production for delta and coastal cities. J. Clean. Prod. 2017, 151, 10–20. [Google Scholar] [CrossRef]
- Halloran, A.; Magid, J. The role of local government in promoting sustainable urban agriculture in Dar es Salaam and Copenhagen. Geogr. Tidsskr. 2013, 113, 121–132. [Google Scholar] [CrossRef]
- Shava, S.; Krasny, M.E.; Tidball, K.G.; Zazu, C. Agricultural knowledge in urban and resettled communities: Applications to social–ecological resilience and environmental education. Environ. Educ. Res. 2010, 16, 575–589. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Solecki, W.D.; Hammer, S.A.; Mehrotra, S. Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Lee, G.-G.; Lee, H.-W.; Lee, J.-H. Greenhouse gas emission reduction effect in the transportation sector by urban agriculture in Seoul, Korea. Landsc. Urban Plan. 2015, 140, 1–7. [Google Scholar] [CrossRef]
- Cleveland, D.A.; Phares, N.; Nightingale, K.D.; Weatherby, R.L.; Radis, W.; Ballard, J.; Campagna, M.; Kurtz, D.; Livingston, K.; Riechers, G.; et al. The potential for urban household vegetable gardens to reduce greenhouse gas emissions. Landsc. Urban Plan. 2017, 157, 365–374. [Google Scholar] [CrossRef]
- Llorach-Massana, P.; Muñoz, P.; Riera, M.R.; Gabarrell, X.; Rierdevall, J.; Montero, J.I.; Villalba, G. N2O emissions from protected soilless crops for more precise food and urban agriculture life cycle assessments. J. Clean. Prod. 2017, 149, 1118–1126. [Google Scholar] [CrossRef]
- Waffle, A.D.; Corry, R.C.; Gillespie, T.J.; Brown, R.D. Urban heat island as agricultural opportunities: An innovative approach. Landsc. Urban Plan. 2017, 161, 103–114. [Google Scholar] [CrossRef]
- Lin, B.B.; Egerer, M.H.; Liere, H.; Jha, S.; Biechier, P.; Philpott, S.M. Local- and landscape-scale land cover affects microclimate and water use in urban areas. Sci. Total Environ. 2018, 610–611, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations(FAO). Trade Reforms and Food Security: Conceptualizing the Linkages; FAO: Rome, Italy, 2003. [Google Scholar]
- Saha, M.; Eckelman, M.J. Growing fresh fruits and vegetables in an urban landscape: A geospatial assessment of ground level and rooftop urban agriculture potential in Boston, USA. Landsc. Urban Plan. 2017, 165, 130–141. [Google Scholar] [CrossRef]
- Gondhalekar, D.; Ramsauer, T. Nexus city: Operationalizing the urban water-energy-food nexus for climate change adaption in Munich, Germany. Urban Clim. 2017, 19, 28–40. [Google Scholar] [CrossRef]
- Ward, J.D.; Ward, P.J.; Mantzioris, E.; Saint, C. Optimising diet decisions and urban agriculture using linear programming. Food Secur. 2014, 6, 701–718. [Google Scholar] [CrossRef]
- Astee, L.Y.; Kishnani, N.T. Building integrated agriculture utilising rooftops for sustainable food crop cultivation in Singapore. J. Green Build. 2010, 5, 105–113. [Google Scholar] [CrossRef]
- Nadal, A.; Alamús, R.; Pipia, L.; Ruiz, A.; Corbera, J.; Cuerva, E.; Rieradevall, J.; Josa, A. Urban planning and agriculture. Methodology for assessing rooftop greenhouse potential of non-residential areas using airborne sensors. Sci. Total Environ. 2017, 601–602, 493–507. [Google Scholar] [CrossRef] [PubMed]
- McClintock, N.; Mahmoudi, D.; Simpson, M.; Santos, J.P. Socio-spatial differentiation in the sustainable city: A mixed-methods assessment of residential gardens in metropolitan Portland, Oregon, USA. Landsc. Urban Plan. 2016, 148, 1–16. [Google Scholar] [CrossRef]
- Metcalf, S.S.; Widener, M.J. Growing Buffalo’s capacity for local food: A systems framework for sustainable agriculture. Appl. Geogr. 2011, 31, 1242–1251. [Google Scholar] [CrossRef]
- Corrigan, M.P. Growing what you eat: Developing community gardens in Baltimore, Maryland. Appl. Geogr. 2011, 31, 1232–1241. [Google Scholar] [CrossRef]
- Kortright, R.; Wakefield, S. Edible backyards. A qualitative study of household food growing and its contributions to food security. Agric. Hum. Values 2016, 28, 39–53. [Google Scholar] [CrossRef]
- Aubry, C.; Kebir, L. Shortening food supply chains: A means for maintainig agriculture close to urban areas? The case of the French metropolitan area of Paris. Food Policy 2013, 41, 85–93. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610, 997–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camps-Calvet, M.; Langmeyer, J.; Calvet-Mir, L.; Gómez-Baggethun, E. Ecosystem services provided by urban gardens in Barcelona, Spain: Insights for policy and planning. Environ. Sci. Sci. 2016, 62, 14–23. [Google Scholar] [CrossRef]
- Gregory, M.M.; Leslie, T.W.; Drinkwater, L.E. Agroecological and social characteristics of New York City community gardens: Contributions to urban food security, ecosystem services, and environmental education. Urban Ecosyst. 2016, 19, 763–794. [Google Scholar] [CrossRef]
