Structural Equation Model for Burn Severity with Topographic Variables and Susceptible Forest Cover
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samcheok Fire
2.2. Unit for Spatial Analysis
2.3. Delineating Topography and Distribution of Red Pine Trees
2.4. Mapping Burn Severity
2.5. OLS and Hypothesized SEM
2.6. Testing the Goodness of Fit of the Estimated SEM
3. Results
3.1. Profile of Variables and Their Relationships
3.2. Multiple Linear Regression
3.3. Estimated Structural Equation Model
3.4. Goodness of Fit
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sampaio, E.D.S.; Salcedo, I.H.; Kauffman, J.B. Effect of different fire severities on coppicing of caatinga vegetation in Serra Talhada, PE, Brazil. Biotropica 1993, 25, 452–460. [Google Scholar] [CrossRef]
- Covington, W.W.; Moore, M.M. Postsettlement changes in natural fire regimes and forest structure: Ecological restoration of old-growth ponderosa pine forests. J. Sustain. For. 1994, 2, 153–181. [Google Scholar] [CrossRef]
- Morgan, P.; Hardy, C.C.; Swetnam, T.W.; Rollins, M.G.; Long, D.G. Mapping fire regimes across time and space: Understanding coarse and fine-scale fire patterns. Int. J. Wildland Fire 2001, 10, 329–342. [Google Scholar] [CrossRef]
- Lentile, L.B.; Smith, F.W.; Shepperd, W.D. Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA. Int. J. Wildland Fire 2006, 15, 557–566. [Google Scholar] [CrossRef]
- Fontaine, J.B.; Kennedy, P.L. Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in US fire-prone forests. Ecol. Appl. 2012, 22, 1547–1561. [Google Scholar] [CrossRef] [PubMed]
- Cawson, J.G.; Sheridan, G.J.; Smith, H.G.; Lane, P.N.J. Effects of fire severity and burn patchiness on hillslope-scale surface runoff, erosion and hydrologic connectivity in a prescribed burn. For. Ecol. Manag. 2013, 310, 219–233. [Google Scholar] [CrossRef]
- Mehdi, H.; Ali, S.; Ali, M.; Mostafa, A. Effects of different fire severity levels on soil chemical and physical properties in Zagros forests of western Iran. Folia For. Pol. Ser. A 2012, 54, 241–250. [Google Scholar]
- Wimberly, M.C.; Reilly, M.J. Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery. Remote Sens. Environ. 2007, 108, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Gower, S.T.; Wang, Y.; Zhao, H.; Yan, P.; Bond-Lamberty, B.P. The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Glob. Chang. Biol. 2001, 7, 719–730. [Google Scholar] [CrossRef]
- Dayamba, S.D.; Tigabu, M.; Sawadogo, L.; Oden, P.C. Seed germination of herbaceous and woody species of the Sudanian savanna-woodland in response to heat shock and smoke. For. Ecol. Manag. 2008, 256, 462–470. [Google Scholar] [CrossRef]
- Westlind, D.J.; Kerns, B.K. Long-term effects of burn season and frequency on ponderosa pine forest fuels and seedlings. Fire Ecol. 2017, 13. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A.; Vieira, D.C.S. Assessing soil erosion after fire and rehabilitation treatments in NW Spain: Performance of RUSLE and revised Morgan–Morgan–Finney models. Land Degrad. Dev. 2010, 21, 58–67. [Google Scholar] [CrossRef]
- Turner, M.G.; Hargrove, W.W.; Gardner, R.H.; Romme, W.H. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J. Veg. Sci. 1994, 5, 731–742. [Google Scholar] [CrossRef]
- Jain, T.B.; Graham, R.T. The relation between tree burn severity and forest structure in the Rocky Mountains. In Restoring Fire-adapted Ecosystems: Proceedings of the 2005 National Silviculture Workshop. USDA Forest Service Gen. Tech. Rep PSW-GTR-203; Pacific Southwest Research Station, Forest Service, US Department of Agriculture: Albany, CA, USA, 2005; pp. 213–250. [Google Scholar]
- Pinard, M.A.; Putz, F.E.; Licona, J.C. Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. For. Ecol. Manag. 1999, 116, 247–252. [Google Scholar] [CrossRef]