- Clarke, L.W.; Jenerette, G.D. Biodiversity and direct ecosystem service regulation in the community gardens of Los Angeles, CA. Landsc. Ecol. 2015, 30, 637–653. [Google Scholar] [CrossRef]
- Egerer, M.H.; Bichier, P.; Philpott, S.M. Landscape and local habitat correlates of lady beetle abundance and species richness in urban agriculture. Ann. Entomol. Soc. Am. 2017, 110, 97–103. [Google Scholar] [CrossRef]
- Woods, M.E.; Ata, R.; Teitel, Z.; Arachchige, N.M.; Yang, Y.; Raychaba, B.E.; Kuhns, J.; Campbell, L.G. Crop diversity and plant-plant interactions in urban allotment gardens. Renew. Agric. Food Syst. 2016, 31, 540–549. [Google Scholar] [CrossRef]
- Quistberg, R.D.; Bichier, P.; Philpott, S.M. Landscape and local correlates of bee abundance and species richness in urban grounds. Environ. Entomol. 2016, 45, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Richards, P.J.; Farrell, C.; Tom, M.; Williams, N.S.G.; Fetcher, T.D. Vegetable raingardens can produce food and reduce stormwater runoff. Urban For. Urban Green. 2015, 14, 646–654. [Google Scholar] [CrossRef]
- Gittleman, M.; Farmer, C.J.Q.; Kremer, P.; McPhearson, T. Estimating stormwater runoff for community gardens in New York City. Urban Ecosyst. 2017, 20, 129–139. [Google Scholar] [CrossRef]
- Edmondson, J.L.; Davies, Z.G.; Gaston, K.J.; Leake, J.R. Urban cultivation in allotments maintains soil qualities adversely affected by conventional agriculture. J. Appl. Ecol. 2015, 51, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Reeves, J.; Cheng, Z.; Kovach, J.; Kleinhenz, M.D.; Grewal, P.S. Quantifying soil health and tomato crop productivity in urban community and market gardens. Urban Ecosyst. 2015, 17, 221–238. [Google Scholar] [CrossRef]
- Tsilini, V.; Papantoniou, S.; Kolokotsa, D.-D.; Maria, E.-A. Urban gardens as a solution to energy poverty and urban heat island. Sustain. Cities Soc. 2015, 14, 323–333. [Google Scholar] [CrossRef]
- Potter, A.; LeBuhn, G. Pollination service to urban agriculture in San Francisco, CA. Urban Ecosyst. 2015, 18, 885–893. [Google Scholar] [CrossRef]
- Dennis, M.; James, P. Ecosystem services of collectively managed urban gardens: Exploring factors affecting synergies and trade-offs at the site level. Ecosyst. Serv. 2017, 26, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.R.; Lovell, S.T.; Wortman, S.E.; Chan, M. Ecosystem services and tradeoffs in the home food gardens of African American, Chinese-origin and Mexican-origin households in Chicago, IL. Renew. Agric. Food Syst. 2017, 32, 69–86. [Google Scholar] [CrossRef]
- Taylor, J.R.; Lovell, S.T. Urban home gardens in the global north: A mixed methods study of ethnic and migrant home gardens in Chicago, IL. Renew. Agric. Food Syst. 2015, 30, 22–32. [Google Scholar] [CrossRef]
- Davis, A.Y.; Lonsdorf, E.V.; Shierk, C.R.; Matteson, K.C.; Taylor, J.R.; Lovell, S.T.; Minor, E.S. Enhancing pollination supply in an urban ecosystem through landscape modifications. Landsc. Urban Plan. 2017, 162, 157–166. [Google Scholar] [CrossRef]
- Breuste, J.H.; Artmann, M. Allotment gardens contribute to urban ecosystem service: Case study Salzburg, Austria. J. Urban Plan. Dev. 2015, 141. [Google Scholar] [CrossRef]
- Ruoso, L.-E.; Plant, R.; Maurel, P.; Dupaquier, C.; Roche, P.K.; Bonin, M. Reading ecosystem services at the local scale through a territorial approach: The case of peri-urban agriculture in the Thau Lagoon, southern France. Ecol. Soc. 2015, 20. [Google Scholar] [CrossRef]
- Orsini, F.; Gasperi, D.; Marchetti, L.; Piovene, C.; Draghetti, S.; Ramazzotti, S.; Bazzocchi, G.; Gianquinto, G. Exploring the production capacity of rooftop gardens (RTGs) in urban agriculture: The potential impact on food and nutrition security, biodiversity and other ecosystem services in the city of Bologna. Food Secur. 2014, 6, 781–792. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrobas, M.; Lopes, H.; Rodrigues, M.Â. Urban agriculture in Bragança, northeast Portugal: Assessing the nutrient dynamic in the soil and plants, and their contamination with trace metals. Biol. Argic. Hortic. 2017, 33, 1–13. [Google Scholar] [CrossRef]
- Rusciano, V.; Civero, G.; Scarpato, D. Urban gardens and environmental sustainability: An empirical research of Campania region. Qual.-Access Success 2017, 18, 376–381. [Google Scholar] [CrossRef]
- Orlando, G. Sustainable food vs. unsustainable politics in the city of Palermo: The case of an organic farmers’ market. City Soc. 2011, 23, 173–191. [Google Scholar] [CrossRef]
- Huang, S.-L.; Yeh, C.-T.; Chang, L.-F. The transition to an urbanizing world and the demand for natural resources. Curr. Opin. Environ. Sustain. 2010, 2, 136–143. [Google Scholar] [CrossRef]
- Balda, M.C.; Furubayashi, T.; Nakata, T. A novel approach for analyzing the food-energy nexus through on-farm energy generation. Clean Technol. Environ. Policy 2017, 19, 1003–1019. [Google Scholar] [CrossRef]
- Saha, M.; Eckelman, M.J. Geospatial assessment of potential bioenergy crop production on urban marginal land. Appl. Energy 2015, 159, 540–547. [Google Scholar] [CrossRef]
- Nadal, A.; Llorach-Massana, P.; Cuerva, E.; López-Capel, E.; Montero, J.I.; Josa, A.; Rieradevall, J.; Royapoor, M. Building integrated rooftop greenhouses: An energy and environmental assessment in the Mediterranean context. Appl. Energy 2017, 187, 338–351. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Orsini, F.; Oliver-Solà, J.; Rieradevall, J.; Montero, J.I.; Gianquinto, G. Techniques and crops for efficient rooftop gardens in Bologna, Italy. Agron. Sustain. Dev. 2015, 35, 1477–1488. [Google Scholar] [CrossRef] [Green Version]
- Sanyé-Mengual, E.; Oliver-Solà, J.; Montero, J.I.; Rieradevall, J. An environmental and economic life cycle assessment of rooftop greenhouse (RTG) implementation in Barcelona, Spain. Assessing new forms of urban agriculture from the greenhouse structure to the final product level. Int. J. Life Cycle Assess. 2015, 20, 350–366. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Oliver-Solà, J.; Montero, J.I.; Riradevall, J. The role of interdisciplinarity in evaluating the sustainability of urban rooftop agriculture. Future Food J. Food Agric. Soc. 2017, 5, 46–58. [Google Scholar]
- Liebman, M.B.; Jonasson, O.J.; Wiese, R.N. The urban stormwater farm. Water Sci. Technol. 2011, 64, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Lupia, F.; Baiocchi, V.; Lelo, K.; Pulighe, G. Exploring rooftop rainwater harvesting potential for food production in urban areas. Agriculture 2017, 7, 46. [Google Scholar] [CrossRef]
- Garcia, X.; Llausàs, L.; Ribas, A.; Saurí, D. Watering the garden: Preferences for alternative sources in suburban areas of the Mediterranean coast. Local Environ. 2015, 20, 548–564. [Google Scholar] [CrossRef]
- Morckel, V. Community gardens or vacant lots? Rethinking the attractiveness and seasonality of green land uses in distressed neighborhoods. Urban For. Urban Green. 2015, 14, 714–721. [Google Scholar] [CrossRef]
- Foo, K.; Martin, D.; Wool, C.; Polsky, C. Reprint of ‘‘the production of urban vacant land: Relational placemaking in Boston, MA neighborhoods’’. Cities 2014, 40, 175–182. [Google Scholar] [CrossRef]
- Gasperi, D.; Pennisi, G.; Rizzati, N.; Magrefi, F.; Bazzocchi, G.; Mezzacapo, U.; Stefani, M.C.; Sanyé-Mengual, E.; Orsini, F.; Gianquinto, G. Towards regenerated and productive vacant areas through urban horticulture: Lessons from Bologna, Italy. Sustainability 2016, 8, 1347. [Google Scholar] [CrossRef]
- Kremera, P.; Hamstead, Z.A.; McPhearson, T. A social-ecological assessment of vacant lots in New York City. Landsc. Urban Plan. 2013, 120, 218–223. [Google Scholar] [CrossRef]
- Saporito, E. Ortialti as urban regeneration devices: An action-research study on rooftop farming in Turin. Future Food J. Food Agric. Soc. 2017, 5, 59–69. [Google Scholar]
- Yoo, H. A study on the prefab greenhouse on the rooftop for the neighborhood regeneration in Seoul, South Korea. Int. J. Smart Home 2016, 10, 253–266. [Google Scholar] [CrossRef]
- Roth, M.; Frixen, M.; Tobisch, C.; Scholle, T. Finding spaces for urban food production-matching spatial and stakeholder analysis with urban agriculture approaches in the urban renewal area of Dortmund-Hörde, Germany. Future Food J. Food Agric. Soc. 2015, 3, 79–88. [Google Scholar]
- Demailly, K.-E.; Darly, S. Urban agriculture on the move in Paris: The routes of temporary gardening in the neoliberal city. Int. J. Crit. Geogr. 2017, 16, 332–361. [Google Scholar]
- Kato, Y.; Passidomo, C.; Harvey, D. Political gardening in a post-disaster city: Lessons from New Orleans. Urban Stud. 2014, 51, 1833–1849. [Google Scholar] [CrossRef]
- Thomas, E.C.; Lavkulich, L.M. Community considerations for quinoa production in the urban environment. Can. J. Plant Sci. 2015, 95, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Rolf, W.; Peters, D.; Lenz, R.; Pauleit, S. Farmland—An elephant in the room of urban green infrastructure? Lessons learned from connectivity analysis in three German cities. Ecol. Indic. 2017. [Google Scholar] [CrossRef]
- Dobbs, C.; Kendal, D.; Nitschke, C.R. Multiple ecosystem services and disservices of the urban forest establishing their connections with landscape structure and sociodemographics. Ecol. Indic. 2014, 43, 44–55. [Google Scholar] [CrossRef]
- Clark, K.H.; Nicholas, K.A. Introducing urban food forestry: A multifunctional approach to increase food security and provide ecosystem services. Landsc. Ecol. 2013, 28, 1649–1669. [Google Scholar] [CrossRef]