- Van Mantgem, P.J.; Nesmith, J.C.; Keifer, M.; Brooks, M. Tree mortality patterns following prescribed fire for Pinus and Abies across the southwestern United States. For. Ecol. Manag. 2013, 289, 463–469. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Chapin, F.S. Effects of soil burn severity on post-fire tree recruitment in boreal forest. Ecosystems 2006, 9, 14–31. [Google Scholar] [CrossRef]
- Walker, L.R.; Boneta, W. Plant and soil responses to fire on a fern-covered landslide in Puerto Rico. J. Trop. Ecol. 1995, 11, 473–479. [Google Scholar] [CrossRef]
- Crotteau, J.S.; Varner, J.M., III; Ritchie, M.W. Post-fire regeneration across a fire severity gradient in the southern Cascades. For. Ecol. Manag. 2013, 287, 103–112. [Google Scholar] [CrossRef]
- Lee, J.M.; Lee, S.W.; Lim, J.H.; Won, M.S.; Lee, H.S. Effects of heterogeneity of pre-fire forests and vegetation burn severity on short-term post-fire vegetation density and regeneration in Samcheok, Korea. Landsc. Ecol. Eng. 2014, 10, 215–228. [Google Scholar] [CrossRef]
- Lee, B.; Won, M.S.; Lee, Y.; Lee, M.B. Crown fuel characteristics and carbon emission from Japanese red pine stands burned by crown fire in Mt. Palgong, South Korea. J. Mt. Sci. 2012, 9, 656–664. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, E.J.; Lee, S.W. Examining spatial variation in the effects of Japanese red pine (Pinus densiflora) on burn severity using geographically weighted regression. Sustainability 2017, 9, 804. [Google Scholar] [CrossRef]
- Lee, H.J.; Choi, Y.E.; Lee, S.W. Complex relationships of the effects of topographic characteristics and susceptible tree cover on burn severity. Sustainability 2018, 10, 295. [Google Scholar] [CrossRef]
- Korea Forest Service (KFS). Fires in Eastern Regions; Korea Forest Service: Daejoen, Korea, 2001; Volume 1, pp. 33–36. [Google Scholar]
- Lee, S.W.; Lee, M.B.; Lee, Y.G.; Won, M.S.; Kim, J.J.; Hong, S.K. Relationship between landscape structure and burn severity at the landscape and class levels in Samchuck, South Korea. For. Ecol. Manag. 2009, 258, 1594–1604. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Liu, M.; Zhang, C.; Sun, G.; Lu, C.; Xu, X.; Ren, W.; Pan, S.; Chappelka, A. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. For. Ecol. Manag. 2010, 259, 1311–1327. [Google Scholar] [CrossRef]
- Liu, Y.; Goodrick, S.L.; Stanturf, J.A. Future US wildfire potential trends projected using a dynamically downscaled climate change scenario. For. Ecol. Manag. 2013, 294, 120–135. [Google Scholar] [CrossRef]
- O’Connor, C.D.; Falk, D.A.; Lynch, A.M.; Swetnam, T.W. Fire severity, size, and climate associations diverge from historical precedent along an ecological gradient in the Pinaleño Mountains, Arizona, USA. For. Ecol. Manag. 2014, 329, 264–278. [Google Scholar] [CrossRef]
- Nelson, R.M., Jr. An effective wind speed for models of fire spread. Int. J. Wildland Fire 2002, 11, 153–161. [Google Scholar] [CrossRef]
- Sung, J.H.; Jo, J.H.; Lee, Y.G.; Won, M.S.; Kim, S.D. Changes in physiological characteristics and regeneration of damaged trees. In Ecological Changes in Burned Forests; Lee, M.-B., Ed.; Korea Forest Research Institute: Seoul, Korea, 2007; pp. 53–112. (In Korean) [Google Scholar]
- Collins, B.; Skinner, C. Fire and fuels. In Science Synthesis to Support Socioecological Resilience in the Sierra Nevada and Southern Cascade Range; Gen. Tech. Rep. PSW-GTR-247; Long, J.W., Quinn-Davidon, L., Skinner, C.N., Eds.; USDA Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2014; pp. 143–172. [Google Scholar]
- Collins, B.M.; Lydersen, J.M.; Fry, D.L.; Wilkin, K.; Moody, T.; Stephens, S.L. Variability in vegetation and surface fuels across mixed-conifer-dominated landscapes with over 40 years of natural fire. For. Ecol. Manag. 2016, 381, 74–83. [Google Scholar] [CrossRef]