- Wielemaker, R.C.; Weijma, J.; Zeeman, G. Harvest to harvest: Recovering nutrients with new sanitation systems for reuse on urban agriculture. Resour. Conserv. Recycl. 2018, 128, 426–437. [Google Scholar] [CrossRef]
- McLain, R.; Poe, M.; Hurley, P.T.; Lecompte-Mastenbrook, J.; Emery, M.R. Producing edible landscapes in Seattle’s urban forest. Urban For. Urban Green. 2012, 11, 187–194. [Google Scholar] [CrossRef]
- Huang, D.; Drescher, M. Urban crops and livestock: The experiences, challenges, and opportunities of urban planning for urban agriculture in two Canadian provinces. Land Use Policy 2014, 43, 1–14. [Google Scholar] [CrossRef]
- Cohen, N.; Reynolds, K. Resource needs for a socially just and sustainable urban agriculture system: Lessons from New York City. Renew. Agric. Food Syst. 2014, 30, 103–114. [Google Scholar] [CrossRef]
- Campbell, L.K. Getting farming on the agenda: Planning, policymaking, and governance practices of urban agriculture in New York City. Urban For. Urban Green. 2016, 19, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Pawlikowska-Piechotka, A. Urban greens and sustainable land policy management (case study in Warsaw). European Countryside 2012, 4, 251–268. [Google Scholar] [CrossRef]
- Wekerle, G.R.; Classens, M. Food production in the city: (Re)negotiating land, food and property. Local Environ. 2014, 20, 1175–1193. [Google Scholar] [CrossRef]
- Cretella, A.; Buenger, M.S. Food as creative city politics in the city of Rotterdam. Cities 2016, 51, 1–10. [Google Scholar] [CrossRef]
- Prové, C.; Dessein, J.; Krom, M.D. Taking context into account in urban agriculture governance: Case studies of Warsaw (Poland) and Ghent (Belgium). Land Use Policy 2016, 56, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Mikulec, P.; Diduck, A.R.; Froese, B.; Unger, H.; MacKenzie, K. Legal and policy barriers to community gardening in Winnipeg, Canada. Can. J. Urban Res. 2015, 22, 69–89. [Google Scholar]
- Wästfelt, A.; Zhang, Q. Reclaiming localisation for revitalising agriculture: A case study of peri-urban agricultural change in Gothenburg, Sweden. J. Rural Stud. 2016, 47, 172–185. [Google Scholar] [CrossRef]
- Olsson, E.G.A.; Kerselaers, E.; Kristense, L.S.; Primdahl, J.; Rogge, E.; Wästfelt, A. Peri-urban food production and its relation to urban resilience. Sustainability 2016, 8, 1340. [Google Scholar] [CrossRef]
- Schwaab, J.; Deb, K.; Goodman, E.; Lauterbach, S.; van Strien, M.; Grêt-Regamey, A. Reducing the loss of agricultural productivity due to compact urban development in municipalities of Switzerland. Comput. Environ. Urban Syst. 2017, 65, 162–177. [Google Scholar] [CrossRef]
- La Rosa, D.; Privitera, R. Characterization of non-urbanized areas for land-use planning of agricultural and green infrastructure in urban contexts. Landsc. Urban Plan. 2013, 109, 94–106. [Google Scholar] [CrossRef]
- Bretzel, F.; Calderisi, M.; Scantena, M.; Pini, R. Soil quality is key for planning and managing urban allotments intended for the sustainable production of home-consumption vegetables. Environ. Sci. Pollut. Res. 2016, 23, 17753–17760. [Google Scholar] [CrossRef] [PubMed]
- Oka, G.A.; Thomas, L.; Lavkulich, L.M. Soil assessment for urban agriculture: A Vancouver case study. J. Soil Sci. Plant Nutr. 2014, 14, 657–669. [Google Scholar] [CrossRef]
- Boente, C.; Matanzas, N.; García-Gonzáles, N.; Rodríguez-Valdés, E.; Gallego, J.R. Trace elements of concern affecting urban agriculture in industrialized areas: A multivariate approach. Chemosphere 2017, 183, 546–556. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, E.; Izquierdo, M.; Gómez, A.; Mingot, J.; Barrio-Parra, F. Risk assessment from exposure to arsenic, antimony, and selenium in urban gardens (Madrid, Spain). Environ. Toxicol. Chem. 2017, 36, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Milliron, B.-J.; Vitolins, M.Z.; Gamble, E.; Jones, R.; Chenault, M.C.; Tooze, J.A. Process evaluation of a community garden at an urban outpatient clinic. J. Community Health 2017, 4, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Guerlain, M.A.; Campbell, C. From sanctuaries to prefigurative social change: Creating health-enabling spaces in East London community gardens. J. Soc. Polit. Psycol. 2016, 1, 220–237. [Google Scholar] [CrossRef] [Green Version]
- Litt, J.S.; Schmiege, S.J.; Hale, J.W.; Buchenau, M.; Sancar, F. Exploring ecological, emotional and social levers of self-rated health for urban gardeners and non-gardeners: A path analysis. Soc. Sci. Med. 2015, 114, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Soga, M.; Cox, D.T.C.; Yamaura, Y.; Gaston, K.J.; Kurisu, K.; Hanaki, K. Health benefits of urban allotment gardening: Improved physical and psychological well-being and social integration. Int. J. Environ. Res. Public Health 2017, 14, 71. [Google Scholar] [CrossRef] [PubMed]
- Nordh, H.; Wiklund, K.T.; Koppang, K.E. Norwegian allotment gardens—A study of motives and benefits. Landsc. Res. 2016, 41, 853–868. [Google Scholar] [CrossRef]
- Hale, J.; Knapp, C.; Bardwell, L.; Buchenau, M.; Marshall, J.; Sancar, F.; Litt, J.S. Connecting food environments and health through the relational nature of aesthetics: Gaining insight through the community gardening experience. Soc. Sci. Med. 2011, 72, 1853–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middling, S.; Bailey, J.; Maslin-Prothero, S.; Scharf, T. Gardening and the social engagement of older people. Work. Older People 2011, 3, 112–122. [Google Scholar] [CrossRef]
- Chan, J.; DuBois, B.; Tidball, K.G. Refuges of local resilience: Community gardens in post-Sandy New York City. Urban For. Urban Green. 2015, 14, 625–635. [Google Scholar] [CrossRef] [Green Version]
- Guitart, D.A.; Pickering, C.M.; Byrne, J.A. Color me healthy: Food diversity in school community gardens in two rapidly urbanising Australian Cities. Health Place 2014, 26, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Van der Jagt, A.P.N.; Szaraz, L.R.; Delshammar, T.; Cvejić, R.; Santos, A.; Goodness, J.; Buijs, A. Cultivating nature-based solutions: The governance of communal urban gardens in the European Union. Environ. Res. 2017, 159, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, I.M.; Fernandes, C.O.; Castiglione, B.; Costa, L. Characteristics and motivations of potential users of urban allotment gardens: The case of Vila Nova de Gaia municipal network of urban allotment gardens. Urban For. Urban Green. 2016, 20, 56–64. [Google Scholar] [CrossRef]
- Cabannes, Y.; Raposo, I. Peri-urban agriculture, social inclusion of migrant population and right to the city: Practices in Lisbon and London. City 2013, 17, 235–250. [Google Scholar] [CrossRef]
- Chan, J.; Pennisi, L.; Francis, C.A. Social-ecological refuges: Reconnecting in community gardens in Lincoln, Nebraska. J. Ethnobiol. 2016, 36, 842–860. [Google Scholar] [CrossRef]
- Brown-Fraser, S.; Forrester, I.; Rowel, R.; Richardson, A.; Spence, A.N. Development of a community organic vegetable garden in Baltimore, Maryland: A student service-learning approach to community engagement. J. Hunger Environ. Nutr. 2105, 10, 409–436. [Google Scholar] [CrossRef]
- Bendt, P.; Barthel, S.; Colding, J. Civic greening and environmental learning in public-access community gardens in Berlin. Landsc. Urban Plan. 2013, 109, 18–30. [Google Scholar] [CrossRef]
- Comstock, N.; Dickinson, L.M.; Marshall, J.A.; Soobader, M.-J.; Turbin, M.S.; Buchenau, M.; Litt, J.S. Neighborhood attachment and its correlates: Exploring neighborhood conditions, collective efficacy, and gardening. J. Environ. Psychol. 2010, 30, 435–442. [Google Scholar] [CrossRef]
- Camps-Calvet, M.; Langemeyer, J.; Calvet-Mir, L.; Gómez-Baggethun, E.; March, H. Sowing resilience and contestation in times of crises: The case of urban gardening movements in Barcelona. Partecip. Conflitto 2015, 8, 417–442. [Google Scholar] [CrossRef]
- McIvor, D.W.; Hale, J. Urban agriculture and the prospects for deep democracy. Agric. Hum. Values 2015, 32, 727–741. [Google Scholar] [CrossRef]
- Reynolds, K. Disparity despite diversity: Social injustice in New York City’s urban agriculture system. Antipode 2015, 47, 240–259. [Google Scholar] [CrossRef]
- Kato, Y. Not just the price of food: Challenges of an urban agriculture organization in engaging local residents. Sociol. Inq. 2013, 83, 369–391. [Google Scholar] [CrossRef]
- White, J.T.; Bunn, C. Growing in Glasgow: Innovative practices and emerging policy pathways for urban agriculture. Land Use Policy 2017, 68, 334–344. [Google Scholar] [CrossRef]
- Farges, G. Convergence on sustainable lifestyles? Mechanisms of change and resistance in a French allotment. Sociol. Rural. 2015, 55, 1–21. [Google Scholar] [CrossRef]
- Specht, K.; Weith, T.; Swoboda, K.; Siebert, R. Socially acceptable urban agriculture businesses. Agron. Sustain. Dev. 2016, 36, 17. [Google Scholar] [CrossRef]
- Vitiello, D.; Wolf-Powers, L. Growing food to grow cities? The potential of agriculture foreconomic and community development in the urban United States. Community Dev. J. 2014, 49, 508–523. [Google Scholar] [CrossRef]
- Pölling, B.; Mergenthaler, M.; Lorleberg, W. Professional urban agriculture and its characteristic business models in Metropolis Ruhr, Germany. Land Use Policy 2016, 58, 366–379. [Google Scholar] [CrossRef]
- Corcoran, M.P.; Kettle, P.H.; O’Callaghan, C. Green shoots in vacant plots? Urban agriculture and austerity in post-crash Ireland. Int. J. Crit. Geogr. 2017, 16, 305–331. [Google Scholar]