- Harris, L.; Taylor, A.H. Topography, fuels, and fire exclusion drive fire severity of the rim fire in an old-growth mixed-conifer forest, Yosemite National Park, USA. Ecosystems 2015, 18, 1192–1208. [Google Scholar] [CrossRef]
- Hessburg, P.F.; Churchill, D.J.; Larson, A.J.; Haugo, R.D.; Miller, C.; Spies, T.A.; North, M.P.; Povak, N.A.; Belote, R.T.; Singleton, P.H. Restoring fire-prone inland Pacific landscapes: Seven core principles. Landsc. Ecol. 2015, 30, 1805–1835. [Google Scholar] [CrossRef]
- Lydersen, J.; North, M. Topographic variation in structure of mixed-conifer forests under an active-fire regime. Ecosystems 2012, 15, 1134–1146. [Google Scholar] [CrossRef]
- Korb, J.E.; Fulé, P.Z.; Wu, R. Variability of warm/dry mixed conifer forests in Southwestern Colorado, USA: Implications for ecological restoration. For. Ecol. Manag. 2013, 304, 182–191. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Thompson, J.R.; Spies, T.A. Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. For. Ecol. Manag. 2009, 258, 1684–1694. [Google Scholar] [CrossRef]
- McCune, B.; Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 2002, 13, 603–606. [Google Scholar] [CrossRef] [Green Version]
- Gruber, S.; Peckham, S. Land-surface parameters and objects in hydrology. Dev. Soil Sci. 2009, 33, 171–194. [Google Scholar]
- Kopecký, M.; Čížková, Š. Using topographic wetness index in vegetation ecology: Does the algorithm matter? Appl. Veg. Sci. 2010, 13, 450–459. [Google Scholar] [CrossRef]
- Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ. 2005, 96, 328–339. [Google Scholar] [CrossRef]
- Kumar, L.; Clarke, P.; Muñoz, C.; Knox, K. Mapping of fire severity and comparison of severity indices across vegetation types in Gibraltar Range National Park, Australia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1477–1482. [Google Scholar]
- Murphy, K.A.; Reynolds, J.H.; Koltun, J.M. Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests. Int. J. Wildland Fire 2008, 17, 490–499. [Google Scholar] [CrossRef]
- Won, M.S.; Koo, K.S.; Lee, M.B.; Son, Y.M. Estimation of non-CO2 greenhouse gases emissions from biomass burning in the Samcheok large-fire area using Landsat TM imagery. Korean J. Agric. For. Meteorol. 2008, 10, 17–24. [Google Scholar] [CrossRef]
- Remote Sensing Application Center. Burned Area Emergency Response (BAER) Imagery Support; Department of Agriculture Forest Service, Remote Sensing Applications Center: Salt Lake City, UT, USA, 2005. Available online: http://www.fs.fed.us/eng/rsac/baer/ (accessed on 4 October 2016).
- Linn, R.; Winterkamo, J.; Edminster, C.; Colman, J.J.; Smith, W.S. Coupled influence of topography and wind on wildland fire behavior. Int. J. Wildland Fire 2007, 16, 183–195. [Google Scholar] [CrossRef]
- Forthofer, J.M.; Butler, B.W.; Shannon, K.S.; Finney, M.A.; Bradshaw, L.S.; Stratton, R. Predicting surface winds in complex terrain for use in fire spread models. In Proceedings of the Fifth Symposium on Fire and Forest Meteorology, Orlando, FL, USA, 16–20 November 2003. [Google Scholar]
- Linn, R.; Winterkamp, J.; Colman, J.J.; Edminster, C.; Bailey, J.D. Modeling interactions between fire and atmosphere in discrete element fuel beds. Int. J. Wildland Fire 2005, 14, 37–48. [Google Scholar] [CrossRef]
- Viegas, D.X. Slope and wind effects on fire propagation. Int. J. Wildland Fire 2004, 13, 143–156. [Google Scholar] [CrossRef]
- Iacobucci, D. Structural equations modeling: Fit indices, sample size, and advanced topics. J. Consum. Psychol. 2010, 20, 90–98. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis; Pearson Education Limited: Edinburgh Gate, UK, 2010. [Google Scholar]
- Fulé, P.Z.; Korb, J.E.; Wu, R. Changes in forest structure of a mixed conifer forest, southwestern Colorado, USA. For. Ecol. Manag. 2009, 258, 1200–1210. [Google Scholar] [CrossRef]