- Thomaier, S.; Specht, K.; Henckel, D.; Dierich, A.; Siebert, R.; Freisinger, U.B.; Sawicka, M. Farming in and on urban buildings: Present practice and specific novelties of zero-acreage farming (zfarming). Renew. Agric. Food Syst. 2015, 30, 43–54. [Google Scholar] [CrossRef]
- Specht, K.; Siebert, R.; Thomaier, S.; Freisinger, U.B.; Sawicka, M.; Dierich, A.; Henckel, D.; Busse, M. Zero-acreage farming in the city of Berlin: An aggregated stakeholder perspective on potential benefits and challenge. Sustainability (Switzerland) 2015, 7, 4511–4523. [Google Scholar] [CrossRef]
- Laidlaw, J.; Magee, L. Towards urban food sovereignty: The trials and tribulations of community-based aquaponics enterprises in Milwaukee and Melbourne. Local Environ. 2014, 21, 573–590. [Google Scholar] [CrossRef]
- Walker, S. Urban agriculture and the sustainability fix in Vancouver and Detroit. Urban Geogr. 2016, 37, 163–182. [Google Scholar] [CrossRef]
- Weissman, E. Entrepreneurial endeavors: (Re)producing neoliberalization through urban agriculture youth programming in Brooklyn. Environ. Educ. Res. 2015, 21, 351–364. [Google Scholar] [CrossRef]
- Giacchè, G.; Paffarini, C.; Torquati, B. Cultivating changes: Urban agriculture as a tool for socio-spatial transformation. Future Food J. Food Agric. Soc. 2017, 5, 8–20. [Google Scholar]
- Opitz, I.; Specht, K.; Berges, R.; Siebert, R.; Piorr, A. Toward sustainability: Novelties, areas of learning and innovation in urban agriculture. Sustainability 2016, 8, 356. [Google Scholar] [CrossRef]
- Russo, P.; Tomaselli, G.; Pappalardo, G. Marginal periurban agricultural areas: A support method for landscape planning. Land Use Policy 2014, 41, 97–109. [Google Scholar] [CrossRef]
- Pfeiffer, A.; Silva, E.; Colquhoun, J. Innovation in urban agricultural practices: Responding to diverse production environments. Renew. Agric. Food Syst. 2014, 30, 79–91. [Google Scholar] [CrossRef]
- Gray, L.; Guzman, P.; Glowa, K.M.; Drevno, A.G. Can home gardens scale up imto movements for social change? The role of home gardens in providing food security and community change in San Jose, California. Local Environ. 2014, 19, 187–203. [Google Scholar] [CrossRef]
- Kaiser, M.L.; Williams, M.L.; Basta, N.; Hand, M.; Huber, S. When vacant lots become urban gardens: Characterizing the perceived and actual food safety concerns of urban agriculture in Ohio. J. Food Prot. 2015, 78, 2070–2080. [Google Scholar] [CrossRef] [PubMed]
- Liquete, C.; Udias, A.; Conte, G.; Grizzetti, B.; Masi, F. Integrated valuation of a nature-based solution for water pollution control. Highlighting hidden benefits. Ecosyst. Serv. 2016, 22, 392–401. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, K.; Conrad, M.; Culligan, P.; Plunz, R.; Sutto, M.-P.; Whittinghill, L. Sustainable food systems for future cities: The potential of urban agriculture. Econ. Soc. Rev. 2014, 45, 189–206. [Google Scholar]
- Parece, T.E.; Campbell, J.B. Geospatial evaluation for urban agriculture land inventory: Roanoke, Virginia USA. Int. J. Appl. Geospat. Res. 2017, 8, 43–63. [Google Scholar] [CrossRef]
- Specht, K.; Siebert, R.; Thomaier, S. Perception and acceptance of agricultural production in and on urban buildings (Zfarming): A qualitative study from Berlin, Germany. Agric. Hum. Values 2016, 33, 753–769. [Google Scholar] [CrossRef]
- Cabral, I.; Kein, J.; Engelmann, R.; Kraemer, R.; Siebert, J.; Bonn, A. Ecosystem services of allotment and community gardens: A Leipzig, Germany case study. Urban For. Urban Green. 2017, 23, 44–56. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Gasperi, D.; Mancarella, S.; Sanoubar, R.; Antisari, L.V.; Vianello, G.; Gianquinto, G. Soilless system on peat reduce trace metals in urban-grown food: Unexpected evidence for a soil origin of plant contamination. Agron. Sustain. Dev. 2016, 36, 56. [Google Scholar] [CrossRef]
- Cvejić, R.; Železnikar, Š.; Nastran, M.; Rehberger, V.; Pintar, M. Urban agriculture as a tool for facilitated urban greening of sites in transition: A case study. Urbani Izziv 2015, 26, 84–97. [Google Scholar] [CrossRef]
- Algert, S.J.; Baameur, A.; Renvall, M.J. Vegetable output and cost savings of community gardens in San Jose, California. J. Acad. Nutr. Diet. 2014, 114, 1072–1076. [Google Scholar] [CrossRef] [PubMed]
- Sanyé-Mengual, E.; Cerón-Palma, I.; Oliver-Solà, J.; Montero, J.I.; Rieradevall, J. Environmental analysis of the logistics of agricultural products from roof top greenhouses in Mediterranean urban areas. Sci. Food Agric. 2012, 93, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Heraty, J.M.; Ellstrand, N.C. Maize germplasm conservation in Southern California’s urban gardens: Introduced diversity beyond ex situ and in situ management. Econ. Bot. 2016, 70, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Maes, J.; Jacobs, S. Nature-based solutions for Europe’s sustainable development. Conserv. Lett. 2017, 10, 121–124. [Google Scholar] [CrossRef]
- Großmann, K.B.; Bontje, M.; Haase, A.; Mykhnenko, V. Shrinking cities: Notes for the further research agenda. Cities 2013, 35, 221–225. [Google Scholar] [CrossRef]
- Artmann, M. Spatial dimensions of soil sealing management in growing and shrinking cities—A systemic multi-scale analysis in Germany. Erdkunde 2013, 67, 249–264. [Google Scholar] [CrossRef]
- Plant, R.; Walker, J.; Rayburg, S.; Gothe, J.; Leung, T. The wild life of pesticides: Urban agriculture, institutional responsibility, and the future of biodiversity in Sydney’s Hawkesbury-Nepean river. Aust. Geogr. 2012, 43, 75–91. [Google Scholar] [CrossRef]
- Pulighe, G.; Lupia, F. Mapping spatial patterns of urban agriculture in Rome (Italy) using Google Earth and web-mapping services. Land Use Policy 2016, 59, 49–58. [Google Scholar] [CrossRef]
- Fox-Kämper, R.; Wesener, A.; Münderlein, D.; Sondermann, M.; McWilliam, W.; Kirk, N. Urban community gardens: An evaluation of governance approaches and related enablers and barriers at different development stages. Landsc. Urban Plan. 2018, 170, 59–68. [Google Scholar] [CrossRef]
- Haase, D.; Larondelle, N.; Andersson, E.; Artmann, M.; Borgström, S.; Breuste, J.; Gomez-Baggethun, E.; Gren, Å.; Hamstead, Z.; Hansen, R.; et al. A quantitative review of urban ecosystem service assessments: Concepts, models, and implementation. Ambio 2014, 43, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Von Döhren, P.; Haase, D. Ecosystem disservices research: A review of the state of the art with a focus on cities. Ecol. Indic. 2015, 52, 490–497. [Google Scholar] [CrossRef]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Testing the environmental performance of urban agriculture as a food supply in northern climates. J. Clean. Prod. 2016, 135, 984–994. [Google Scholar] [CrossRef]
- Sharma, K.; Cheng, Z.; Grewal, P.S. Relationship between soil heavy metal contamination and soil food web health in vacant lots slated for urban agriculture in two post-industrial cities. Urban Ecosyst. 2015, 3, 835–855. [Google Scholar] [CrossRef]
- Izquierdo, M.; De Miguel, E.; Ortega, M.F.; Mingot, J. Bioaccessibility of metals and human health risk assessment in community urban gardens. Chemosphere 2015, 135, 312–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.; Paltseva, A.; Li, I.; Morin, T.; Huot, H.; Egendorf, S.; Su, Z.; Yolanda, R.; Singh, K.; Lee, L.; et al. Trace metal contamination in New York City garden soils. Soil Sci. 2015, 180, 167–174. [Google Scholar] [CrossRef]
- Kohrman, H.; Chamberlain, C.P. Heavy metals in produce from urban farms in the San Francisco Bay area. Food Addit. Contam. Part B 2014, 2, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Tom, M.; Fletcher, T.D.; McCarthy, D.T. Heavy metal contamination of vegetables irrigated by urban stormwater: A matter of time? PLoS ONE 2104, 11, e112441. [Google Scholar] [CrossRef] [PubMed]
- Forslund, A.; Ensink, J.H.J.; Battilani, A.; Kljujev, I.; Gola, S.; Raicevic, V.; Jovanovic, Z.; Stikic, R.; Sandei, L.; Fletcher, T.; et al. Faecal contamination and hygiene aspect associated with the use of treated wastewater and canal water for irrigation of potatoes (Solanum tuberosum). Agric. Water Manag. 2010, 98, 440–450. [Google Scholar] [CrossRef]
- Spliethoff, H.M.; Mitchell, R.G.; Ribaudo, L.N.; Taylor, O.; Shayler, H.A.; Greene, V.; Oglesby, D. Lead in New York City community garden chicken eggs: Influential factors and health implications. Environ. Geochem. Health 2104, 4, 633–649. [Google Scholar] [CrossRef] [PubMed]
- Warming, M.; Hansen, M.G.; Holm, P.E.; Magid, J.; Hansen, T.H.; Trapp, S. Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health? Environ. Pollut. 2015, 202, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Megson, D.; Dack, S.; Moore, M. Limitations of the clea model when assessing human health risks from dioxins and furans in soil at an allotments site in Rochdale, New England. J. Environ. Monit. 2011, 13, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Defoe, P.P.; Hettiarachchi, G.M.; Benedict, C.; Martin, S. Safety of gardening on lead- and arsenic-contaminated urban brownfields. J. Environ. Qual. 2014, 43, 2064–2078. [Google Scholar] [CrossRef] [PubMed]
- Tornaghi, C.; Van Dyck, B. Research-informed gardening activism: Steering the public food and land agenda. Local Environ. 2015, 20, 1247–1264. [Google Scholar] [CrossRef] [Green Version]
No. | Challenges and Relevant Fields of Action | References |
---|---|---|