- Finney, M.A.; McHugh, C.W.; Grenfell, I.C. Stand- and landscape-level effects of prescribed burning on two Arizona wildfires. Can. J. For. Res. 2005, 35, 1714–1722. [Google Scholar] [CrossRef]
- Estes, B.L.; Knapp, E.E.; Skinner, C.N.; Miller, J.D.; Preisler, H.K. Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA. Ecosphere 2017, 8, e01794. [Google Scholar] [CrossRef]
- González, J.R.; Palahí, M.; Pukkala, T. Integrating fire risk considerations in forest management planning in Spain—A landscape level perspective. Landsc. Ecol. 2005, 20, 957–970. [Google Scholar] [CrossRef]
Variable | Unit | Min | Max | Median | Mean (SD) |
---|---|---|---|---|---|
Slope | ° | 0.05 | 28.34 | 15.62 | 15.28 (5.56) |
Elevation | meter | 0.00 | 849.50 | 197.28 | 254.86 (204.73) |
SRI | unitless | 0.67 | 1.04 | 0.89 | 0.88 (0.07) |
TWI | unitless | 1.24 | 5.67 | 2.41 | 2.46 (0.62) |
% red pine | % | 0.00 | 100 | 64.62 | 58.24 (35.09) |
Burn severity | 6 classes | 1.50 | 5.73 | 3.87 | 3.88 (0.67) |
n = 802. |
Variable | Coefficient | t-Value | |
---|---|---|---|
b | β | ||
Constant | 4.42 | - | 28.84 ** |
Elevation | −0.001 ** | −0.26 | −6.06 ** |
TWI | −0.305 ** | −0.28 | −7.16 ** |
%Red pine trees | 0.007 ** | 0.34 | 9.52 ** |
F-value | 97.64 ** | ||
Adjusted R-squared | 0.266 |
Path | Coefficient | S.E. | C.R. | P | ||
---|---|---|---|---|---|---|
SRI | ← | Slope | −0.007 | 0.001 | −11.617 | *** |
SRI | ← | Elevation | 0.000 | 0.000 | 4.831 | *** |
TWI | ← | Slope | −0.056 | 0.004 | −13.741 | *** |
TWI | ← | Elevation | −0.001 | 0.000 | −6.318 | *** |
Red Pine | ← | Slope | 1.641 | 0.296 | 5.543 | *** |
Red Pine | ← | Elevation | −0.133 | 0.007 | −18.815 | *** |
Red Pine | ← | SRI | 102.126 | 15.014 | 6.802 | *** |
Red Pine | ← | TWI | −20.102 | 2.183 | −9.209 | *** |
BS | ← | TWI | −0.312 | 0.046 | −6.780 | *** |
BS | ← | Elevation | −0.001 | 0.000 | −5.019 | *** |
BS | ← | Red pine | 0.007 | 0.001 | 9.185 | *** |
BS | ← | Slope | −0.001 | 0.006 | −0.209 | 0.835 |
BS | ← | SRI | 0.094 | 0.310 | 0.302 | 0.763 |
Goodness-of-Fit Index | Recommended Value | Initial Model | Final Model |
---|---|---|---|
χ2 | Non-significant at p < 0.05 | 0.69 | 0.37 |
Goodness-of-fit index (GFI) | >0.90 | 1.00 | 1.00 |
Adjusted goodness-of-fit index (AGFI) | >0.80 | 0.99 | 0.99 |
Comparative fit index (CFI) | >0.90 | 1.00 | 1.00 |
Root mean square residuals (RMSR) | <0.10 | 0.38 | 0.38 |
Root mean square error of approximation (RMSEA) | <0.08 | 0.00 | 0.00 |
Normed fit index (NFI) | >0.90 | 1.00 | 1.00 |
Parsimony normed fit index (PNFI) | >0.60 | 0.07 | 0.20 |
Variable | Effect Type (on Burn Severity) | Path Coefficient (β) | 95% CI | p | |
---|---|---|---|---|---|
Lower | Upper | ||||
Elevation | Direct | −0.266 | |||
TWI | Direct | −0.285 | |||
Pine trees | Direct | 0.343 | |||
Elevation | Indirect | −0.157 | −0.223 | −0.094 | 0.002 ** |
Slope | Indirect | 0.253 | 0.199 | 0.317 | 0.001 ** |
TWI | Indirect | −0.123 | −0.162 | −0.09 | 0.001 ** |
SRI | Indirect | 0.073 | 0.049 | 0.105 | 0.001 ** |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.-J.; Lee, S.-W. Structural Equation Model for Burn Severity with Topographic Variables and Susceptible Forest Cover. Sustainability 2018, 10, 2473. https://doi.org/10.3390/su10072473
Kim E-J, Lee S-W. Structural Equation Model for Burn Severity with Topographic Variables and Susceptible Forest Cover. Sustainability. 2018; 10(7):2473. https://doi.org/10.3390/su10072473
Chicago/Turabian StyleKim, Eujin-Julia, and Sang-Woo Lee. 2018. "Structural Equation Model for Burn Severity with Topographic Variables and Susceptible Forest Cover" Sustainability 10, no. 7: 2473. https://doi.org/10.3390/su10072473
APA StyleKim, E. -J., & Lee, S. -W. (2018). Structural Equation Model for Burn Severity with Topographic Variables and Susceptible Forest Cover. Sustainability, 10(7), 2473. https://doi.org/10.3390/su10072473