1 | Climate change (including climate change adaption and mitigation, carbon sequestration) | [18,21,32,33,34,35] |
2 | Food security (including food safety, food justice) | [32,35] |
3 | Biodiversity and ecosystem services | [18,32,33,34,35] |
4 | Agricultural intensification (including organic farming, sustainable agriculture) | [18,34,35] |
5 | Resource efficiency (including energy efficiency, water protection, urban water, life cycle assessment) | [18,33,34,35] |
6 | Urban renewal and regeneration (including abandoned land, brownfields, vacancy) | [18,21,33] |
7 | Land management (including land take, soil sealing, soil degradation, soil erosion, green space management, governance, green infrastructure) | [18,32,33,34,35] |
8 | Public health (including, well-being, quality of life) | [18,21,32,33,34,35] |
9 | Social cohesion (including social justice, participation, awareness, civic agriculture) | [18,21,33,34,35] |
10 | Economic growth (including green jobs, innovation, cost-effectiveness) | [18,21,33,34,35] |
General Analysis | Implementation | Co-Benefits |
---|---|---|
Bibliographic reference (paper title, author(s), year, issue/volume, journal) | Strategic UPA planning:
| Co-benefits of UPA:
|
Paper content (study focus, case study (country, city), methods, data, main results, any comments) | Actors relevant for implementation | Actors affected by impacts |
Case Study (City/Country) | Land Analyzed for UPA | Food Assessed | Methods Used | Food Demand | Degree of Potential Food-Self-Sufficiency/Food Supply | Reference |
---|---|---|---|---|---|---|
Boston/USA | City: rooftop and ground level areas (vacant, residential, commercial parcels suitable for primary agriculture) | Fruit and vegetables (dark green vegetables, tree fruits considering local climate and different production practices) | GIS-based model for UPA site suitability analysis, spatially averaged crop yield for estimating food yields | USA average annual intake of 197 kg fresh fruit and vegetables | Ca. 1 million people (50% larger than the case study city’s population) | [49] |
Montréal/Canada | City: residential gardens, industrial rooftops, vacant space | Vegetables (representative sample of vegetable proportions and varieties considering the local climate and costumer preferences) | Spatial analysis, multiple production scenarios (high-intensity vs. low-intensity) according to secondary data | Recommendation according to international organizations: 121 kg/year of fresh vegetables per person |
| [7] |
Munich/Germany | Single district: unsealed one and two-story buildings, unsealed and sealed surfaces like car parks, green spaces, flat roofs, roofs with an angle of <15°, building facades | Apples, white cabbage, grapes | Spatial analysis | Recommendation according to WHO: 146 kg/year fruits and vegetables per person (discounting children under the age of three since they consume less food) | 66% of demand for fruit, 246% of demand for vegetables | [50] |
Tampines New Town/Singapore | City: rooftop areas of all slab block public housings | Vegetable produced by inorganic hydroponics | Spatial analysis | Singapore’s vegetable needs (no further definition) | 35.5% of Singapore’s vegetable needs | [52] |
Adelaide/Australia | Single district: Backyard gardens | Crop yields, meat yields | Linear Programming (considering different dietary preferences) | Default food group intake ranges (considering lower and upper bounds (according to age, sex, height and level of physical activity) for energy and protein, plus sixteen “food groups” representing a nutritionally diverse diet) | 10–15% of dietary protein | [51] |
Rubí/Spain | City/site: Rooftop greenhouses | Tomatoes | Spatial analysis | Case study’s average yearly consumption | 50% of the case study’s total population | [53] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Artmann, M.; Sartison, K. The Role of Urban Agriculture as a Nature-Based Solution: A Review for Developing a Systemic Assessment Framework. Sustainability 2018, 10, 1937. https://doi.org/10.3390/su10061937
Artmann M, Sartison K. The Role of Urban Agriculture as a Nature-Based Solution: A Review for Developing a Systemic Assessment Framework. Sustainability. 2018; 10(6):1937. https://doi.org/10.3390/su10061937
Chicago/Turabian StyleArtmann, Martina, and Katharina Sartison. 2018. "The Role of Urban Agriculture as a Nature-Based Solution: A Review for Developing a Systemic Assessment Framework" Sustainability 10, no. 6: 1937. https://doi.org/10.3390/su10061937
APA StyleArtmann, M., & Sartison, K. (2018). The Role of Urban Agriculture as a Nature-Based Solution: A Review for Developing a Systemic Assessment Framework. Sustainability, 10(6), 1937. https://doi.org/10.3390/su10061937